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Conceptual and Procedural Knowledge of Mathematics:
Does One Lead to the Other?

Bethany Rittle-Johnson and Martha Wagner Alibali

Carnegie Mellon University

This study examined relations between children’s conceptual understanding of mathematical
equivalence and their procedures for solving equivalence problems (e.g., 3 + 4 + 5 =
3 4+ __). Students in 4th and 5th grades completed assessments of their conceptual and
procedural knowledge of equivalence, both before and after a brief lesson. The instruction
focused either on the concept of equivalence or on a correct procedure for solving equivalence
problems. Conceptual instruction led to increased conceptual understanding and to generation
and transfer of a correct procedure. Procedural instruction led to increased conceptual
understanding and to adoption, but only limited transfer, of the instructed procedure. These
findings highlight the causal relations between conceptual and procedural knowledge and
suggest that conceptual knowledge may have a greater influence on procedural knowledge

than the reverse.

In many domains, children must learn both fundamental
concepts and correct procedures for solving problems. For
example, mathematical competence rests on children devel-
oping and connecting their knowledge of concepts and
procedures. However, the developmental relations between
conceptual and procedural knowledge are not well-under-
stood (Hiebert & Wearne, 1986; Rittle-Johnson & Siegler, in
press). Delineating how the two forms of knowledge interact
is fundamental to understanding how learning occurs.

This issue is of practical, as well as theoretical, impor-
tance. The widespread observation that many children
perform poorly in school mathematics highlights the need
for improved instruction. Educators and policy makers are
placing increased emphasis on teaching the conceptual basis
for problem-solving procedures (National Council of Teach-
ers of Mathematics [NCTM], 1989), in hopes that increasing
conceptual understanding will lead to improved problem-
solving performance. To design effective instruction, one
must carefully delineate key mathematical concepts and
their associated procedures, identify what children at various
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ages understand and what they struggle to learn, and
examine how instruction influences children’s acquisition of
both concepts and procedures.

The purpose of the present study was to explore the
relations between conceptual and procedural knowledge in
children learning the principle that the two sides of an
equation represent the same quantity. Specifically, the study
investigated how instruction about the concept of mathemati-
cal equivalence influences children’s problem-solving proce-
dures and how instruction about a problem-solving proce-
dure influences children’s conceptual understanding of
equivalence. In addressing these issues, we also identified
what aspects of equivalence fourth- and fifth-grade students
understand, what aspects they do not understand but can
easily learn, and what aspects they have difficulty learning.

Impact of Conceptual Knowledge
on Procedural Knowledge

We define conceptual knowledge as explicit or implicit
understanding of the principles that govern a domain and of the
interrelations between pieces of knowledge in a domain. We
define procedural knowledge as action sequences for solving
problems. These two types of knowledge lie on a continuum
and cannot always be separated; however, the two ends of
the continuum represent two different types of knowledge.

These two types of knowledge do not develop indepen-
dently. Indeed, it is likely that children’s conceptual under-
standing influences the procedures they use. Several theories
of knowledge acquisition suggest that procedure generation
is based on conceptual understanding (e.g., Gelman &
Williams, 1997; Halford, 1993). Children are thought to use
their conceptual understanding to constrain procedure discov-
ery and to adapt their existing procedures to novel tasks
(e.g., Gelman & Gallistel, 1978; Gelman & Meck, 1986;
Siegler & Crowley, 1994).

Four types of evidence from research on mathematics
learning support the idea that conceptual understanding
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plays a role in generation and adoption of procedures (see
Rittle-Johnson & Siegler, in press, for a more detailed
review). First, children with greater conceptual understand-
ing tend to have greater procedural skill. For example,
children who have a better understanding of place value are
more likely to successfully use the borrowing procedure for
multidigit subtraction (Cauley, 1988; Hiebert & Wearne,
1996). This association between conceptual and procedural
knowledge has also been found in many other domains
within mathematics, including counting (Cowan, Dowker,
Christakis, & Bailey, 1996), single-digit arithmetic (Baroody
& Gannon, 1984; Cowan & Renton, 1996), fraction arith-
metic (Byrnes & Wasik, 1991), and proportional reasoning
(Dixon & Moore, 1996). Note that these studies demonstrate
that conceptual and procedural knowledge are related, but
they do not show whether the two types of knowledge
influence one another.

