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This study examined if solving arithmetic problems hinders undergraduates’
accuracy on algebra problems. The hypothesis was that solving arithmetic
problems would hinder accuracy because it activates an operational view of
equations, even in educated adults who have years of experience with algebra.
In three experiments, undergraduates (N¼ 184) solved addition facts or parti-
cipated in one of several control conditions. Those who solved addition facts
were less likely to solve prealgebra equations (e.g., 6þ 8þ4¼ 7þ __) correctly
under speeded conditions. In a fourth experiment, the negative effects of solv-
ing arithmetic problems extended to undergraduates (N¼ 74) solving algebra
problems with no time pressure. Taken together, results suggest that arithmetic
activates knowledge that hinders performance on algebra problems. Thus, an
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operational view of equations, which is prevalent in children, does not seem to
be revised or abandoned, even after years of experience with algebra.

Many aspects of cognition improve with time and with experience. Adults
and experts tend to think in more advanced ways than do children and
novices (Chase & Simon, 1973; Larkin, 1983). However, research suggests
that more advanced ways of thinking do not simply replace or subsume less
advanced ways of thinking (Kuhn, Garcia-Mila, Zohar, & Andersen, 1995;
Ohlsson, 2009; Siegler, 1996). This phenomenon is particularly striking in
the domain of mathematics where educated adults often use less advanced
strategies for solving problems than might be expected (e.g., Clement,
Lochhead, & Monk, 1981; LeFevre, Sadesky, & Bisanz, 1996). These conti-
nuities in cognition are important to understand because they provide clues
about the nature of learning and cognitive development.

In this study, we investigated possible continuities in mathematical
thinking between children and adults. The equations of interest were preal-
gebra equations with operations on both sides of the equal sign, such as
6þ 8þ 4¼ 7þ __. These target equations tap a fundamental concept in
algebra — mathematical equivalence (i.e., the concept that the two sides
of an equation are interchangeable). In the United States, they are rarely
included in the traditional K–8 mathematics curriculum (Li, Ding, Capraro,
& Capraro, 2008; McNeil et al., 2006; Seo & Ginsburg, 2003), and few
children (ages 7–11) generate a correct strategy for solving the equations
in the absence of specially designed interventions (Carpenter & Levi,
2000; De Corte & Verschaffel, 1981; Jacobs, Franke, Carpenter, Levi, &
Battey, 2007; Saenz-Ludlow & Walgamuth, 1998).

One might assume that educated adults would not have difficulties with
mathematical equivalence because they have learned algebra, and pilot data
indicated that most undergraduates solve equations like 6þ 8þ 4¼ 7þ __
correctly under nonspeeded conditions. However, in McNeil and Alibali’s
(2005b) study, some undergraduates solved the equations incorrectly under
speeded conditions (1,500 ms display period). Surprisingly, these undergrad-
uates did not merely make calculation errors but rather solved equations
using incorrect strategies typically used by children. When striking perform-
ance deficits such as these occur, it provides a window into the content and
organization of knowledge (Diamond & Kirkham, 2005; Sophian, 1997).
Speeded conditions can break down adults’ performance on complex cogni-
tive tasks, leading to reversion to immature strategies (Diamond & Kirkham,
2005). Such reversions have implications for theories of learning and develop-
ment because they are consistent with the idea that old representations

438 MCNEIL ET AL.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
V
U
L
 
V
a
n
d
e
r
b
i
l
t
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
6
:
0
7
 
1
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



continue to coexist alongside newer, more advanced representations, and new
or old may be activated, depending on the task and context (e.g., Barsalou,
1982; Munakata, McClelland, Johnson, & Siegler, 1997; Siegler & Stern,
1998; Thelen & Smith, 1994).

According to this account, individuals who learn arithmetic in the United
States may not revise or abandon their original view of equations, even after
they learn algebra and understand mathematical equivalence. Before learn-
ing algebra, children in the United States develop an operational view of
equations, in which they: a) assume the equal sign is always at the end of
equations (Alibali, Phillips, & Fischer, 2009; Cobb, 1987; McNeil & Alibali,
2004); b) interpret the equal sign as an operator that signals to ‘‘add up the
numbers’’ (Baroody & Ginsburg, 1983; Behr, Erlwanger, & Nichols, 1980;
Kieran, 1981; McNeil & Alibali, 2005a); and c) solve equations like
8þ 4¼ 5þ __ by adding 8þ 4þ 5 (Falkner, Levi, & Carpenter, 1999;
Matthews & Rittle-Johnson, 2009; Perry, Church, & Goldin-Meadow,
1988; Rittle-Johnson & Alibali, 1999). This operational view is thought to
be constructed from experience with arithmetic in school (Baroody &
Ginsburg, 1983; Jacobs et al., 2007; McNeil & Alibali, 2005b; Seo &
Ginsburg, 2003). In the United States, teachers and textbooks rarely refer-
ence the meaning of the equal sign or the concept of mathematical equival-
ence (Baroody & Ginsburg, 1983; Behr et al., 1980; Kieran, 1981; Seo &
Ginsburg, 2003). Rather, children predominantly see equations with opera-
tions to the left of the equal sign and the ‘‘answer’’ to the right (e.g.,
3þ 4¼ 7, Cobb, 1987; McNeil et al., 2006; Seo & Ginsburg, 2003). This
‘‘operations on left side’’ format does not highlight the interchangeable
nature of the two sides of an equation (Weaver, 1973). Moreover, children
learn to solve arithmetic problems by performing all of the given operations
on all the given numbers (e.g., they add up all the numbers in addition pro-
blems; McNeil & Alibali, 2005b). Children consistently encounter problems
that reinforce their operational view of equations when learning arithmetic,
and they do not learn to reason about equations relationally (as expressions
of mathematical equivalence) until they start to learn prealgebra or algebra
later in school.

