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Explaining new ideas to oneself can promote learning and transfer,
but questions remain about how to maximize the pedagogical
value of self-explanations. This study investigated how type of
instruction affected self-explanation quality and subsequent learn-
ing outcomes for second- through fifth-grade children learning to
solve mathematical equivalence problems (e.g., 7 + 3 + 9 = 7 + _).
Experiment 1 varied whether instruction was conceptual or proce-
dural in nature (n = 40), and Experiment 2 varied whether children
were prompted to self-explain after conceptual instruction
(n = 48). Conceptual instruction led to higher quality explanations,
greater conceptual knowledge, and similar procedural knowledge
compared with procedural instruction. No effect was found for
self-explanation prompts. Conceptual instruction can be more effi-
cient than procedural instruction and may make self-explanation
prompts unnecessary.

� 2008 Elsevier Inc. All rights reserved.
Introduction

Learning is often plagued both by a lack of connected understanding and by the inability to transfer
knowledge to novel problems. Understanding the processes that affect knowledge change is central
both to theories of learning and to the development of effective pedagogies for overcoming these
problems. Prompting students to generate explicit explanations of the material they study has
emerged as one potentially effective tool for promoting learning and transfer in numerous domains
(e.g., Chi, DeLeeuw, Chiu, & LaVancher, 1994). Although prompting for such ‘‘self-explanations” has
been shown to facilitate learning, little is known about how these prompts interact with different
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types of instruction. Explicating these relations is essential to unlocking the full potential of self-expla-
nation as a tool for supporting learning. Toward this end, the current experiments examined (a)
whether procedural or conceptual instruction combined with self-explanation prompts differentially
affected learning of conceptual and procedural knowledge for children solving math equivalence prob-
lems (e.g., 7 + 3 + 9 = 7 + _), (b) whether the type of instruction affected the quality of self-explanations
generated, and (c) whether self-explanation prompts were effective over and above conceptual
instruction alone.

The self-explanation effect

In their seminal study on the self-explanation effect, Chi, Bassok, Lewis, Reimann, and Glaser (1989)
found that, when studying example exercises in a physics text, the best learners spontaneously ex-
plained the material to themselves, providing justifications for each action in a solution sequence.
Subsequent studies have shown that prompting for such self-explanations can lead to improved
learning outcomes in numerous domains, including arithmetic (Calin-Jageman & Ratner, 2005;
Rittle-Johnson, 2006; Siegler, 2002), geometry (Aleven & Koedinger, 2002; Wong, Lawson, & Keeves,
2002), interest calculations (Renkl, Stark, Gruber, & Mandl, 1998), argumentation (Schworm & Renkl,
2007), Piagetian number conservation (Siegler, 1995), biology text comprehension (Chi et al., 1994),
and balancing beam problems (Pine & Messer, 2000). Moreover, these self-explanation effects have
been demonstrated across a wide range of age cohorts, from 4-year-olds (Rittle-Johnson, Saylor, &
Swygert, 2007) to adult bank apprentices (Renkl et al., 1998). Perhaps most impressive is that prompt-
ing for self-explanation also promotes transfer in many of these domains even though participants
rarely receive feedback on the quality of their explanations (e.g., Renkl et al., 1998; Rittle-Johnson,
2006; Siegler, 2002).

There are, however, substantial differences in the quality of explanations generated among individ-
uals. Importantly, these differences are associated with divergent learning outcomes (Chi et al., 1989;
Chi et al., 1994; Pirolli & Recker, 1994; Renkl, 1997). Successful learners tend to give more principle-
based explanations, to consider the goals of operators and procedures more frequently, and to show
illusions of understanding less frequently (for an effective summary, see Renkl, 2002). Less successful
learners, however, offer fewer explanations, anticipate steps less frequently, examine fewer examples,
and tend to focus less on the goals and principles governing operators and procedures. Hence, self-
explanation prompts are not equally successful across learners at encouraging the types of self-expla-
nations most highly correlated with learning gains. Indeed, a careful review of the literature reveals
that prompting learners to self-explain sometimes fails to improve learning over and above other
instructional scaffolds (Conati & VanLehn, 2000; Didierjean & Cauzinille Marmeche, 1997; Grobe &
Renkl, 2003; Mwangi & Sweller, 1998).

Thus, although the relation between self-explanation prompts and improved learning has been
documented and replicated, not all learners generate effective self-explanation even when prompted.
One unexplored possibility is that the type of instruction preceding self-explanation prompts may
influence subsequent explanation quality and learning. Although method of instruction has been
varied between experiments, the type of instruction used within an experiment has rarely been
manipulated. In this study, we contrast the effects of conceptual and procedural instruction on
self-explanation quality and learning.

Which type of instruction?

Debate over the comparative merits of procedural and conceptual instruction has a rich history
spanning the 20th century (for an overview, see Baroody & Dowker, 2003), yet the relations between
the types of instruction employed and the types of mathematical understandings generated remain
largely unresolved. Does instruction focusing on procedures primarily build procedural knowledge,
or does it effectively promote conceptual knowledge as well? Likewise, what types of knowledge does
instruction on concepts promote? In line with our current concern for getting the most out of self-
explanations, we add another question: Which type of instruction best supports the types of explana-
tions associated with the best learning gains?
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First, we offer some functional definitions. We define conceptual knowledge as explicit or implicit
knowledge of the principles that govern a domain and their interrelations. In contrast, we define proce-
dural knowledge as the ability to execute action sequences to solve problems (see Baroody, Feil, &
Johnson, 2007; Greeno, Riley, & Gelman, 1984; Rittle-Johnson, Siegler, & Alibali, 2001: Star, 2005).
Similarly, we define conceptual instruction as instruction that focuses on domain principles and proce-
dural instruction as instruction that focuses on step-by-step problem-solving procedures. Although
mathematics education researchers sometimes emphasize conceptual knowledge at the expense of
procedural knowledge, we recognize that both procedural and conceptual knowledge are critically
important (National Mathematics Advisory Panel., 2008; Star, 2005). Greater conceptual and proce-
dural knowledge both are associated with better performance on a variety of problem types (e.g.,
Blöt, Van der Burg, & Klein, 2001; Byrnes, 1992; LeFevre, Greenham, & Waheed, 1993; Rittle-Johnson
et al., 2001), and both are key characteristics of expertise (Koedinger & Anderson, 1990; Peskin, 1998;
Schoenfeld & Herrmann, 1982). Hence, we are ultimately interested in instruction that can maximally
promote both types of knowledge.

Several classroom researchers have argued that, compared with procedural instruction, concep-
tual instruction supports more general knowledge gains. Hiebert and Wearne’s (1996) study of place
value and multidigit arithmetic is one widely cited case. Procedural instruction that focused on stan-
dard algorithms could quickly move students’ procedural knowledge ahead of their conceptual
knowledge. In contrast, conceptual instruction that focused on the base-10 system and inventing
procedures improved both procedural and conceptual knowledge simultaneously. Others also have
found evidence that, compared with procedural instruction, an emphasis on conceptual instruction
leads to greater conceptual knowledge and to comparable procedural knowledge (Bednarz & Janvier,
1988; Blöt et al., 2001; Cobb et al., 1991; Fuson & Briars, 1990; Hiebert & Grouws, 2007; Kamii &
Dominick, 1997).