Second, in several domains, conceptual understanding
precedes procedural skill. Indeed, there is some (albeit
limited) evidence that level of conceptual understanding
predicts future procedural knowledge. For example, some
evidence suggests that preschoolers understand principles of
counting when they first learn to count (Gelman & Meck,
1983, 1986). Similarly, in single-digit addition, kindergart-
ners understand the principle of commutativity for addition
(i.e., the idea that changing the order of the addends does not
change the sum), and can recognize the validity of a
procedure based on it, before they use this more advanced
procedure themselves (Baroody & Gannon, 1984; Cowan &
Renton, 1996; Siegler & Crowley, 1994). Conceptual knowl-
edge also seems to precede procedural knowledge in several
other mathematical domains, including integer addition and
subtraction (Byrnes, 1992), fraction addition (Bymes &
Wasik, 1991), and proportional reasoning (Dixon & Moore,
1996). In multidigit arithmetic, conceptual understanding
not only precedes the use of correct procedures for many
children, but also predicts future procedural skill (Hiebert &
Wearne, 1996). These findings suggest that conceptual
knowledge has a positive influence on procedural knowl-
edge; however, other factors, such as IQ or motivation, may
account for the apparent relation.

Third, instruction about concepts as well as procedures
can lead to increased procedural skill. In multidigit arith-
metic, several studies have shown that instruction that
includes a conceptual rationale for procedures leads to
greater procedural skill than conventional, procedure-
oriented instruction (Fuson & Briars, 1990; Hiebert &
Wearne, 1992, 1996). However, another study found that
similar instruction did not improve procedural skill for
children who already used an incorrect subtraction proce-
dure (Resnick & Omanson, 1987). Thus, the empirical
evidence on this issue is mixed. Further, the results from
these studies must be interpreted cautiously because the
research did not examine the independent effect of concep-
tual instruction, and the studies did not include the control
groups necessary to draw causal conclusions. :

Finally, one study has provided suggestive evidence that
increasing conceptual knowledge leads to procedure genera-
tion. Perry (1991) found that instruction on the concept of

mathematical equivalence led a substantial minority of
fourth- and fifth-grade students to generate a correct proce-
dure for solving equivalence problems. This study did not
include a no-instruction control group; however, other
studies have shown that children rarely generate a correct
procedure for solving equivalence problems in the absence
of instruction (e.g., Alibali, 1999). Thus, it seems fair to
conclude that, in Perry’s study, gains in conceptual knowl-
edge led to generation of correct procedures. To date, Perry’s
work provides the only causal evidence that increasing
children’s conceptual knowledge of mathematics leads to
increased procedural knowledge.

Impact of Procedural Knowledge
on Conceptual Knowledge

Overall, the literature suggests that conceptual understand-
ing plays an important role in procedure adoption and
generation, However, it seems likely that this relationship is
not a unidirectional one. Instead, conceptual and procedural
knowledge may develop iteratively, with gains in one
leading to gains in the other, which in turn trigger new gains
in the first. Thus, procedural knowledge could also influence
conceptual understanding. Indeed, some theories of knowl-
edge acquisition postulate that knowledge begins at an
implicit, procedural level and over time becomes increas-
ingly explicit and well-understood (e.g., Karmiloff-Smith,
1986, 1992). However, these theories have not focused on
academic domains, and evidence for the impact of proce-
dural knowledge on conceptual knowledge within mathemat-
ics is sparse.

Under some circumstances, children first learn a correct
procedure and later develop an understanding of the con-
cepts underlying it. For example, several studies have shown
that 3- and 4-year-olds can count correctly before they
understand certain counting principles, such as the irrel-
evance of counting order (Briars & Siegler, 1984; Frye,
Braisby, Love, Maroudas, & Nicholls, 1989; Fuson, 1988;
Wynn, 1990). Because children do not receive instruction on
counting principles, it seems likely that they abstract the
principles from their counting experiences (Siegler, 1991).
Similarly, kindergartners (who know how to add) often
understand the principle of commutativity for addition, even
though they have not yet been instructed on the principle.
Understanding of this principle is probably abstracted from
their experience solving addition problems (Siegler &
Crowley, 1994).

In contrast to these results, some studies have suggested
that gains in procedural knowledge do not necessarily lead
to increased conceptual knowledge. In domains such as
fraction multiplication and multidigit subtraction, many
children learn correct procedures but never seem to under-
stand the principles that justify them (e.g., Byrnes & Wasik,
1991; Fuson, 1990; Hiebert & Wearne, 1996). Simply using
a correct procedure often does not lead to a better understand-
ing of the underlying concepts. Further, at least one interven-
tion study has cast doubt on the idea that procedural
knowledge influences conceptual understanding. Children
who received a lesson on the least common denominator
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procedure for fraction addition did not demonstrate in-
creased conceptual understanding after the lesson (Byrnes &
Wasik, 1991). This finding must be interpreted cautiously,
both because the lesson was brief, and because children were
near ceiling on the conceptual assessment at pretest. On the
other hand, children and adults often have difficulty transfer-
ring instructed procedures to novel problems (see Singley &
Anderson, 1989), suggesting that procedural knowledge is
often not accompanied by conceptual understanding that
allows people to adapt the procedure. Procedural knowledge
may only lead to greater conceptual knowledge under
certain circumstances, such as after extensive experience
using the procedure, or when the relation between the
procedure and the underlying concepts is relatively transpar-
ent.