We hypothesized that the operational view of equations continues to
coexist alongside the relational view, even in adulthood, and either can be
activated depending on the context (McNeil & Alibali, 2005a). Although
educated adults who have learned algebra well are likely to activate the
relational view in most mathematics and science contexts (e.g., McNeil &
Alibali, 2005a), they may be likely to activate the operational view in the
context of solving arithmetic problems because that is the context in which
the operational view was originally established. In support of this account,
research has shown that undergraduates tend to define the equal sign as a
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relational symbol in many contexts, but some define the equal sign opera-
tionally in the context of a typical arithmetic problem (McNeil & Alibali,
2005a). This context effect is even stronger for children in middle school
who are just learning algebra (McNeil et al., 2006).

We predicted that solving arithmetic problems would activate an
operational view of equations and hinder undergraduates’ performance on
equations. However, there are at least two reasons to predict the opposite.
First, solving arithmetic problems might lead to increased fluency with basic
arithmetic facts, thus ‘‘freeing’’ cognitive resources for higher-level problem
solving. This account is based on the Decomposition Thesis (Anderson,
2002; Lee & Anderson, 2001), which suggests that complex skills (e.g.,
equation solving) can be decomposed into many small component skills
(e.g., encoding the numbers and operators, performing arithmetic computa-
tions, etc.) and that increased fluency with one of the component skills is an
effective way to improve execution of the more complex skill (Anderson,
Corbett, Koedinger, & Pelletier, 1995; Kotovsky, Hayes, & Simon, 1985).
Because arithmetic computation is a component skill necessary for solving
the target equations, this account suggests that increased fluency with
the arithmetic facts relevant to solving the target equations should
improve equation-solving performance (cf., Carnine, 1980; Haverty, 1999;
Kaye, 1986).

Second, solving arithmetic problems might activate representations in
educated adults that are helpful to solving equations. Undergraduates have
been solving arithmetic problems for many years, and they also have learned
how to think about equations relationally in algebra. Those who have
learned algebra well may abandon or revise their old, operational view of
equations. Their knowledge of algebra may subsume their knowledge of
arithmetic, and they may come to think of arithmetic problems relationally
(e.g., 3þ 4 is equivalent to 7). If this is the case, then arithmetic problems
would activate undergraduates’ knowledge of mathematical equivalence
and would facilitate performance on equations.

Surprisingly, no study to date has examined how solving arithmetic
problems affects performance on algebraic equations. We performed four
experiments to test the hypothesis that solving arithmetic problems hinders
undergraduates’ accuracy on equations. In the first three experiments, we
tested if solving arithmetic problems would hinder undergraduates’ accu-
racy solving prealgebra equations under speeded conditions. In the fourth
experiment, we tested if the negative effects of solving arithmetic problems
would extend to algebra problems solved under nonspeeded conditions.
The findings have implications for whether an operational view of
equations persists into adulthood and is activated by solving arithmetic
problems.
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EXPERIMENTS 1–3

The target problems in the first three experiments were equations of the form
aþ bþ c¼ dþ __. Our goal was to test if performance solving these equations
under speeded conditions would be hindered by solving arithmetic problems
beforehand. We predicted that solving arithmetic problems would hinder
performance by activating participants’ operational view of equations.

Method

Participants. Participants were 124 undergraduates in Experiment 1, 44
in Experiment 2, and 43 in Experiment 3. Across the experiments, 27 parti-
cipants were excluded because they did not attend elementary school in the
United States (but see supplemental analysis). Thus, the final sample con-
sisted of 184 undergraduates (50 men, 134 women; 5 African American or
Black, 10 Asian, 5 Hispanic or Latino, 164 White) from a public university
in the Midwestern United States. Participants received one extra credit point
for participating. Participants’ scores on the quantitative portion of the
ACT=SAT fell between the 39th and 99th percentiles (M¼ 85th percentile).

Apparatus. Stimuli were presented on iMac G4 computers using
PsyScope 1.2.5 (Cohen, MacWhinney, Flatt, & Provost, 1993).