Randomized experimental studies have provided some corroboration of these classroom findings.
All of these studies have used math equivalence problems as the target task. In one early precursor to
the current experiment, providing students with conceptual instruction led many children to generate
accurate solution procedures that they could appropriately adapt to solve transfer problems (Perry,
1991). In contrast, procedural instruction improved performance on problems specifically targeted
by instruction but was less effective in promoting procedural transfer. Similarly, Rittle-Johnson and
Alibali (1999) found that procedural instruction was less effective than conceptual instruction at pro-
moting conceptual knowledge. Interestingly, Perry (1991) also found that procedural instruction could
actually impede learning when students who received hybrid instruction on both concepts and proce-
dures performed worse on procedural transfer items than did those who received instruction on con-
cepts alone.

These findings notwithstanding, we should be careful not to conclude prematurely that conceptual
instruction is typically more effective than procedural instruction in promoting conceptual knowledge
and procedural transfer. First, in the classroom studies considered above, some procedural instruction
was typically included in the conceptual instruction and children were not randomly assigned to con-
dition, making it difficult to draw conclusions about the effects of one type of instruction versus the
other. Second, the experimental studies considered above offered few examples, little opportunity
for practice or feedback, and/or no prompts for reflection, all of which may be important for establish-
ing effects of procedural instruction (e.g., Peled & Segalis, 2005; Siegler, 2002). Third, recent experi-
ments have shown explicitly that either procedural instruction or procedural practice in the
absence of instruction can promote both procedural and conceptual knowledge of math equivalence
and decimals (Rittle-Johnson & Alibali, 1999; Rittle-Johnson et al., 2001).

All told, prior experimental studies often have not provided opportunities for practicing and
reflecting on procedures that should reduce cognitive load, increase problem-solving efficiency, and
free cognitive resources for improving procedural transfer and conceptual knowledge (e.g., Kotovsky,
Hayes, & Simon, 1985; Proctor & Dutta, 1995; Sweller, 1988). The procedural instruction intervention
in the current study offered both instruction on a procedure and multiple opportunities for practice
using that procedure with feedback. Moreover, this study incorporates self-explanation prompts for
reflection that may further boost the effects of procedural instruction. Such boosts to the efficacy of
procedural instruction may make it equal to or more effective than conceptual instruction.
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Instruction and self-explanation

Self-explanation prompts add a new dimension to consider when choosing between procedural
and conceptual instruction. The effects of a given type of instruction might be augmented or weakened
when used in combination with self-explanation prompts. Likewise, the effects of self-explanation
prompts might vary in response to the type of instruction used prior to prompting.

Self-explanations can promote transfer when used in combination with procedural instruction to
teach mathematical equivalence (Rittle-Johnson, 2006). Self-explanation prompts may push learners
to consider the conceptual underpinnings of instructed procedures. Similarly, procedural instruction
may free cognitive resources that can be dedicated to generating more effective self-explanations than
when conceptual instruction is provided. Alternatively, conceptual instruction may boost the benefits
of self-explanation prompts by directly augmenting knowledge of domain principles and directing
attention to conceptual structure. Hence, self-explanation prompts might help students to fill in
knowledge gaps by promoting inferences that can be drawn from knowledge provided by conceptual
instruction. To date, direct comparison of self-explanation effects across the two types of instruction
remains unexamined.

The current experiments

The current experiments investigated the relations among type of instruction, self-explanation
prompts, and the types of self-explanations and knowledge that are promoted. We used math equiv-
alence problems of the type 7 + 3 + 9 = 7 + _ as the primary task. These problems pose a relatively high
degree of difficulty for elementary school children (Alibali, 1999; Perry, 1991; Rittle-Johnson, 2006).
Importantly, these problems tap children’s understanding of equality, which is a fundamental concept
in arithmetic and algebra (Kieran, 1981; Knuth, Stephens, McNeil, & Alibali, 2006; McNeil & Alibali,
2005). Because equality is such a central concept in mathematics, the current task is potentially fruit-
ful for exploring the relations between conceptual and procedural knowledge in mathematical think-
ing more generally. Prior research has shown that self-explanation prompts can improve procedural
learning and transfer on math equivalence problems (Rittle-Johnson, 2006; Siegler, 2002).

The goals of the current study were threefold. First, because of the previously established relation
between quality of self-explanation and learning outcomes, we wanted to evaluate the relations be-
tween type of instruction and the quality of children’s subsequent self-explanations. Second, we
wanted to evaluate the relations between type of instruction and children’s conceptual and procedural
knowledge of mathematical equivalence. Finally, we wanted to determine whether self-explanation
prompts used in conjunction with conceptual instruction improve learning over and above conceptual
instruction alone when equating time on task. Specifically, Experiment 1 examined the comparative
effects of conceptual and procedural instruction when all children were prompted to self-explain.
Experiment 2 examined the effects of self-explanation prompts when all children received conceptual
instruction and spent approximately the same amount of time on the intervention.
Experiment 1

We hypothesized that, during the intervention, (a) conceptual and procedural instruction would
lead to different patterns of explanation quality, accuracy, and procedure use, (b) both types of
instruction would lead to comparable procedural learning by posttest, and (c) conceptual instruction
would promote conceptual knowledge and procedural transfer superior to those of procedural instruc-
tion, at least in part due to promoting more conceptual self-explanations.

Method

Participants
Consent was obtained from 121 second- through fifth-grade children from an urban parochial

school serving a middle-class, predominantly Caucasian population. A pretest was given to identify
children who could not already solve a majority of math equivalence problems correctly. Students
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who solved more than half of the pretest problems correctly were excluded from the study, and the
remaining students were randomly assigned to instructional condition. The final sample consisted
of 40 children: 14 second graders (9 girls and 5 boys), 8 third graders (4 girls and 4 boys), 5 fourth
graders (3 girls and 2 boys), and 13 fifth graders (6 girls and 7 boys). Their average age was 9.6 years
(range = 7.5–11.8). Teachers indicated that most students had previously encountered math equiva-
lence problems but that exposure was not frequent. Children participated during the spring semester.

Design
Children completed a pretest, an intervention, an immediate posttest, and a 2-week retention test.

Students who solved no more than half of the pretest problems correctly were randomly assigned to
either the procedural instruction condition (n = 21) or the conceptual instruction condition (n = 19).
Children from each grade were evenly distributed across the two conditions. During the intervention,
children first received instruction and then practiced solving six mathematical equivalence problems.
All children received accuracy feedback and were prompted to self-explain on the practice problems.

Assessments
Identical assessments of conceptual and procedural knowledge were administered at pretest,

immediate posttest, and retention test. There were two procedural learning problems (i.e.,
7 + 6 + 4 = 7 + _ and 4 + 5 + 8 = _ + 8). There were also six procedural transfer problems that either
(a) had no repeated addend on the right side of the equation (i.e., 6 + 3 + 5 = 8 + _ and
5 + 7 + 3 = _ + 9), (b) had the blank on the left side of the equation (i.e., _ + 9 = 8 + 5 + 9) and
8 + _ = 8 + 6 + 4), or (c) included subtraction (i.e., 8 + 5 – 3 = 8 + _ and 6 – 4 + 3 = _ + 3). At posttest,
the learning problem format was familiar, and children could solve them using step-by-step solution
procedures learned during the intervention. In contrast, the transfer problem formats remained unfa-
miliar to the children at posttest and so had to be solved by applying or adapting procedures learned
during the intervention—a standard approach for measuring transfer. Children were encouraged to
show their calculations when solving the problems.