As this review has shown, many studies provide sugges-
tive evidence about the relations between conceptual and
procedural knowledge. However, few studies have directly
examined these relations. For several reasons, the methodolo-
gies commonly used in this area do not allow strong
inferences to be drawn about how conceptual and procedural
knowledge are related. First, in many studies, conceptual
and procedural knowledge are not assessed independently.
Consequently, it is impossible to ascertain how the two types
of knowledge are related. Second, when independent assess-
ments of conceptual knowledge are used, they are typically
coarse-grained, categorical measures (i.e., children are clas-
sified as either having or not having the relevant conceptual
understanding). Few studies have used fine-grained mea-
sures that can detect gradual changes in understanding.
Third, in order to assess changes in knowledge, repeated
assessments of children’s knowledge are essential. Few
studies in this area have assessed children’s knowledge at
more than one point in time. Finally, intervention studies are
rare, and most do not include adequate controls that allow
causal conclusions to be drawn.

The present study was designed to provide causal evi-
dence about the relations between conceptual and procedural
knowledge. The study used two measures of children’s
conceptual understanding—direct questions about the con-
cepts and evaluation of unfamiliar procedures. Both types of
measures have been used in past research to assess concep-
tual knowledge, so use of the two measures allowed us to
compare alternative assessments and to obtain convergent
validity for our findings. Both conceptual and procedural
knowledge were assessed on two occasions—before and
after instruction about either a concept or a procedure. Thus,
the study should reveal whether instruction targeted at
increasing one type of knowledge leads to gains in the other.

Conceptual and Procedural Knowledge
of Mathematical Equivalence

We addressed these issues in the context of children
learning the principle of mathematical equivalence, which is
the principle that the two sides of an equation represent the
same quantity. Mathematical equivalence is a fundamental
concept in both arithmetic and algebra. It incorporates at
least three components: (a) the meaning of two quantities

being equal, (b) the meaning of the equal sign as a relational
symbol, and (c) the idea that there are two sides to an
equation. These ideas are fundamental to mathematical
problem solving; however, children’s understanding of math-
ematical equivalence is often not challenged until children
learn algebra. Most children in late elementary school do not
seem to understand equivalence, as shown by their inability
to solve novel problems such as 3 + 4 + 5 =3 + _
(Alibali, 1999; Perry, Church, & Goldin-Meadow, 1988).
Most third- through fifth-grade students either add all four
numbers together or add the three numbers before the equal
sign and ignore the final number.

This past research indicates that elementary school chil-
dren have difficulty implementing correct procedures for
solving mathematical equivalence problems. However, most
previous research has not directly assessed children’s under-
standing of the various components of the principle of
equivalence. There is evidence that elementary school
children interpret the equal sign as simply an operator signal
that means “adds up to” or “produces” and do not interpret
it as a relational symbol, meaning “‘the same as” (Baroody
& Ginsburg, 1983; Behr, Erlwanger, & Nichols, 1980; Cobb,
1987; Kieran, 1981). Beyond this, it is unclear what aspects
of equivalence children understand in late elementary school,
what aspects they must learn in order to successfully solve
mathematical equivalence problems, and what aspects they
continue to misunderstand.

Purpose of the Present Study

In summary, the goal of the present study was to provide
causal evidence about the relations between children’s
conceptual and procedural knowledge of mathematical
equivalence. More specifically, the study examined the
impact of instruction about the concept of equivalence on
children’s problem-solving procedures and the impact of
instruction about a problem-solving procedure on children’s
conceptual understanding of equivalence. In addressing
these issues, we also identified what aspects of equivalence
fourth and fifth graders understand, what aspects they learn
easily, and what aspects they have difficulty learning.