Procedure. Participants in the experiments were seated at computers situ-
ated in individual cubicles. They were told: a) to record all answers on an
answer sheet; b) to use the answer sheet exclusively for writing answers, not
as scratch paper (to ensure memory-intensive conditions); and c) to go as
quickly as possible throughout the experiment while still maintaining accuracy.

Each experiment had two distinct phases: an activation phase followed by
an equation-solving phase. During the activation phase, participants were
randomly assigned to the arithmetic condition or to one of three control con-
ditions. In the arithmetic condition (Experiments 1 and 2), participants
solved simple addition facts (e.g., 8þ 4). We used addition facts, rather than
subtraction, multiplication, or division facts, for two main reasons. First,
addition is the arithmetic operation most relevant to solving the target
equations. Second, addition is the operation that is learned first in school,
so it is the operation upon which all the other operations are built. Each
addition fact was presented as two addends (without the equal sign) because
we wanted to test the effect of solving addition facts per se, rather than
exposure to the ‘‘operations on left side’’ format.

Our primary control condition (Experiments 1–3) was the color-mixing
condition, based on the control condition used by McNeil and Alibali
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(2005b). In this condition, instead of adding numbers together, participants
mixed colors together. The problems contained color pairs (e.g., yellow and
blue), and participants’ goal was to figure out what color the color pairs made
when mixed together. For example, the correct answer for the color pair
‘‘yellow and blue’’ was ‘‘green’’ because yellow and blue mix to make green.

To account for potential alternative explanations of our predicted effects,
we included two additional control conditions: the no-input condition
(Experiment 2) and the algebra condition (Experiment 3). In the no-input con-
dition, participants did not solve any problems prior to solving the equations.
We included this condition so we could attribute differences between the
arithmetic and color-mixing conditions to negative effects of solving addition
facts, rather than to positive effects of mixing colors together.

In the algebra condition, participants solved problems that were
constructed by converting the addition facts from the arithmetic condition
to simple algebra problems of the form a¼ bþ x, where a and b were the
numbers from a problem in the arithmetic condition (e.g., 8¼ 4þ x). Thus,
participants in this condition saw the same numbers in the same order as part-
icipants in the arithmetic condition. This condition addressed two alternative
explanations of the predicted negative effects of the arithmetic condition.
First, without this condition, any negative effects of the arithmetic condition
could be attributed to exposure to numbers, rather than to arithmetic per se.
Second, without this condition, negative effects of the arithmetic condition
could be attributed to participation in an effortful task, rather than to arith-
metic per se. Solving addition facts may have been more mentally tiring than
mixing colors together, and mental fatigue is often accompanied by deterio-
ration in cognitive performance (Lorist et al., 2000). The algebra condition
exposed participants to numbers, and it was (at least) as effortful as solving
addition facts. Thus, if participants in the algebra condition performed simi-
larly to or better than participants in the other control conditions, then we
could not reasonably attribute poor performance in the arithmetic condition
to exposure to numbers or participation in an effortful task.

Participants in all conditions completed eight problem sets, each of which
contained 12 problems (addition facts, color pairs, or simple algebra
problems). Each set appeared on the screen until participants solved all 12
problems and pressed a key on the keyboard to move on to the next set.
We included a large number of problems in the activation phase for two
reasons. First, we wanted to make sure that we activated undergraduates’
operational view of equations enough to compete with the relational view
that had been learned more recently in algebra. Second, it allowed us to
compare our predictions to the predictions of the Decomposition Thesis
(Anderson, 2002; Lee & Anderson, 2001), which suggests that increased
fluency with the addition facts relevant to solving the target equations
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should improve equation-solving performance (see Haverty, 1999). Prior
research indicates that undergraduates sometimes compute (rather than
retrieve from memory) single-digit addition facts (Campbell & Timm,
2000; Campbell & Xue, 2001; LeFevre et al., 1996), and solving a large
number of single-digit addition facts leads to a significant reduction in
undergraduates’ solution times (Frensch & Geary, 1993). Thus, in contrast
to our predictions, the Decomposition Thesis predicts that undergraduates
will perform better on equations after solving a large number of addition
facts needed to solve the target equations.

After the activation phase, participants were presented with a new screen
of instructions to indicate that they would be moving on to a new phase of
the experiment. They were informed that they would be shown a new set of
mathematics problems one at a time and that each problem would appear
on the screen for a brief period of time. They were told to record solutions
on the answer sheet. During this equation-solving phase, participants solved
three equations: 7þ 9þ6¼ 7þ __, 6þ 8þ 4¼ 7þ __, and 9þ 7þ 8¼ 5þ __.
Before each equation was presented, participants’ gaze was directed to the
center of the screen at the location where the equation would be presented.
Each equation was presented for a brief period of time (1,000 ms for a subset
of participants in Experiment 1 and 1,500 ms for all other participants; time
of presentation did not affect performance).

Results

The same procedure was used in all three experiments, so we collapsed the
data across experiments for efficient presentation (conclusions are unchanged
when each experiment is analyzed separately).