The five items on the conceptual knowledge assessment are described in Table 1. The items as-
sessed children’s knowledge of two key concepts of equivalence problems: (a) the meaning of the
equal sign as a relational symbol and (b) the structure of equations, including the idea that there
are two sides to an equation. All items were adapted from Rittle-Johnson (2006) and Rittle-Johnson
and Alibali (1999) and were designed to measure both explicit and implicit conceptual knowledge.

Procedure
Children completed the written pretest during a 30-min session in their classrooms. Within 1 week

of the pretest, each participant completed a one-on-one intervention and immediate posttest during
one session lasting approximately 45 min. The intervention session was conducted by the first author
in a quiet room at the school. The retention test was administered approximately 2 weeks later in a
group session lasting no longer than 30 min.

Per Rittle-Johnson (2006), all intervention problems were standard mathematical equivalence
problems with a repeated addend on the two sides of the equation, and they varied in the position
of the blank after the equal sign (i.e., 4 + 9 + 6 = 4 + _ and 3 + 4 + 8 = _ + 8, which are referred to as stan-
dard A + and + C problems, respectively). At the beginning of the intervention, children in the proce-
dural instruction condition were taught an add–subtract procedure (per Perry, 1991; Rittle-Johnson,
2006) using a total of five example problems. They were first instructed on two standard A + problems.
The experimenter often prompted students with questions to ensure that they were attending to and
understanding the instruction. For instance, for the problem 3 + 4 + 2 = 3 + _, the experimenter said,

There’s more than one way to solve this type of problem, but I’m going to show you one way to
solve them today. This is what you can do: You can add the 3 and the 4 and the 2 together on
the first side of the equal sign [using a marker to draw a circle around the 3 + 4 + 2] and then sub-
tract the 3 that’s over here [underlining the 3], and that amount goes in the blank. So, for this prob-
lem, what is 3 + 4 + 2? [waiting for student response] Right, 9, and 9 minus 3 is what? [waiting for
student response] Great, so our answer is 6.



Table 1
Conceptual knowledge assessment items

Concept Item Scoring criteria

Meaning of equal
sign

1. Define what the equal sign means 1 point if defined relationally (e.g., ‘‘equivalent
to,” ‘‘same on both sides,” ‘‘the numbers on
each side are balanced”)

2. Rate definitions of equal sign: Rate each of the
following four definitions as always true, sometimes
true, or never true:

1 point if student rated the statement ‘‘The
equal sign means two amounts are the same”
as always true

(a) ‘‘The equal sign means count higher”
(b) ‘‘The equal sign means two amounts are the
same”
(c) ‘‘The equal sign means what the answer is”
(d) ‘‘The equal sign means the total”

Structure of equation 3. Correct encoding: Reproduce four equivalence
problems, one at a time, from memory after a 5-s
delaya

1 point if student puts numerals, operators,
equal sign, and blank in correct respective
positions for all four problems

4. Recognize correct use of equal sign in multiple
contexts: Indicate whether eight equations (e.g.,
8 = 2 + 6 and 3 + 2 = 7 – 2) make sense

1 point if more than 75% correct

Meaning of equal
sign and structure
of equation

5a. Record the two separate sides of the equation
4 + 3 = 5 + 2

(a) 1 point if 4 + 3 and 5 + 2 identified as
separate sides of the equation

5b. State the meaning of the equal sign in this
problem

(b) 1 point if defined relationally as above

a This task is based on Larkin, McDermott, Simon, and Simon (1980) suggestion that increased conceptual knowledge results
in an improved ability to ‘‘see” a hierarchical and organized structure where one exists, which in this case is the placement of
the equal sign separating the equation into two sides. Past work has shown that many students reconstruct the equations with
the equal sign at the end of the sentence (e.g., 4 + 5 + 7 = 4 + _ as 4 + 5 + 7 + 4 = _) and that how children reconstruct equations is
related to their knowledge of equivalence (McNeil & Alibali, 2004).
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After receiving instruction on the two standard A+ problems, students received similar instruction
on two +C questions problems and a final A+ problem. In past instructional studies on mathematical
equivalence, students have received instruction on only two instances of a single problem type (Perry,
1991; Rittle-Johnson, 2006; Rittle-Johnson & Alibali, 1999); we expected that instruction on two prob-
lem types and with a greater number of problems would increase the generalizability of the proce-
dure. We chose to provide instruction on the add–subtract procedure both because it is a procedure
that many students invent on their own (Rittle-Johnson, 2006) and because it can be described with-
out reference to concepts, allowing us to keep the two types of instruction distinct.

Children in the conceptual instruction condition were taught about the relational function of the
equal sign, also using five examples. First, children were asked to define the equal sign. They were then
given an explicit definition for the meaning of the equal sign, using a number sentence as an example.
Specifically, they were shown the number sentence 3 + 4 = 3 + 4, and the experimenter said,

There are two sides to this problem: one on the left side of the equal sign [making a sweeping ges-
ture under the left side] and one on the right side of the equal sign [making a sweeping gesture
under the right side]. The first side is 3 + 4 [making a sweeping gesture]. The second side is 3 + 4
[making a sweeping gesture]. What the equal sign [pointing] means is that the things on both sides
of the equal sign are equal or the same [sweeping his hand back and forth].

Students were shown four other number sentences of various sorts (i.e., 4 + 4 = 3 + 5, 3 + 4 = _, 2 + 3
J 3 + 61, and 5 + 4 + 3 = 5 + _) and reminded of what the equal sign meant in each case. This brought the
total number of examples to five so as to parallel the number of problems encountered in the procedural
instruction condition. No solution procedures were ever discussed. As in the procedural instruction con-
dition, the experimenter often prompted students with questions to ensure that they were attending to
and understanding the instruction. Instruction took approximately 6 min in either condition.
1 For this item, students were asked, ‘‘Would it make sense to write an equal sign here [in the circle]?”
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The remainder of the intervention session was the same for both conditions. Practice problems
were six standard mathematical equivalence problems with a repeated addend on both sides of the
equation. Problems were presented on a laptop and alternated between A+ and +C problems so that
students had experience with problems in which the position of the blank varied. For each of the prob-
lems, all children solved the problem, reported how they solved the problem, and received accuracy
feedback. Children were then prompted to self-explain. The self-explanation prompt was the same
as the one used in Rittle-Johnson (2006) and was originally adapted from Siegler (2002). Children
saw a screen with the answers that two children at another school had purportedly given; one of these
answers was correct and one was incorrect, as shown in Fig. 1. The experimenter then asked partici-
pants both how the other children got their answers and why each answer was correct or incorrect.
Both questions were asked so as to highlight for children the distinction between how a procedure
is employed and why it is correct or incorrect.