To accomplish this goal, we assessed children’s concep-
tual and procedural knowledge of mathematical equivalence
both before and after instruction on either the concept of
equivalence or on a correct procedure for solving equiva-
lence problems, as well as in a no-instruction control group.
We tested three specific hypotheses. First, we hypothesized
that conceptual understanding and procedural skill are
related. Thus, we predicted that children who generate
correct procedures for solving the problems at the outset of
the study will have greater conceptual understanding than
children who generate incorrect procedures for solving the
problems at the outset of the study. Second, we hypothesized
that increasing children’s conceptual knowledge will lead to
gains in their procedural ability. Thus, we predicted that
children who receive conceptual instruction will generate a
correct procedure and transfer this procedure to related
problems. Third, we hypothesized that increasing children’s
procedural knowledge will lead to gains in their conceptual
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Items on the Question Task

Table 1

Correct response

Item
Define what it means for two sets of objects to be equal

Concept

Meaning of equal quantities

Mention “the same” or “the same number”

Choose correct pair

Identify a pair of numbers that is equal to a given pair (e.g.,

5+3)

Define the equal sign (with the prompt, *“‘can the equal sign mean

Mention “the same” or “equal” in the definition

Rate both complete definitions as *“very smart”

anything else?”’)

Rate 2 complete and 4 incomplete or incorrect definitions of the

equal sign as “very smart, kind of smart, or not so smart” defi-

nitions
Reproduce 2 standard addition problems (e.g.,

Meaning of the equal sign

Correctly reproduce the position of the equal and plus signs in all

Structure of equation

4 problems

5 + ) from memory after a 5 s delay (to assess

4 + 3 + 6 + 4 = _) and 2 equivalence problems (e.g.,

5+4+7

encoding)
Identify the two sides of a mathematical equivalence problem

Correctly identify the addends before the equal sign as one side,

and the addends and blank after the equal sign as the other side
Appropriately evaluate more than 9 out of the 12 nonstandard

Indicate whether 15 problems made sense or not—2 legitimate

RITTLE-JOHNSON AND ALIBALI

problems as making sense or not

6 — 1), or identity

2 + 6), symmetrical

5 + 2), alternative (3 + 2

), reverse (8

(5 = 5; to assess recognition of the use of the equal sign in mul-

tiple contexts; adapted from Baroody & Ginsburg, 1983; Cobb,

and 1 illegitimate of each of the following forms: standard
B+4

2+5

Meaning of the equal sign
and structure of equation

1987)

understanding. Thus, we predicted that children who receive
procedural instruction will improve their conceptual under-
standing. These predicted results would indicate that concep-
tual and procedural knowledge are yoked during the acquisi-
tion of mathematical equivalence.

Method
Farticipants

Participants were 60 fourth-grade students (24 girls and 36 boys)
and 29 fifth-grade students (17 girls and 12 boys). The children
were drawn from two suburban parochial schools that serve
predominantly Caucasian, middle-income families. Three children
were excluded from the sample for various reasons: an experi-
menter error was made while testing 1 student, 1 student was absent
on the second day of testing, and 1 student had participated in a
related study conducted at another school the previous year. The
remaining sample of 86 children had a mean age of 10 years 2
months. Past research has shown that most fourth- and fifth-grade
students are unable to solve equivalence problems correctly (Perry,
1991; Perry et al., 1988), so we did not expect performance to vary
by grade level.

Overview of Procedure

The study included a classroom screening, which took place
before the experiment proper, and two experimental sessions. In the
classroom screening, children were simply asked to solve two
equivalence problems on a brief worksheet so we could identify
children who did and did not solve the problems correctly. All
children then participated individually in two experimental ses-
sions. During the first session, all children completed two concep-
tual assessments. Then, children who solved the screening prob-
lems incorrectly and who were assigned to the instruction groups
solved a set of pretest problems, received a brief lesson, and solved
a set of posttest problems. On the following day, all children
completed the conceptual assessments a second time, and then they
completed a procedural assessment that included standard equiva-
lence problems and transfer problems. Further details about the
experimental procedure are provided below.

Materials
Conceptual Knowledge Assessments

Question task. We used a task analysis to identify three key
components of the concept of equivalence: the meaning of two
quantities being equal, the meaning of the equal sign, and the idea that an
equation has two sides. Children answered seven questions designed to
tap these three components. The items are described in Table 1.