Correctness. Performance on the equations was poor overall, and not
normally distributed, with 112 of the 184 participants (61%) solving zero
of three equations correctly. Low levels of performance like this tend to occur
in studies of children’s performance on the equations (e.g., Alibali, 1999;
Falkner et al., 1999; McNeil, 2008). Given this distribution of scores, a para-
metric analysis would be inappropriate. Based on the shape of the distri-
bution, we categorized participants into two groups: those who solved zero
equations correctly (N¼ 110) and those who solved at least one equation
correctly (N¼ 74). We then used binomial logistic regression to predict the
log of the odds of solving at least one equation correctly (see Agresti,
1996). Conclusions were unchanged when we used other analysis strategies
(e.g., multinomial logistic regression, Weighted Least Squares analysis).
Predictor variables included condition (arithmetic, algebra, color mixing,
no practice) and national percentile rank on the quantitative portion of the
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ACT=SAT (continuous, centered) as a control variable. Conclusions were
unchanged when ACT=SAT was removed from the model. To test our pre-
dictions, we used three Helmert contrast codes to represent the four levels of
condition: 1) arithmetic versus all control conditions, 2) algebra versus the
other two control conditions, and 3) color mixing versus no practice.

Table 1 displays the percentage of participants in each condition who
solved at least one equation correctly by condition. As predicted, parti-
cipants in the arithmetic condition were less likely than those in the control
conditions to solve at least one equation correctly, bbb¼�1.64, z¼�4.15,
Wald(1, N¼ 184)¼ 19.78, p< .001. The model estimates that the odds of
solving at least one equation correctly are more than five times lower after
participating in the arithmetic condition versus a control condition. Separate
pairwise comparisons indicated that participants in the arithmetic condition
were significantly less likely than participants in any given control condition
to solve at least one equation correctly. Moreover, when each equation was
analyzed separately, participants in the arithmetic condition were less likely
than those in the control conditions to solve each equation correctly,
Equation 1: bbb¼�1.06, z¼�1.88, Wald(1, N¼ 184)¼ 3.51, p¼ .06; Equation
2: bbb¼�1.07, z¼�2.72, Wald(1, N¼ 184)¼ 7.43, p¼ .006; Equation 3:
bbb¼�1.54, z¼�3.89, Wald(1, N¼ 184)¼ 15.10, p< .001. Thus, the arithme-
tic condition hindered equation-solving performance relative to the control
conditions.

Considering only the control conditions, participants in the algebra
condition were more likely than participants in the other two control
conditions to solve at least one equation correctly, bbb¼1.67, z¼ 2.35,
Wald(1, N¼ 98)¼ 5.50, p¼ .02, and there was no statistical difference
between the color-mixing and no-practice conditions, bbb¼0.31, z¼ 0.47,
Wald(1, N¼ 79)¼ 0.22, p¼ .64. The log of the odds of solving at least one

TABLE 1

Percentage of Undergraduates who Solved at Least One Equation Correctly by Condition,

and Average Number of Equations Solved With the Add-All Strategy by Condition

Full sample High-achieving subsample

% at least one corr. Add-all M (SD) % at least one corr. Add-all M (SD)

Arithmetic 24% (21 of 86) 1.94 (1.23) 21% (8 of 38) 1.97 (1.26)

Algebra 84% (16 of 19) 0.68 (1.06) 83% (10 of 12) 0.75 (1.06)

Color mixing 46% (31 of 68) 1.66 (1.28) 48% (15 of 31) 1.74 (1.21)

No input 54% (6 of 11) 1.36 (1.29) 67% (4 of 6) 1.00 (1.26)

Note. The numbers are presented for the full sample and the high-achieving subsample from

Experiments 1 through 3.
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equation correctly was not associated with national percentile rank on
the quantitative portion of the ACT=SAT, bbb¼0.11, z¼ 0.48, Wald(1,
N¼ 183)¼ 0.23, p¼ .63.

Thus, educated adults who solved addition problems were less likely than
those who participated in control conditions to solve equations correctly
under speeded conditions. Importantly, the poor performance seemed to
be due to solving arithmetic problems specifically, not to facilitative effects
of mixing colors together (practice mixing colors was no different than no
practice) or exposure to numbers or practice with an effortful task (practice
with simple algebra problems was helpful to solving equations).

Use of the add-all strategy. According to our account, participants in
the arithmetic condition were less likely than those in the control conditions
to solve the equations correctly because solving arithmetic problems
activated participants’ operational view of equations. Activation of the
operational view should lead participants to solve the target equations by
adding all the numbers (i.e., the add-all strategy). Thus, we predicted that
participants in the arithmetic condition would use the add-all strategy more
than would participants in the control conditions.