Children were asked to explain the correct and incorrect answers of others because previous work
has shown that self-explanation works best (a) when participants are asked to explain correct reason-
ing instead of their own (sometimes incorrect) reasoning (e.g., Calin-Jageman & Ratner, 2005) and (b)
when they are asked to explain both correct and incorrect reasons (Siegler, 2002). Students were asked
to explain both ‘‘how” and ‘‘why” because a past study found that when students are simply asked
‘‘why,” they typically provided only descriptions of how the student solved the problem without ref-
erence to the underlying logic or concepts (Chi, 2000; Siegler, 2002). Separate ‘‘how” and ‘‘why”
prompts were meant to encourage students to go beyond descriptions of procedures. We focus on an-
swers to ‘‘why” questions as self-explanations for the analyses because preliminary analyses indicated
that these answers focused more on the logic behind the mathematical manipulations than did
responses to the ‘‘how” questions. Such inference about the logic of a domain is seen as integral to
the functioning of self-explanation (Chi, 2008; Siegler, 2002). For the most part, in the ‘‘how”
responses, students accurately described the intended incorrect procedure that was used to arrive
at the incorrect answers and described their own correct procedure as the one the hypothetical child
used to arrive at the correct answer. Thus, the ‘‘how” responses were not very informative.

The intervention was audiotaped and videotaped. Total time spent on the practice problems was
similar across the conceptual (M = 15.72 min, SD = 3.89) and procedural (M = 14.86 min, SD = 3.29)
instruction conditions, t(38) = 0.76, p = .45. Immediately following the intervention, children com-
pleted a paper-and-pencil posttest administered individually by the experimenter in the same room.
Approximately 2 weeks later, students completed a delayed retention test as groups in their
classrooms.
Fig. 1. Screen shot of the additional stimulus seen by participants in the self-explanation conditions.
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Coding
Assessment. For procedural knowledge items, we coded the procedure each child employed for

each problem based on his or her answers as well as written calculations on the assessments or
verbal reports given during the intervention. On the assessments, procedure use could be inferred
from children’s solution and written calculations; for example, giving the answer 21 indicated use
of the add all procedure to solve 7 + 3 + 4 = 7 + _, and writing 7 + 3 + 4 – 7 = 7 indicated use of the
add–subtract procedure. During the intervention, children’s self-reports of how they solved each
problem were used to identify procedure use (see Table 2 for sample explanations. Accuracy scores
were calculated based on the percentage of problems children solved using a correct procedure,
regardless of whether they made arithmetic errors, so as to be consistent with past research using
this task (e.g., McNeil & Alibali, 2000). Correct procedure use was coupled with arithmetic errors
on only 3% of all assessment items. For conceptual knowledge items, each item was scored as 0 or
1 point for a possible total of 6 points (see Table 1 for scoring criteria), and scores were converted
to percentages.

Explanation quality. Students’ self-explanations of why solutions were correct and incorrect dur-
ing the intervention were also coded. Procedural explanations explicitly referenced specific solution
steps with no other rationale (e.g., ‘‘You would always add those two together first and then you
would have subtracted 22 by 6”), conceptual explanations referred to the need to make the two sides
of an equation equal (e.g., ‘‘Because it makes it equal on both sides”), and other explanations offered
vague responses, nonsense responses, or nonresponses (e.g., ‘‘That’s what the problem tells you to
do”).

Independent raters coded 20% of participants’ procedure use across all phases of the study and their
‘‘why” explanations during the intervention. Interrater agreement ranged from 81% for self-explana-
tion quality to 90% for procedure use during the intervention.

Treatment of missing data
Three participants (8% of the sample) were absent from school on the day of the retention test

(two in the procedural instruction condition and one in the conceptual instruction condition). These
participants did not differ from the other participants on the pretest measures. To deal with these
Table 2
Experiment 1 procedure use: Percentage of problems on which each procedure was used, by condition

Procedure Sample explanation Conceptual condition Procedural condition

Pre Intervention Post Retention Pre Intervention Post Retention

Correct procedures
Equalize I added 8 plus 7 plus 3 and I

got 18 and 8 plus 10 is 18
21 50 55 48 8 2 11 11

Add–subtract I did 8 plus 7 equals 15 plus
3 equals 18 and then 18
minus 8 equals 10

2 17 15 15 2 97 64 41

Grouping I took out the 8s and I added
7 plus 3

7 13 9 8 0 0 0 0

Ambiguous 8 divided by 8 is 0 and 7
plus 3 is 10

2 6 7 7 7 0 8 9

Used any correct
procedure

30 86 86 78 16 99 83 61

Incorrect procedures
Add all I added the 8, the 8, the 7

and the 3
21 2 3 6 21 0 0 13

Add to = 8 plus 7 equals 15, plus 3 is
18

22 2 1 5 32 0 1 6

Don’t know I don’t know 16 2 5 2 11 0 8 4
Other I used 8 plus 8 and then 3 10 9 5 10 19 1 9 16
Used any incorrect

procedure
69 14 14 22 84 1 17 39
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missing data, an imputation technique was used to approximate the missing accuracy scores on the
retention test. Imputation leads to more precise and unbiased conclusions than does casewise dele-
tion (Peugh & Enders, 2004; Schafer & Graham, 2002), and simulation studies have found that using
maximum likelihood (ML) imputation when data are missing at random leads to the same conclu-
sions as when there are no missing data (Graham, Hofer, & MacKinnon, 1996; Schafer & Graham,
2002).

Because the children had no knowledge of the date of the delayed posttest, these data could be con-
sidered as missing at random (confirmed by Little’s MCAR [missing completely at random] test:
v2(31) = 14.14, p > .99). As recommended by Schafer and Graham (2002), we used the expectation
maximization (EM) algorithm for ML estimation via the missing value analysis module of SPSS. Stu-
dents’ missing scores were estimated from all nonmissing continuous values that were included in
the analyses presented below. Comparison of effect sizes for the condition manipulation when stu-
dents with incomplete data were deleted, rather than imputing their missing scores, indicated that
the ML estimates had minimal influence on effect size estimates; imputed data led to effect sizes that
were quite similar to those observed with a casewise deletion approach (i.e., the change in g2 was <
.02 for all significant variables). There were no substantive differences between analyses conducted
with casewise deletion and those conducted with imputation.

Results

First, we summarize participants’ knowledge base at pretest. This summary is followed by
comparisons of children’s behavior during the intervention, including their accuracy, procedure use,
and self-explanation quality. Finally, we report on the variables that affected posttest and retention
performance. Effect sizes are reported as partial eta-squared (g2) values.

Pretest
Children who were included in the study had little knowledge of correct procedures for solving

mathematical equivalence problems at pretest. Most (62%) did not solve any of the four pretest prob-
lems correctly, and children typically added all four numbers or added the three numbers before the
equal sign (see Table 2). There were no differences in accuracy across the two conditions, F(1,
38) = 2.58, p = .12, g2 = .06.

Children began the study with some conceptual knowledge of mathematical equivalence (M = 38%,
SD = 21). Although children were randomly assigned to condition, there was a difference between
groups in conceptual knowledge at pretest, with children in the conceptual instruction condition
(M = 46%, SD = 18) scoring somewhat higher than those in the procedural instruction condition
(M = 32%, SD = 22), F(1, 38) = 4.73, p = .04, g2 = .11. To help control for these differences, pretest
knowledge was included as a covariate in all subsequent models.

Intervention
We expected the two conditions to differ in their accuracy, procedure use, and self-explanation

quality during the intervention. To evaluate this, a series of analyses of covariance (ANCOVAs) were
conducted with type of instruction as a between-participant factor. Conceptual and procedural knowl-
edge pretest scores, as well as grade level, were included in all analyses as covariates to control for
prior knowledge differences. Preliminary analyses indicated that students’ grade level never inter-
acted with condition, so this interaction term was not included in the final models.