Evaluation task. Children evaluated three correct and three
incorrect procedures for solving mathematical equivalence prob-
lems (see Table 2 for examples). Evaluation of novel procedures is
commonly used to measure children’s conceptual knowledge (e.g.,
Gelman & Meck, 1983; Siegler & Crowley, 1994). Children were
told that *“students at another school solved these problems in lots
of different ways,” and they were then presented with examples of
the procedures used by the students at the other school. Children
were asked to evaluate each procedure as a “very smart, kind of
smart, or not so smart” way to solve the problems. Each procedure
was demonstrated twice in blocked random order. After children
evaluated each procedure, they were asked to explain their
reasoning for making that choice.
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Table 2

Commonly Used Procedures for Solving Equivalence Problems

Explanation used by experimenter

Sample explanation given by a child

Procedure in the evaluation task during the pretest or posttest
Correct procedures
Equalize She added the 3, the 4, and the 5 together and got an 3 plus 4 plus 5 is 12, and 3 plus 9 is 12.”
answer, and then she figured out what number she
needed to add to this 3 (point) to get that same
answer.
Add subtract She added the 3, the 4, and the 5 together, and then sub- “I added 3 and 4 and §, and then took away 3.”
tracted this 3 (point).
Grouping Because there is a 3 here (point) and a 3 here (point), “I added 4 plus 5.”
she only added the 4 and the 5 together.
Incorrect procedures
Add all She added the 3, the 4, the 5, and the 3 together. “3 plus 4 is 7, plus 5 is 12, plus 5 more is 17.”
Add to equal sign She added the 3, the 4, and the 5 together. “I added 3 plus 4 plus 5 and it made 12.”
Carry Because there was a 5 here, she wrote a 5 in the blank. “I just wrote the 5 in the blank.”

Note.

All explanations are for the problem 3 + 4 + 5 = 3 + _. All of the explanations used by the experimenter in the evaluation task

included gestures that conveyed the same information as the accompanying speech. In the examples above, gestures are noted only where

needed to disambiguate the referents of speech.

Procedural Knowledge Assessments

All problems were printed on legal size paper and laminated so
that children could write on the problems with markers, and their
answers could later be erased. Problems were presented on a
table-top easel.

Standard equivalence problems. All screening, pretest, train-
ing, and posttest problems were of the forma + b+ c=a + __.

Transfer problems. Transfer problems were constructed by
varying three features of the problems: the operation used (addition
or multiplication), the position of the blank (in the final position or
immediately following the equal sign), and the presence of
equivalent addends on both sides of the equation (yes or no). This
yielded five new types of problems, as well as the standard
equivalence problem type. The transfer test included two instances
of each type of problem, for a total of 12 problems. The breakdown
of problem types is presented in Table 3.

Procedure
Classroom screening

A few days before data collection began, classroom teachers
administered a brief paper-and-pencil assessment that consisted of
two standard equivalence problems. Teachers did not mention that
these problems were related to this study. This classroom screening
was used to identify children who solved the problems comrectly
(equivalent children; n = 27) and children who solved the prob-
lems incorrectly (nonequivalent children; » = 59). Nonequivalent
children were then randomly assigned to one of three groups:
conceptual instruction, procedural instruction, or control (no instruc-
tion). All children then participated individually in two sessions
that lasted approximately 15-25 min each. Sessions were held on 2
consecutive days.

Session 1

Children completed the two conceptual assessments (described
above) in counterbalanced order.! Equivalent children and non-
equivalent children who had been assigned to the control group
ended the first session after completing the conceptual assessments.

Children in the instruction groups went on to solve four standard
equivalence problems in a pretest. The problems were presented on
the table-top easel, and the children were asked to solve each
problem however they thought was best. When the children
finished solving each problem, the experimenter asked, “‘How did
you get that answer?”” and the children explained how they solved
the problem. On the final pretest problem, the experimenter told the
children whether they had solved the problem correctly. Unexpect-
edly, 11 children solved the final pretest problem (and in some
cases, some of the other pretest problems) correctly, so they were
not provided with instruction.? This left 17 children in the
conceptual-instruction group, 15 children in the procedural-
instruction group, and 16 children in the control group.

The children in the instruction groups then received a brief
lesson. In the conceptual-instruction group, a problem was pre-
sented, and the children were told the principle behind the
problems. The instruction was based on that used by Perry (1991)
and Alibali (1999) and included both speech and appropriate
gestures. The children were told the following:

Because there is an equal sign (point to the equal sign), the
amount before it (sweep hand under left side of equation)
needs to equal the amount after it (sweep hand under right side
of equation). That means that the numbers after the equal sign
(sweep hand under right side of equation) need to add up to the
same amount as the numbers before the equal sign (sweep
hand under the left side of the equation).

No instruction was given in any procedure for solving the problem,

! The encoding item from the question task was always adminis-
tered first, regardless of the order of the two conceptual assess-
ments, to ensure that experience with problems from the evaluation
task did not bias children’s performance on the encoding item.