Use of the add-all strategy was mixed overall, with 56 of the 184 parti-
cipants (30%) using it on zero of three equations, 22 (12%) using it on one
equation, 32 (17%) using it on two equations, and 74 (40%) using it on all
three equations. Table 1 displays the average number of equations solved
with the add-all strategy by condition. We performed an analysis of covari-
ance (ANCOVA) with condition as the independent variable, national per-
centile rank on the quantitative portion of the ACT=SAT as the covariate,
and number of equations solved with the add-all strategy (out of three) as
the dependent variable. There was a significant main effect of condition,
F(3, 179)¼ 5.39, p¼ .001, g2p ¼ .08. We again used the set of orthogonal
Helmert coefficients to test our predictions. As predicted, participants in
the arithmetic condition solved more equations with the add-all strategy than
did participants in the control conditions, F(1, 179)¼ 10.55, p¼ .001. Parti-
cipants in the algebra condition solved fewer equations with the add-all
strategy than did participants in the other two control conditions, F(1,
179)¼ 5.62, p¼ .02. There was no statistical difference between use of the
add-all strategy in the color-mixing and no-practice conditions, F(1,
179)¼ 0.52, p¼ .46. Use of the add-all strategy was not associated with
national percentile rank on the quantitative portion of the ACT=SAT, F(1,
179)¼ 0.14, p¼ .71, and conclusions were unchanged when ACT=SAT was
not included as a covariate in the analysis. These results indicate that the
arithmetic condition increased undergraduates’ use of the incorrect strategy
most often used by elementary-school children—the add-all strategy.
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Supplemental analysis 1. Results of Experiments 1–3 are important
because they suggest that arithmetic activates knowledge that is detrimental
to solving equations, even in educated adults. But what if participants had
never developed an operational view of equations? Children in high-
achieving countries in Asia, such as China and Taiwan, typically solve equa-
tions such as 6þ 8þ 4¼ 7þ __correctly (Capraro et al., 2009; Watchorn,
Lai, & Bisanz, 2009) and analysis of elementary-school textbooks and
teachers’ manuals from China suggests that a relational view of equations
is well supported (Li et al., 2008), so children in these countries may never
develop an operational view of equations. If this is true, then undergraduates
who were educated in these countries should solve equations correctly,
regardless of whether they solve arithmetic problems or not. To explore this
possibility, we compared the performance of undergraduates who attended
elementary school in countries in Asia (N¼ 22, 8 in Korea, 4 in Singapore,
3 in China, 3 in Hong Kong, 2 in India, and 2 in Taiwan) to that of under-
graduates who attended elementary school in the United States matched for
university, condition, quantitative SAT score, and gender. Seventy-three
percent of undergraduates educated in countries in Asia solved at least one
equation correctly (regardless of condition), but only 32% of undergraduates
educated in the United States did the same. The model estimates that the
odds of solving at least one equation correctly are nearly six times higher
for undergraduates educated in countries in Asia versus those educated in
the United States. Results were similar when we considered use of the add-all
strategy. Undergraduates educated in countries in Asia solved fewer equa-
tions with the add-all strategy (M¼ 0.54, SD¼ 1.06) than did undergradu-
ates educated in the United States (M¼ 2.04, SD¼ 1.25), t(42)¼�4.29,
p< .001, d¼�1.29.

The difference between the two groups was even greater when we limited
the analysis to the arithmetic condition (n¼ 13 in each group). The percent-
age of participants who solved at least one equation correctly was 70% for
those educated in countries in Asia compared with only 8% for those
educated in the United States. The average number of equations solved with
the add-all strategy was only 0.54 (SD¼ 1.05) for those educated in
countries in Asia compared with 2.61 (SD¼ 0.87) for those educated in
the United States.

Although factors other than differences in early experience with arithme-
tic may account for the differences in performance between the two groups,
the results nonetheless show that undergraduates who were not expected to
have an operational view of equations performed well on equations under
speeded conditions and rarely resorted to adding all the numbers, even if
they participated in the arithmetic condition. This result makes it difficult
to attribute the poor equation-solving performance of undergraduates in
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the arithmetic condition in Experiments 1 through 3 to some aspect of the
method that ‘‘tricked’’ participants into solving the equations incorrectly.
As we have argued, solving arithmetic problems can only activate an oper-
ational view of equations in individuals who are predisposed to think about
arithmetic in an operational way.

Supplemental analysis 2. Given the superior performance of under-
graduates educated in countries in Asia, one might wonder if the results of
Experiments 1 through 3 would have been different if we had tested a select
subset of the undergraduates educated in the United States—particularly
those with high levels of algebra achievement. According to the account
we have been advancing in this article, even high-achieving undergraduates
should be negatively affected by solving arithmetic problems because once
the operational view of equations is established in elementary school, it is
not revised or abandoned, even when algebra is learned in the later school
years. However, an alternative account might suggest that undergraduates
who were educated in countries in Asia have learned algebra well enough
to revise or abandon their old, operational view. According to this account,
undergraduates who were educated in countries in Asia may have fully inte-
grated their knowledge of arithmetic with their knowledge of algebra, thus
making them immune to the negative effects of solving arithmetic problems.
To rule out this alternative, it would be ideal to show that the results of
Experiments 1 through 3 hold for a group of ‘‘algebra experts’’ who attended
elementary school in the United States. Because algebra is one of the primary
content areas tested in the SAT and ACT, it was possible for us to get a rough
estimate of participants’ algebra achievement through their quantitative
SAT=ACT scores. We operationalized high-achieving undergraduates as
those who scored at or above the 90th percentile on the quantitative SAT=
ACT (N¼ 87), and we re-ran the analyses from Experiments 1 through 3
to test if the results held for this select subset of undergraduates. Conclusions
held regardless of the criterion we used to define high achievement (e.g., at or
above 90th, above 90th, above 95th).