Accuracy. Procedural accuracy during the intervention was higher for the procedural instruction
group than for the conceptual instruction group, F(1, 35) = 5.22, p = .03, g2 = .13. There was also an ef-
fect for prior procedural knowledge, with children with higher procedural knowledge pretest scores
being more accurate, F(1, 35) = 4.43, p = .04, g2 = .11. Prior conceptual knowledge, however, did not
influence performance.

Procedure use. As expected, type of instruction also influenced both what procedures children used
and how many different procedures they used. Children in the procedural instruction condition
adopted the add–subtract procedure to solve 97% of intervention problems (see Table 2). Only 3 of
21 children in the procedural instruction group used an identifiably correct procedure other than
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the add–subtract procedure, and 1 child was responsible for more than half of all trials solved by a
different method. A one-way ANCOVA with the frequency of add–subtract use as the dependent var-
iable and condition as the independent variable verified that students in the procedural instruction
condition were far more likely to use the add–subtract procedure than those in the conceptual instruc-
tion condition, F(1, 35) = 36.64, p < .01, g2 = .51.

Children in the conceptual instruction condition, in contrast, employed a variety of strategies. As
shown in Table 2, they used the equalize procedure most often but also used the add–subtract and
grouping procedures fairly often. Not surprisingly, they were more than four times as likely to use
multiple correct procedures (42 and 10% of children in the conceptual and procedural instruction con-
ditions, respectively), v2(1, 40) = 5.65, p = .02. Although they used more correct procedures, students
in the conceptual instruction condition showed a strong preference for the equalizer strategy and
were far more likely than those in the procedural instruction condition to use this strategy, F(1,
39) = 16.10, p < .01, g2 = .30. Altogether, these results support our hypothesis that provision of a robust
procedure decreased problem-solving search for the procedurally instructed group, leading to rapid
adoption of the instructed procedure. As a consequence, the procedurally instructed group was less
likely to adopt multiple correct procedures.

Explanation quality. There was a stark contrast in the explanations offered in response to the ‘‘why”
questions by condition. Children who were given conceptual instruction provided a conceptual ra-
tional on more than half of all explanations (M = .54, SD = .34) (see Fig. 2), whereas children in the pro-
cedural instruction condition rarely did so (M = .15, SD = .28), F(1, 39) = 15.29, p < .01, g2 = .29.
Similarly, children in the procedural instruction condition provided a procedural rationale (M = .53,
SD = .33) much more frequently than those in the conceptual instruction condition (M = .05,
SD = .09), F(1, 39) = 37.81, p < .01, g2 = .50. Also, 16 of 18 students in the conceptual instruction con-
dition used a conceptual explanation at least once, whereas only 8 of 21 students in the procedural
instruction condition did so, v2(1, 39) = 10.57, p < .01. Overall, the data support our hypothesis that
the type of instruction would lead to different learning pathways during the intervention, as indexed
by accuracy, procedure use, and explanation quality.

Posttest and retention test
We expected equivalent performance on the procedural learning problems across conditions but

greater performance on procedural transfer and conceptual knowledge items for the conceptual
instruction condition. To evaluate this, we conducted a series of repeated-measures ANCOVAs for pro-
cedural learning, procedural transfer, and conceptual knowledge scores, respectively, with time of
assessment (posttest vs. retention) as a within-participant factor and type of instruction as a be-
tween-participant factor. We expected a main effect for time, with students forgetting some from
posttest to retention test, but we expected the effect of condition to remain constant across posttest
and retention test (i.e., no interaction between time and condition). Procedural and conceptual pretest
scores and grade level were included as covariates to control for prior knowledge differences. In later
analyses, we included frequency of conceptual explanations during the intervention to explore the
role of explanation quality in predicting learning outcomes.

Procedural knowledge. Procedural learning was similar across conditions, F(1, 35) = 0.03, p = .87,
g2 = .00 (see Fig. 3). Procedural learning was not predicted by either pretest procedural knowledge,
F(1, 35) = 2.34, p = .14, g2 = .06, or pretest conceptual knowledge, F(1, 35) = 0.01, p = .91, g2 = .00.
There was some forgetting from posttest to retention, F(1, 35) = 10.59, p < .01, g2 = .23, although there
was no difference in forgetting across instructional conditions, F(1, 35) = 1.20, p = .28, g2 = .03.2 Con-
trary to our expectations, procedural transfer was also similar across conditions, F(1, 35) = 0.91, p = .35,
g2 = .03, and did not depend on either pretest procedural knowledge, F(1, 35) = 2.34, p = .14, g2 = .06, or
conceptual knowledge, F(1, 35) = 0.18, p = .67, g2 = .01. As with learning, there was some forgetting from
posttest to retention, F(1, 35) = 14.26, p < .01, g2 = .29, but no difference in forgetting across instructional
conditions, F(1, 35) = 0.06, p = .82, g2 = .00. Although children in the conceptual instruction condition
2 Visual inspection of Fig. 2 suggests that the conceptual condition may outperform the procedural condition on the retention
test. However, a follow-up univariate ANCOVA with procedural learning at retention as the dependent variable failed to indicate an
effect for condition, F(1, 35) = 0.45, p = .51, g2 = .01.
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were never given explicit exposure to a solution procedure, they were still able to generate and transfer
correct solution procedures. However, unlike past research comparing procedural and conceptual
instruction that did not include self-explanation prompts, procedural instruction was as effective as con-
ceptual instruction at supporting procedural transfer. Students in the procedural instruction condition
continued to use the add–subtract procedure most often, but they also used the equalize procedure
11% of the time at posttest and retention test (see Table 2). This suggests that students’ strategy use
at these assessment points was less rigid than during the intervention. Procedure use for the conceptual
instruction condition at posttest and retention test largely mirrored that during the intervention.

Conceptual knowledge. As expected, conceptually instructed students showed superior conceptual
knowledge, F(1, 35) = 16.44, p < .01, g2 = .32. This effect was over and above the main effect of prior
conceptual knowledge, F(1, 35) = 6.96, p = .01, g2 = .17. None of the other variables was significant. All
told, when compared with procedural instruction, conceptual instruction led to equivalent procedural
knowledge and superior conceptual knowledge.

Explanation quality as a predictor of learning. We expected explanation quality to predict knowledge
at posttest and retention test. To evaluate this, we conducted repeated-measures ANCOVAs similar to
those reported above with the exception that either the frequency of conceptual explanations or the
frequency of procedural explanations was included in each analysis as an additional covariate. Fre-
quencies of the different types of explanations were analyzed separately because they were relatively
highly correlated (r = –.68).

The frequency of conceptual explanations was predictive of learning outcomes for all three mea-
sures: procedural learning, F(1, 34) = 8.12, p < .01, g2 = .19, procedural transfer, F(1, 34) = 12.31, p <
.01, g2 = .27, and conceptual knowledge, F(1, 34) = 8.59, p < .01, g2 = .20. We found this positive rela-
tion after controlling for type of instruction and prior knowledge, suggesting that neither the similar-
ity in our criteria for conceptual explanations and conceptual instruction nor prior conceptual
knowledge accounted for this relation. Condition continued to significantly predict conceptual knowl-
edge when frequency of conceptual explanations, F(1, 34) = 7.55, p = .01, g2 = .18, was added to the
analysis, although the portion of variance explained by condition fell from 32 to 18%. This suggests
that improving explanation quality partially accounted for the effect of conceptual instruction on
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conceptual knowledge. More broadly, these findings are in accord with previous work showing that
quality of explanation predicts learning (e.g., Renkl, 1997).