2 These children had slightly higher scores on the question and
evaluation tasks than the other children who were categorized as
nonequivalent on the basis of the classroom screening. They did not
differ systematically from the noneguivalent children in gender
distribution or grade level. We believe that this group included both
children who were careless on the classroom screening problems
(and thus were really equivalent) and children who learned from
the conceptual assessments. Because the group was small and
heterogeneous, we did not analyze them as a separate group.
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Table 3
Problems on the Transfer Test
Equivalent Position
operands Operation of blank Example form
Yes Addition Right a+ b+ c=a+ _. (standard)
Yes Addition Left atb+c=_+c
Yes Multiplication Right aXbXc=aX__
Yes Multiplication Left aXbXc=_Xc
No Addition Right atb+c=d+ _
No Addition Left at+tb+c=_+d

and no solutions were provided.’> In the procedural-instruction
group, the problem was presented, and children were taught the
grouping procedure. They were told the following:

There is more than one way to solve these problems, but one
way is like this. Because there is a (number) here and a
(number) here (point to the repeated addends), all you need to
do is add the (number) and the (number) together (point to the
nonrepeated addends).

After instruction, children were asked to solve a new problem.
After solving this problem (without feedback), the instruction was
repeated and the children solved another problem. If the children
requested help, the appropriate instructional statements were
repeated. After the instruction phase, children solved and explained
four posttest problems identical in form to the pretest and training
problems.

Session 2

Session 2 was identical for all of the children. First, children
completed the two conceptual assessments in the same counterbal-
anced order as on the previous day. Then children solved and
explained the 12 problems on the transfer test, which were
presented in one of two random orders. Although equivalent
children participated in this session, their results from Session 2 are
not reported in this article because they are not germane to the
issues addressed here.

At the end of the experimental session, all children received a
brief lesson on the concept of equivalence and on a correct
procedure for solving the problems, to ensure that every child who
participated in the study benefited from their participation. Before
returning to class, the children were allowed to choose a brightly
colored pencil as a reward for their participation.

Coding

Question task. Each of the seven items was scored as a success
(1 point) or not, for a possible question score of 7 (see Table 1).*

Evaluation task. For each demonstrated procedure, ratings of
“very smart” were scored as 2, ratings of *‘kind of smart” were
scored as 1, and ratings of “not so smart” were scored as 0. To
calculate each child’s evaluation score, we calculated each child’s
mean rating for the three correct procedures and for the three
incorrect procedures, and we took the difference between these two
means. This score is a measure of how much each child differenti-
ated between correct and incorrect procedures. Evaluation scores
could range from —2.0 (indicating that children rated incorrect
procedures higher than correct procedures) to +2.0 (indicating that
children rated correct procedures higher than incorrect procedures).

Problem-solving tasks. The procedures children used to solve
the pretest, posttest, and transfer problems were identified (see

Table 2 for examples). In many cases, children’s solutions to the
problems revealed the procedures they had used to solve the
problems (e.g., for the problem 3 + 4 + 5 = 3 + __, the solution
15 reveals that the child used the add-all strategy). When a solution
was ambiguous, the child’s explanation of the procedure was used
to identify the problem-solving procedure. All results are based on
correct or incorrect procedures, rather than solutions, because
children sometimes made arithmetic errors.

Reliability

Reliability was assessed for 19 randomly selected participants in
Session 1 and 19 different participants in Session 2. An indepen-
dent rater coded the entire session from videotape. The correlation
between raters on question scores was .92, and agreement on
individual items ranged from 87% to 100%. The correlation
between raters on evaluation scores was .99. Agreement between
raters was 99% for assigning procedure codes on the pre- and
posttests, 97% for assigning procedure codes on the transfer test,
and 100% for assigning accuracy scores to the pretest, posttest, and
transfer test.

Results

The results are organized around three key issues: (a) the
relation between conceptual and procedural knowledge at
the outset of the study, (b) changes in conceptual knowledge
due to instruction, and (c) changes in procedural knowledge
due to instruction. Gender and grade effects were rare and
are noted where applicable. Unless otherwise noted, differ-
ences were significant at p < .05.

Relation Between Initial Conceptual
and Procedural Knowledge

We first examined the relation between conceptual and
procedural knowledge at the outset of the study. As ex-

3 There are many types of possible conceptual instruction, and
we chose to teach the concept behind the specific problems rather
than an abstract concept. Some might argue that a procedure was
implicit in our instruction; however, the instruction did not specify
how to carry out any procedure. Although there may be commonali-
ties between our two instructional conditions, important differences
exist as well.