Table 1 displays the percentage of high-achieving undergraduates who
solved at least one equation correctly by condition. Consistent with the
results from the full sample, high-achieving undergraduates in the arithmetic
condition were less likely than those in the control conditions to solve at
least one equation correctly, bbb¼�2.11, z¼�3.74, Wald(1, N¼ 87)¼
13.81, p< .001. The model estimates that the odds of solving at least one
equation correctly are more than eight times lower after participating in
the arithmetic condition versus a control condition. High-achieving under-
graduates in the algebra condition were not statistically more likely than
those in the other two control conditions to solve at least one equation
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correctly, bbb¼1.23, z¼ 1.36, Wald(1, N¼ 49)¼ 1.85, p¼ .17. There was no
statistical difference between the color-mixing and no-practice conditions,
bbb¼�0.63, z¼ 0.67, Wald(1, N¼ 37)¼ 0.67, p¼ .41.

Results were similar for use of the add-all strategy. Table 1 displays the
high-achieving undergraduates’ average number of equations solved with
the add-all strategy by condition. High-achieving undergraduates in the
arithmetic condition solved more equations with the add-all strategy than
did those in the control conditions, F(1, 83)¼ 7.64, p¼ .007. There was
not a statistical difference in use of the add-all strategy between the algebra
condition and the other two control conditions, F(1, 83)¼ 1.96, p¼ .16, nor
between the color-mixing and no-practice conditions, F(1, 83)¼ 1.87,
p¼ .18. On the whole, results were consistent with the results from the full
sample and suggest that arithmetic hinders the equation-solving perform-
ance of undergraduates educated in the United States, even those with high
levels of mathematics achievement.

EXPERIMENT 4

We performed a final experiment to test if the negative effects of solving
arithmetic problems extend beyond prealgebra equations solved under
speeded conditions to algebra problems solved under nonspeeded conditions.
Even though the arithmetic condition hindered performance relative to
control conditions on all three equations, it is possible that the negative
effects of solving arithmetic problems may occur only for a few minutes or
only for problems with perceptual features that overlap substantially with
typical arithmetic problems.

Method

Participants. Seventy-six undergraduates participated. Two were
excluded because they did not attend elementary school in the United States.
The final sample consisted of 74 undergraduates (35 men, 39 women; 2
African American or Black, 6 Asian, 8 Hispanic or Latino, 1 Native
American, 56 White, 1 ‘‘Other’’) from a private university in the Midwestern
United States. Participants received one extra-credit point toward a
psychology class for participating. Participants’ scores on the quantitative
portion of the ACT=SAT fell between the 74th and 99th percentiles
(M¼ 93rd percentile).

Procedure. The target problems for this experiment were algebra pro-
blems that require coordination of relationships of equivalence involving
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multiple unknown values or double references to a single unknown value
(e.g., John bought three shirts and two caps for $58. Sue bought two shirts
and three caps for $52. What is the cost of one shirt?). Six problems were
selected from previous studies (Booth & Koedinger, 2007; Koedinger,
Alibali, & Nathan, 2008; Landy & Goldstone, 2007; Rosnick & Clement,
1980). Participants had unlimited time to solve the problems; they took
18.68 minutes on average (SD¼ 10.52). The procedure was similar to that
in Experiments 1 through 3: Participants solved algebra problems after solv-
ing arithmetic problems or participating in one of two control conditions
(solving nonarithmetic problems or no input). The arithmetic problems
included single-digit addition problems, as well as arithmetic problems that
were generated from a pilot study in which we determined which arithmetic
facts undergraduates tend to use when solving the target algebra problems.
The nonarithmetic problems were magnitude comparison problems in which
participants had to determine whether a number is greater than, less than, or
equal to another number by filling in the appropriate symbol to make a
statement true (e.g., the correct symbol for ‘‘13� 16’’ is ‘‘<’’). We did not
expect performance in the two control conditions to differ because research
has shown that educated adults already tend to activate the relational view
in the context of algebra problems (McNeil & Alibali, 2005a).