Frequency of procedural explanations was not predictive of procedural learning, F(1, 34) = 0.47
p = .50, g2 = .01. It was, however, negatively predictive of conceptual knowledge, F(1, 34) = 7.87, p <
.01, g2 = .19, and showed a negatively predictive trend for procedural transfer, F(1, 34) = 3.20,
p = .08, g2 = .09. These data provide further evidence that conceptual explanations do indeed predict
better overall learning than procedural explanations.
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Discussion

Overall, the data from Experiment 1 indicate that, when compared with procedural instruction,
conceptual instruction led to equivalent procedural knowledge and superior conceptual knowledge.
Conceptual instruction also promoted more conceptual explanations. In contrast to past research
that did not include prompts for self-explanation or multiple opportunities for practice, we found
procedural instruction to be as effective as conceptual instruction at supporting procedural transfer.
This converges with prior findings that self-explanation prompts help to improve procedural trans-
fer when used in combination with procedural instruction (Rittle-Johnson, 2006), suggesting that
self-explanation prompts supported generalization of procedures.

Performance during the intervention indicated that procedural instruction improved accuracy
and reduced procedural variability, suggesting that this condition required less problem-solving
search during initial problem solving. Thus, children in the procedural instruction condition had
more opportunities to practice using a correct procedure, which may have also supported procedural
transfer.

Although reduction in procedural variability in the procedural instruction condition allowed
students to practice a correct procedure more often, use of multiple strategies is an important
developmental milestone (Siegler, 1996) and is associated with greater transfer performance
and greater responsiveness to instruction (Goldin-Meadow, Alibali, & Church, 1993; see also
Siegler, 1996). These prior findings suggest that variability in strategy use is an important
outcome, and conceptual instruction tended to support greater procedural variability. On our out-
come measures, however, this increased variability in the conceptual instruction condition did
not lead to greater procedural transfer. Further studies that include measures of procedural
flexibility might shed more light on the impact of knowing and using multiple strategies (e.g.,
Star & Seifert, 2006).

We also found important differences in explanation quality across conditions. Conceptual instruc-
tion did promote more conceptually oriented explanations. In turn, conceptually oriented self-expla-
nations were predictive of all three outcomes, even when controlling for type of instruction and prior
knowledge. Because differences in explanation quality predicted performance (independent of condi-
tion and prior knowledge), it seems that these differences reflect differences in the way students
thought about the conceptual rationale underlying the problems.
Experiment 2

Experiment 1 demonstrated that quality of explanation varied by type of instruction and pre-
dicted both conceptual and procedural knowledge over and above the effects of condition and prior
knowledge. Because all students received self-explanation prompts, however, it was unclear what
role the prompts played in promoting learning. It could be that conceptual instruction alone was
responsible for the differences in learning independent of self-explanation prompts.

Self-explanation prompts have been shown to improve procedural transfer independent of pro-
cedural instruction on math equivalence problems, although they did not improve conceptual
knowledge (Rittle-Johnson, 2006). It is unknown, however, whether self-explanation prompts im-
prove learning when used with conceptual instruction or under what conditions self-explanation
prompts might promote conceptual knowledge for a problem-solving task. To investigate this, we
manipulated the use of self-explanation prompts when all children received conceptual instruction
about math equivalence. To help control for time on task, children in the no-explain condition solved
twice as many practice problems as those in the self-explain condition.

In Experiment 2, we expected both groups to learn correct procedures and perform equally well
on the procedural learning items. However, we hypothesized that self-explanation prompts should
help students to make stronger links among their prior knowledge, the procedures they generate
during the intervention, and the concepts that govern the domain generally. Thus, self-explanation
prompts were expected to improve procedural transfer and conceptual knowledge even though the
no-explain group studied additional problems.
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Method

Participants
Consent was obtained from 98 third through fifth graders from an urban parochial school serving a

middle-class, predominantly Caucasian population. A pretest was given to identify children who could
not already solve half of the math equivalence problems correctly. The final sample consisted of 48
children: 24 third graders (12 girls and 12 boys), 16 fourth graders (10 girls and 6 boys), and 8 fifth
graders (4 girls and 4 boys). Their average age was 9.3 years (range = 7.2–11.1). In addition, 1 child
was dropped from the study for failing to complete the intervention due to emotional duress. Teachers
indicated that most students had previously encountered math equivalence problems but that expo-
sure was not frequent. Children participated during the fall semester.

Design and procedure

The design and procedure were identical to that of Experiment 1 with the following exceptions.
Children who solved no more than half of the problems correctly were randomly assigned to either
a self-explain condition (n = 23) or a no-explain condition (n = 25). First, all children received the con-
ceptual instruction as provided in Experiment 1. Next, children in the self-explain condition solved the
same six problems and received the same self-explanation prompts as those in Experiment 1. Children
in the no-explain condition were not prompted to explain and solved both the same initial six prob-
lems and an additional six problems to help equate time on task (six A+ and six +C problems total).
Total time spent on the intervention problems was similar across the self-explain (M = 12.54 min,
SD = 2.89) and no-explain (M = 12.01 min, SD = 4.60) conditions, t(46) = 0.47, p = .64). All assessments,
scoring methods, and coding schemes were identical to those of Experiment 1.

Independent raters coded 20% of participants’ procedure use across all phases of the study and their
‘‘why” explanations during the intervention. Interrater agreement ranged from 93% for self-explana-
tion quality to 90% for procedure use during the intervention.

Results and discussion

As with Experiment 1, we first summarize participants’ knowledge base at pretest. We then com-
pare behavior during the intervention of children in each condition, including their accuracy, proce-
dure use, and self-explanation quality. Finally, we report on the variables that affect posttest and
retention performance.

Pretest
Children included in the study began with little knowledge of correct procedures for solving math-

ematical equivalence problems at pretest. Most (81%) did not solve any of the pretest problems cor-
rectly, and children typically added all four numbers or added the three numbers before the equal
sign. There were no differences in frequency of using correct procedures across the different condi-
tions, F(1, 46) = 0.49, p = .49, g2 (see Table 3). Both groups also demonstrated equivalent conceptual
knowledge at pretest, F(1, 46) = 0.06, p = .80, g2. In all subsequent analyses, we controlled for concep-
tual and procedural knowledge scores at pretest and for grade level.

Intervention
Accuracy. Because students solved different numbers of problems by condition, our intervention

analysis was broken into two components. First, we compared accuracy on the first six intervention
problems between conditions. There was no difference in accuracy for students in the explain
(M = 3.04, SD = 2.72) and no-explain (M = 2.80, SD = 2.70) conditions, F(1, 43) = 0.00, p = .97, g2 = .00.

Next, we compared the mean accuracy of student performance in the no-explain condition on the
last six problems of the intervention with students’ performance on the first six problems. There was a
significant difference between performance on the first six (M = 2.80, SD = 2.70) and last six (M = 3.68,
SD = 2.44) problems for students in the no-explain condition, F(1, 21) = 0.28, p = .61, g2 = .01. Thus, the
additional practice seems to have helped students in the no-explain condition.