4 Of the children who recognized that problems such as 7 + 2 =
2 + 7 made sense, 62% (n = 43) also thought that the problem 5 —
3 = 3 — 5 made sense. This suggests that many children
overextend the addition principle of commutativity to subtraction.
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pected, children who solved at least one of the classroom
screening problems correctly (equivalent children) had greater
conceptual understanding in Session 1 than children who
solved both of the classroom screening problems incorrectly
(nonequivalent children). Equivalent children had higher
scores than nonequivalent children on both the question task
(Ms = 3.74 vs. 2.95, out of 7), t(84) = 2.68, and the
evaluation task (Ms = 1.13 vs. 0.32, possible range —2 to
+2), t(84) = 6.50. Success on the question and evaluation
tasks was not influenced by the order in which the assess-
ments were administered. Neither grade nor gender was
related to success on the classroom screening problems or on
the evaluation task. However, on the question task, fifth
graders scored higher than fourth graders (Ms = 3.7 vs. 2.9),
t(84) = 2.61, and girls scored higher than boys (Ms = 3.5
vs. 2.9), £(84) = 2.09.

Success on the question and evaluation tasks was moder-
ately positively correlated (r = .37). Children were classi-
fied as having scores above or below the median on each
measure, and the association between the measures was
assessed. Children who scored highly on one measure
tended to score highly on the other measure, x3(1, N =
86) = 9.81. Children were further classified as scoring
above the median on both, one, or neither measure. Equiva-
lent children tended to have high scores on both measures,
whereas nonequivalent children tended to have low scores
on both measures, x2(2, N = 86) = 14.58.

Table 4 presents the percentage of equivalent and non-
equivalent children who succeeded on each of the seven
items on the question task at the outset of the study. As seen
in the table, most children in both groups understood what it
meant for two quantities to be equal. Compared to non-
equivalent children, equivalent children were more likely to
succeed on items designed to tap children’s understanding of
the meaning of the equal sign and of the structure of
equations. Nevertheless, many children solved equivalence
problems correctly even though they did not understand all
three key components of equivalence.

Table 5 presents the mean ratings for individual proce-
dures on the evaluation task for equivalent and nonequiva-

Table 4

lent children. Equivalent children rated all of the correct
procedures more positively than they rated the incorrect
procedures. This was not due to different children rating
only one correct procedure highly; 74% of equivalent
children rated more than one correct procedure as “‘very
smart.”” Nonequivalent children, on the other hand, rated
both correct and incorrect procedures highly. They rated the
grouping procedure less positively, and the add-all and
add-to-equal-sign procedures more positively, than equiva-
lent children. However, like the equivalent children, non-
equivalent children rated the equalize procedure highest
overall. This suggests that they recognized a correct proce-
dure before they used one. However, this interpretation must
be made cautiously because children’s explanations of their
ratings sometimes suggested that they misinterpreted the
procedure (e.g., children occasionally said that the equalize
procedure was very smart because the child had added all of
the numbers).

Overall, these results indicate that children who had
greater procedural knowledge, as shown by their ability to
solve the problems correctly on the classroom screening,
also had greater conceptual knowledge of equivalence.
However, conceptual understanding was not all-or-none;
children who solved the problems correctly often did not
have a complete understanding of equivalence. Further, the
question and evaluation tasks seemed to tap related, but not
identical, aspects of understanding of equivalence. Finally,
these results support the validity of the conceptual measures.
Both measures distinguished between children who were
and were not able to solve the problems correctly on their
own.

Changes in Conceptual Knowledge

Nonequivalent children were expected to improve on the
conceptual assessments after receiving instruction. Figures 1
and 2 display the average score for each group in each
session for the question task (see Figure 1) and the evalua-
tion task (see Figure 2). At Session 1, there were no group
differences on either measure of conceptual understanding.

Percentage of Children in Each Knowledge Group Who Succeeded on Each Item

on the Question Task in Session 1

Group
Concept and task Equivalent Nonequivalent

Meaning of equal quantities

Define equal 93 92

Identify equal pairs of numbers 96 92
Meaning of the equal sign

Define the equal sign 30 19

Rate correct definitions of equal sign as “very smart” 15 17
Structure of equation

Encode equations correctly 56 367

Identify the 2 sides of an equation 33 22

Meaning of the equal sign and structure of equation
Recognize use of equal sign in multiple contexts 52 19*

tp < .10, *p < .01, chi-square tests of the difference between equivalent and nonequivalent children.
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Table 5
Mean Rating of Each Procedure in Session 1
by Knowledge Group
Group
Procedure Equivalent Nonequivalent
Correct procedures
Equalize 1.57 147
Add subtract 1.15 1.00
Grouping 1.39 0.70*
Incorrect procedures
Add all 0.28 1.26*
Add to equal sign 0.37 0.80*
Carry 0.07 0.14

Note. Very smart = 2, kind of smart = 1, not so smart = 0.
*p < .01, ¢ tests of difference between equivalent and nonequiva-
lent children.