Results

Performance on the algebra problems was mediocre (M¼ 2.92 out of 6,
SD¼ 1.19), and scores were normally distributed. We performed an
ANCOVA with condition (arithmetic, magnitude comparison, or no input)
as the independent variable, national percentile rank on the quantitative
portion of the ACT=SAT as the covariate, and number of algebra problems
solved correctly (out of six) as the dependent variable. The effect of
condition was significant, F(2, 68)¼ 4.14, p¼ .02, g2p ¼ .11. We again used
Helmert coefficients to test our hypothesis, and as expected, participants
in the arithmetic condition solved fewer algebra problems correctly
(M¼ 2.43, SD¼ 1.20) than did participants in the control conditions
(M¼ 3.14, SD¼ 1.13), F(1, 68)¼ 7.15, p¼ .01. Participants in the magnitude
comparison and no-practice control conditions solved about the same num-
ber of problems correctly (M¼ 2.96, SD¼ 1.21 vs. M¼ 3.32, SD¼ 1.03),
F(1, 68)¼ 1.73, p¼ .20. Performance on the algebra problems was associa-
ted with national percentile rank on the quantitative portion of the ACT=
SAT, F(1, 68)¼ 4.42, p¼ .04, g2p ¼ .06. However, the significant effect of
condition did not depend on the inclusion of this covariate in the analysis,
nor did it interact with ACT=SAT scores.
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DISCUSSION

We examined how solving arithmetic problems affects undergraduates’
equation solving. We found that solving addition facts such as 8þ 4 hinders
accuracy solving equations such as 6þ 8þ 4¼ 7þ __ under speeded
conditions. We also found that solving simple algebra problems such as
8¼ 4þ x improves accuracy solving equations such as 6þ 8þ 4¼ 7þ __,
which suggests that the negative effects of solving arithmetic problems are
not due to exposure to numbers or practice with a mentally tiring task but
rather are due to the knowledge activated by the problems. Finally, we
showed that the negative effects of solving arithmetic problems extend to
performance solving algebra problems under nonspeeded conditions. Taken
together, results suggest that arithmetic activates knowledge that hinders edu-
cated adults’ performance on problems that require relational thinking. This
supports Diamond and Kirkham’s (2005) claim that adults do not ever fully
outgrow the naı̈ve representations and biases they construct in childhood. In
the following paragraphs, we first discuss how these results extend classic
findings on mental set. Then, we consider potential mechanisms underlying
the effects, highlight educational implications, and propose future directions.

The present results extend classic findings on mental set. For example, con-
sider Luchins’s seminal water jar experiments (Luchins, 1942; Luchins &
Luchins, 1950; see also Chen, 1999; Chen & Mo, 2004; Crooks & McNeil,
2009). In these experiments, both children and adults who solved several pro-
blems that required the same complicated strategy persisted in using that strat-
egy on target problems that could be solved by a much simpler strategy. They
did so even when the more complicated strategy did not lead to a correct sol-
ution and were said to be operating according to an Einstellung, or mental set.

Consistent with Luchins’s results, the present results suggest that experi-
ence with a single strategy can reduce problem-solving flexibility and hinder
performance solving more complex problems. However, the present results
go beyond Luchins’s in several ways. First, they suggest that a ‘‘mental set’’
can be constructed not only within a single problem-solving experience but
also through experience that is distributed across many years of schooling.
Second, they suggest that the negative effects of experience with a single
strategy occur not only in the context of highly constrained puzzle problems
but also in the context of educationally relevant problems taught in school.
Finally, they suggest that experience with a single strategy can be detrimen-
tal not only when the strategy needs to be abandoned and replaced with a
novel strategy but also when the strategy is a component skill necessary
for carrying out a more complex task. Indeed, even though arithmetic
computation was a component skill necessary for solving the target
equations, solving arithmetic problems beforehand did not help—but
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hindered—participants’ accuracy. These findings suggest that it may be
necessary for accounts based on the Decomposition Thesis (e.g., Haverty,
1999; Kotovsky et al., 1985) to incorporate constraints for when experience
with component skills harms or facilitates performance on a complex task.

The present study also provides some clues about the possible processes
involved in the negative effects of solving arithmetic problems. We have
argued that arithmetic activates undergraduates’ operational view of equa-
tions. We know that children in the United States construct an operational
view of equations from their experience with arithmetic in elementary school,
and this view may continue to be activated and maintained by exposure to
arithmetic, even after years of experience with algebra (McNeil & Alibali,
2005b). Activation of the operational view, in turn, may interfere with accu-
rate encoding of, strategy selection on, and conceptualization of problems that
require relational thinking (cf., Bruner, 1957; McGilly & Siegler, 1990). This
account implies continuities in representations between children and adults.

However, it is possible that other processes could be involved in the nega-
tive effects of solving arithmetic problems. For example, instead of activat-
ing the old, operational view of equations, it is possible that undergraduates
could have constructed a ‘‘response set’’ for the very first time during the
arithmetic condition in Experiments 1 through 3 and then persisted in using
it when they were presented with equations. Although an impromptu
response set may have contributed to the negative effects of arithmetic
found in Experiments 1 through 3, this account has difficulty explaining
why undergraduates who were educated in countries such as China and
Korea would not be expected to construct a similar response set. It also
has difficulty explaining why solving arithmetic problems hindered accuracy
on algebra problems in Experiment 4.