Table 3
Experiment 2 procedure use: Percentage of problems on which each procedure was used, by condition

Procedure Explain condition No-explain condition

Pre Intervention Post Retention Pre Interventions 1
to 6

Interventions 7
to 12

Post Retention

Correct procedures
Equalize 5 25 9 13 5 29 29 18 30
Add–subtract 2 6 8 7 3 2 2 4 3
Grouping 7 20 20 9 4 15 28 13 12
Ambiguous 5 7 13 19 4 3 5 12 11
Used any correct

procedure
19 58 50 48 16 49 64 47 56

Incorrect procedures
Add all 12 10 5 5 23 7 1 15 6
Add to = 35 5 7 14 30 10 7 9 15
Don’t know 4 1 6 3 7 2 0 8 4
Other 30 26 32 30 26 31 29 23 21
Used any incorrect

procedure
81 42 50 52 86 50 37 55 46
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Procedure use. As in Experiment 1, students invented a variety of correct procedures during the
intervention. The two conditions did not differ in the frequency of use of each correct procedure
(see Table 3), and only a minority of students used multiple correct solutions (13 and 28% of children
in the explain and no-explain conditions, respectively), v2(1, 48) = 1.63, p = .20. Interestingly, all stu-
dents in the no-explain group who used multiple correct solutions after 12 problems had done so in
the first 6 problems of the intervention.

Additional practice seems to have helped unsuccessful students in the no-explain condition pri-
marily by leading to their discovery of the grouping procedure (see Table 2 for a description of the pro-
cedure). Students in this condition were much more likely to have used the grouping procedure at
least once after finishing 12 problems (60% of students) than after finishing the first 6 problems
(32% of students). A paired sign test showed the difference to be significant at p < .01. This additional
practice, however, did not increase the no-explain students’ likelihood of using multiple correct solu-
tions given that the discovery was made primarily by students who had failed to employ any correct
solution on the first 6 problems.

Explanation quality. Children in the self-explain condition were prompted to self-explain in identi-
cal fashion to those of Experiment 1. Analysis of their self-explanations revealed that they provided a
conceptual explanation on approximately a third of all explanations (M = .33, SD = .38) (see Fig. 2). Fur-
thermore, 14 of 23 students in the self-explain condition used a conceptual explanation at least once,
and only 3 of 23 used a procedural explanation at least once.

Posttest and retention test
Procedural knowledge. As expected, students in both conditions demonstrated similar accuracy on

procedural learning items, F(1, 43) = 0.44, p = .51, g2 = .01 (see Fig. 4). Pretest conceptual knowledge
was positively related to procedural learning, F(1, 43) = 4.25, p = .05, g2 = .09, but pretest procedural
knowledge was not, F(1, 43) = 0.13, p = .72, g2 = .00. Contrary to our expectations, students in both
conditions also demonstrated similar accuracy on procedural transfer items, F(1, 43) = 0.23, p = .63,
g2 = .01. There was a trend toward pretest conceptual knowledge predicting performance, F(1,
43) = 3.88, p = .06, g2 = .08, with higher conceptual knowledge at pretest associated with higher pro-
cedural transfer. Pretest procedural knowledge did not predict procedural transfer, F(1, 43) = 0.11,
p = .75, g2 = .00. There were no other main effects or interactions. Although procedural knowledge
seems to be equivalent across groups at posttest and retention test, the pattern seems to suggest that
the no-explain group employed the equalize procedure more frequently (see Table 3).

Conceptual knowledge. Self-explanation prompts did not improve conceptual knowledge, F(1,
43) = 0.63, p = .43, g2 = .02. Only pretest conceptual knowledge predicted later conceptual knowledge,
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F(1, 43) = 11.41, p < .01, g2 = .21. There was also some forgetting over time, F(1, 43) = 5.64, p = .02,
g2 = .12. There were no other main effects or interactions.

Explanation quality as a predictor of learning. We expected explanation quality to predict knowledge
at posttest and retention test for the self-explain group. To evaluate this, we conducted repeated-mea-
sures ANCOVAs similar to those reported above for the students in this condition with the exception
that the frequency of conceptual explanations was included in the analyses.

The frequency of conceptual explanations was predictive of procedural learning, F(1, 18) = 6.29,
p = .02, g2 = .26, and showed a trend for predicting procedural transfer, F(1, 18) = 3.74, p = .07,
g2 = .17. The frequency of conceptual explanations was not, however, predictive of conceptual knowl-
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edge, F(1, 18) = .06, p = .82, g2 = .00, partially because pretest conceptual knowledge accounted for
most of the variance in later conceptual knowledge, F(1, 18) = 7.74, p = .01, g2 = .30. Because all stu-
dents received conceptual instruction, any boost in conceptual explanations due to type of instruction
could no longer be evaluated against a comparison group.

In sum, the results of Experiment 2 revealed no effects for self-explanation prompts on procedural
learning, procedural transfer, or conceptual knowledge when all students received conceptual instruc-
tion. Condition accounted for less than 3% of the variance in each of the outcome variables, suggesting
that the null findings for condition were not due to insufficient statistical power. Prior conceptual
knowledge was the only factor shown to affect any of our three outcome measures.
General discussion

Compared with procedural instruction, conceptual instruction on the meaning of the equal sign
promoted similar procedural knowledge and superior conceptual knowledge when all students self-
explained in Experiment 1. Students in the conceptual instruction group generated and transferred
correct procedures even though they were never explicitly instructed on procedures. They also gener-
ated higher quality explanations, which in turn predicted learning. In Experiment 2, self-explanation
prompts did not improve procedural or conceptual knowledge when all students received conceptual
instruction, and students in the no-explain group were given additional problem-solving practice to
equate for time spent thinking about the problems. This suggests that the benefits of conceptual
instruction may sometimes supplant the utility of self-explanation prompts. Taken together, the data
support two conclusions. First, there is an asymmetry to the relations between conceptual and proce-
dural knowledge. Second, there may be constraints under which self-explanations can be effective,
and conceptual instruction may push these constraints, attenuating the self-explanation effect in
some circumstances.

Relations between procedural and conceptual knowledge

Past research suggests that there may be an asymmetric relationship between procedural and con-
ceptual knowledge, such that conceptual knowledge tends to support growth in both types of knowl-
edge, whereas procedural knowledge primarily supports growth in only one type of knowledge. Recall
that several investigators have found that instruction geared at boosting conceptual knowledge can
facilitate gains in both conceptual and procedural knowledge, whereas instruction geared at proce-
dural knowledge is less effective at promoting conceptual knowledge (e.g., Blöt et al., 2001; Hiebert
& Wearne, 1996; Kamii & Dominick, 1997; Perry, 1991; Rittle-Johnson & Alibali, 1999). The current
data support this idea, at least when instruction is coupled with prompts for self-explanation. Direct
instruction aimed at increasing conceptual knowledge led to gains in both procedural and conceptual
knowledge. In contrast, direct instruction aimed at procedural knowledge improved procedural
knowledge but had less of an impact on conceptual knowledge. Furthermore, prior conceptual knowl-
edge sometimes predicted later procedural knowledge, but the reverse did not occur. The supportive
effect of conceptual knowledge on procedural knowledge appears to be stronger than the reverse.

Although these conclusions follow from manipulating types of instruction, it seems reasonable to
view the asymmetry in terms of the relations between types of knowledge. The boost that conceptual
instruction gives to conceptual knowledge seems direct; in some sense, it is teaching to the conceptual
assessment. Procedural knowledge gleaned from the conceptual instruction, however, needed to be
generated in a secondary manner. The same argument applies to procedural instruction and the
knowledge it promotes. Overall, there do seem to be asymmetrical relations between knowledge types
even in combination with self-explanation prompts.

Before concluding that procedural instruction is less effective than conceptual instruction, future
research must investigate the effects of instruction under at least three additional conditions. First,
additional problem-solving practice to allow for automation of procedures should free additional cog-
nitive resources for reflection on the underlying concepts, and this might facilitate learning in the pro-
cedural instruction condition. For example, Baroody, Ginsburg, and Waxman (1983) found that



18 P. Matthews, B. Rittle-Johnson / Journal of Experimental Child Psychology 104 (2009) 1–21
children recognized the relation between addition and subtraction first with the well-known addition
doubles (e.g., 6 + 6 = 12, so 12 – 6 = 6). Second, tasks with more complicated procedures that are dif-
ficult to invent may require procedural instruction. For instance, the invert and multiply strategy for
dividing fractions is a powerful tool that is generally taught procedurally. Indeed cognitive load theory
suggests that sometimes goal-free application of procedures may be of greater benefit than more con-
ceptually based approaches (see Sweller, van Merrienboer, & Paas, 1998). Third, our study is based on
one-on-one scripted instruction. These effects still need to be evaluated in ecologically valid classroom
settings where interactions with teachers and peers might alter the effects.
Type of instruction and self-explanation

The results of Experiment 2 suggest that self-explanation prompts did not augment the effects of
conceptual instruction on learning and transfer. In contrast, self-explanation prompts have been
shown to improve procedural learning and transfer over and above procedural instruction for a com-
parable population using the same task (Rittle-Johnson, 2006). These divergent results suggest that
the benefits of self-explanation may vary with type of instruction. In certain cases, conceptual instruc-
tion alone can be sufficient to promote conceptual and procedural knowledge acquisition as effectively
as conceptual explanation coupled with prompts to self-explain, whereas procedural instruction does
not seem to replace the benefits of self-explanation. We propose two pathways by which conceptual
instruction may render self-explanation prompts unnecessary and then consider reasons why self-
explanation prompts may be more beneficial in combination with procedural instruction.

Consider the impact of conceptual instruction. First, conceptual instruction may help children to
build sufficiently rich mental models that self-explanation is no longer needed. Chi and colleagues
(1994) argued that self-explanation operates by aiding students in the repair of faulty mental models.
In a parallel argument, Siegler (2002) posited that self-explanation works by getting students to con-
sider the reasoning—particularly rule-based reasoning—behind correct answers. To the extent that
conceptual instruction edifies existing mental models, it may leave less room for repair, attenuating
the effects of subsequent self-explanation prompts.

Second, conceptual instruction may render self-explanation prompts unnecessary by encouraging
more spontaneous self-explanation in the absence of explicit prompting. Some procedural strategy
must be generated to solve the problems, and it has been proposed that metacognitive processes
are engaged when the existing procedural repertoire is insufficient (see Crowley, Shrager, & Siegler,
1997). These metacognitive processes may be similar to self-explanation. Hence, because conceptually
instructed students are not offered a correct procedure, they may engage in an unprompted sort of
self-explanation to generate procedures.

There is a subtle but important distinction between the two pathways proposed above. On the first
view, conceptual instruction may render explanation prompts ineffective because it helps students to
build such robust mental models that there is little repair work left for self-explanation to do. On the
second view, there is work for self-explanation to do, but conceptual instruction can motivate spon-
taneous self-explanation without explicit prompting. The primary difference between the two alter-
natives lies in the amount of explanation activity required on the part of the learner in constructing
the final mental model. Assessment of conceptual knowledge after instruction but prior to self-expla-
nation prompts would help to test the roles these alternative pathways may play.

In contrast, self-explanation prompts continue to be helpful in combination with procedural
instruction (Rittle-Johnson, 2006). First, procedural instruction seems unlikely to directly repair faulty
mental models or to promote spontaneous self-explanation. Rather, a robust instructed procedure
may become so successful that it obviates the need to activate the metacognitive processes posited
above. In this case, self-explanations may be required to encourage reflection on how and when a pro-
cedure is effective. In particular, self-explanation used in combination with procedural instruction has
been shown to facilitate learning correct procedures that can be adapted to solve novel transfer prob-
lems and retained over a delay (Rittle-Johnson, 2006). Children who do not explain tend to revert to
using old incorrect procedures on transfer problems and after a delay. In other words, self-explanation
in combination with procedural instruction strengthened and broadened correct procedures and
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weakened incorrect procedures, which are central components of improved procedural knowledge
(Anderson, 1983).

Beyond its interaction with prior instruction, self-explanation prompts may improve learning sim-
ply because they generally increase time spent thinking about the topic. Time on task is a potentially
important factor that has rarely been controlled in prior research on the self-explanation effect. The
vast majority of prior self-explanation studies have held the number of examples or problems studied
constant, with the result that students in the self-explanation conditions spending more time on the
intervention (e.g., Atkinson, Renkl, & Merrill, 2003; Pine & Messer, 2000; Rittle-Johnson, 2006; Siegler,
1995; Siegler, 2002; Wong et al., 2002). Given that generating self-explanations generally requires
much more time per problem, it may be that self-explanation effects arise simply from encouraging
students to spend more time thinking about the material rather than by some mechanism specific
to self-explanation.

In real-world learning environments, the natural substitute for more time spent self-explaining
problems is likely to be less time spent practicing additional problems. Thus, we equated total time
spent on the intervention task by increasing the number of practice problems in the no-explain
condition of Experiment 2 and found no effect for self-explanation prompts. Notably, this additional
practice allowed many students to discover a new strategy. This finding raises important questions
about the overall efficiency of self-explanation prompts (see also Grobe & Renkl, 2003). Only four pre-
vious experimental studies on self-explanation successfully controlled for time on task. In two, they
also failed to find an effect for self-explanation (Grobe & Renkl, 2003; Mwangi & Sweller, 1998). In
the other two, they did find a benefit for self-explanation while controlling for time on task (Aleven &
Koedinger, 2002; de Bruin, Rikers, & Schmidt, 2007). In Aleven and Koedinger (2002), students in the
no-explain condition solved additional practice problems, but those in the self-explanation condition
were explicitly instructed to reference a glossary containing conceptual information and received
feedback on the explanations, and this is very different from other self-explanation studies. In de Bruin
and colleagues (2007), learners spent an equivalent amount of time on the same set of problems
across conditions, so those in the no-explain condition did not receive addition problems to solve.
It is clear that future studies should explicitly consider the amount of time on task afforded by
alternative manipulations.

Conclusion

We found that conceptual instruction was more efficient than procedural instruction when both
were paired with self-explanation prompts because it supported gains in both procedural and concep-
tual knowledge. In addition, we found that the benefits conferred by conceptual instruction may pre-
empt the benefits conferred by self-explanation prompts, at least when controlling for time on task.
All told, the data support the contention that conceptual instruction may sometimes be a more effec-
tive means for promoting learning in mathematics than procedural instruction or self-explanation
prompts.
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