Another related process that could be involved in the negative effects of
arithmetic practice is mindlessness, which is defined as being committed to a
‘‘single, rigid perspective and . . . oblivious to alternative ways of knowing’’
(Langer, 2000). Mindless problem solvers rely on knowledge that has been
retrieved many times in the past at the expense of taking into account what
is actually present in the external environment (cf., Gray & Fu, 2001). For
example, after solving addition facts, undergraduates in the current study
may have persisted in using an add-all strategy when it was no longer appro-
priate, simply because it was the strategy that had been retrieved most often
in the recent past. One variant of Luchins’s (1942) water jar experiments
provides support for this view. Participants were warned, ‘‘Don’t be blind,’’
before solving the target problems, and were, as a result, less likely to persist
in using the original strategy. If the current results are due to mindlessness,
then the negative effects of arithmetic might be overcome by reminding
undergraduates to be mindful.
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In terms of educational implications, the present experiments were far
removed from children learning in classrooms; thus, it would be premature
to suggest that the processes underlying undergraduates’ performance are
the same as the processes underlying children’s difficulties with algebra.
Nonetheless, findings suggest that the representations constructed early on
in mathematics may not be abandoned, even after years of instruction.
Thus, it may be especially important for educators to pay attention to the
ways in which children’s early experience is structured.

For example, results support a growing body of research suggesting that
children should not practice arithmetic facts in a single-problem format as
they do year after year in traditional mathematics classrooms in the United
States (Seo & Ginsburg, 2003; Valverde & Schmidt, 1997). Arithmetic pro-
blems are almost always presented in the format aþ b¼c in elementary- and
middle-school mathematics textbooks in the United States (McNeil et al.,
2006; Seo & Ginsburg, 2003). This finding is troublesome, given that equa-
tions with operations on both sides of the equal sign are more likely than
other equation formats to elicit correct, relational interpretations of the
equal sign (McNeil & Alibali, 2005a; McNeil et al., 2006).

Unvarying practice in a single context often leads to inflexible knowledge
that is not applied appropriately to new contexts (Chen, 1999; Chen & Mo,
2004; Cognition and Technology Group at Vanderbilt, 1997; Gick &
Holyoak, 1983). However, exposure to a variety of problem types facilitates
broader knowledge representations (Chen, 1999; VanderStoep & Seifert,
1993; Tennyson & Tennyson, 1975). Thus, instead of presenting arithmetic
problems in a single-problem format, textbooks and educators should
expose children to a more varied, richer set of problem formats from the
beginning of formal schooling (Baroody & Ginsburg, 1983; Blanton &
Kaput, 2005; Carpenter, Franke, & Levi, 2003; Denmark, Barco, & Voran,
1976; Hiebert et al., 1996; Kaput, 1998; National Council of Teachers of
Mathematics, 2000). Learning and practicing arithmetic facts in a variety
of formats seems like a prudent, and simple, change to instructional prac-
tice, especially because it recently has been shown to facilitate children’s
understanding of mathematical equivalence (McNeil, 2008).

Despite the present study’s strengths, several aspects warrant additional
research. For example, it is unclear how long the negative effects of solving
arithmetic problems persist. In undergraduates, where the operational view
of equations coexists with the more advanced, relational view, negative
effects of arithmetic may persist for minutes, not hours. However, in people
whose relational view of equations is fundamentally weaker (e.g., noncollege
adults, middle-school children), negative effects may last longer. How long
negative effects of arithmetic last, and whether or not this differs for chil-
dren and adults, merits additional research.
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Future research should also explore if undergraduates’ old, operational
view of equations can ever be revised or abandoned. In this study, arithmetic
activated the operational view of equations, even in undergraduates who
achieved highly in algebra. These results support theories of learning and
development that suggest that old representations continue to coexist along-
side newer, more advanced representations, and new or old may be activated,
depending on the task and context (e.g., Barsalou, 1982; Munakata et al.,
1997; Siegler & Stern, 1998; Thelen & Smith, 1994). However, it remains
possible that some adults (e.g., mathematicians, scientists, engineers) may
have learned algebra so well that their knowledge of algebra subsumes their
knowledge of arithmetic. If we can identify individuals who have overcome
the operational view, then we may not only gain clues about the nature of
cognitive change but also uncover ways to help individuals whose oper-
ational view is still strong enough to hinder their success with algebra.

Finally, future research should explore the features of more and less effec-
tive forms of experience with arithmetic. For example, experience with arith-
metic tasks that share the same conceptual structure as the target problem
(e.g., the algebra condition in the present study) can facilitate performance.
Similar positive effects might be observed for experience solving a single type
of arithmetic problem presented in multiple formats or experience solving
multiple types of arithmetic problems (Gick & Holyoak, 1983; VanderStoep
& Seifert, 1993). If we can ascertain which forms of arithmetic experience are
most effective at promoting flexible knowledge structures, we may be able to
tailor early arithmetic instruction to help ease children’s transition from
arithmetic to algebra.
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