To evaluate learning, we calculated the change on each
measure from Session 1 to Session 2 for each child. Then,
we conducted two orthogonal planned comparisons with
each measure. We first tested for an effect of instruction
(regardless of type), and then tested for an effect of
instruction type (conceptual vs. procedural).

Question Task

Children who received instruction improved more on the
question task than children who did not receive instruction,
F(1, 45) = 5.57 (see Figure 1). Children in the conceptual-
instruction group improved more on the question task than
children in the procedural-instruction group (mean in-
crease = 1.18 vs. 0.67); however, the amount of change did
not differ significantly across the two instruction groups,
F(1, 45) = 2.40, p = .13. The same pattern is observed if
one assesses the number of children in each group who
improved on the question task: 76% of children in the
conceptual-instruction group, 53% of children in the proce-
dural-instruction group, and 38% of children in the control
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Figure 1. Average question scores (with error bars representing

standard errors) for each instruction group at each session.
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Figure 2. Average evaluation scores (with error bars representing
standard errors) for each instruction group at each session.

group had higher question scores in Session 2 than in
Session 1. At this individual level, more children in the
instruction groups than in the control group tended to
improve on the question task, x%(1, N = 48) = 3.43, p = .06,
but type of instruction was not significantly related to
improvement, x2(1, N = 32) = 1.73. Thus, both conceptual
and procedural instruction led to increased conceptual
understanding, as assessed with the question task.

As shown in Table 6, both types of instruction seemed to
help children recognize the full meaning of the equal sign
and the use of the equal sign in multiple contexts. Concep-
tual instruction was somewhat more effective than proce-
dural instruction at helping children to understand the
structure of equations. Overall, instruction did not lead to
uniform change on a single item; different children learned
different aspects of equivalence from the same instruction.

Evaluation Task

Parallel results were found for the evaluation task (see
Figure 2). Children in the instruction groups improved on
the evaluation task, whereas children in the control group
worsened on the task, F(1, 45) = 7.57. Again, there was a
trend for children in the conceptual-instruction group to
change more than children in the procedural-instruction
group (mean change = +0.52 vs. +0.23); however, this
difference did not reach significance, F(1, 45) = 1.37.
Again, the same pattern is observed if one assesses the
number of children in each group who improved on the task:
71% of children who received conceptual instruction, 53%
of children who received procedural instruction, and 31% of
children who received no instruction improved on the
evaluation task. At this individual level, more children in the
instruction groups than in the control group improved on the
evaluation task, x2(1, N = 48) = 4.17, but type of instruc-
tion was not significantly related to improvement, x2(1,
N =32) = 0.95. Thus, both conceptual and procedural
instruction led to increased conceptual understanding, as
assessed with the evaluation task.
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Proportion of Children in Each Instruction Group Who Succeeded on Items
on the Question Task in Session 2, After Failing on the Item in Session 1

Conceptual  Procedural
Concept and task instruction  instruction  Control

Meaning of the equal sign

Define the equal sign 33(12) 25 (12) 23 (13)

Rate correct definitions of equal sign as “very smart” .23 (13) A8 (11) .00 (15)
Structure of equation

Encode equations correctly 58(12) .30 (10) .30 (10)

Identify the 2 sides of an equation .14 (14) .00 (11) .00 (12)
Meaning of the equal sign and structure of equation

Recognize use of equal sign in multiple contexts 33(15) .29 (14) .08 (13)

Note.

Items assessing the meaning of equal quantities are not presented because children were at

ceiling on these items in Session 1. The numbers of children who failed each item in Session 1 are in

parentheses.

Table 7 presents the mean ratings for individual proce-
dures for children in each group. Children in the control
group decreased their ratings of correct procedures while
maintaining their ratings of incorrect procedures. In contrast,
children in the conceptual-instruction group increased their
ratings of two correct procedures and decreased their ratings
of two incorrect procedures. Children in the procedural-
instruction group greatly increased their rating of the grouping
procedure, while slightly decreasing their ratings of most of
the other procedures, including other correct procedures.

These data suggest that the increases in evaluation scores
for the procedural-instruction group were due almost exclu-
sively to recognizing the instructed procedure, grouping, as
correct in Session 2. To explore this possibility, we removed
each child’s rating of the grouping procedure and recalcu-
lated each evaluation score. Although evaluation scores still
increased for the conceptual-instruction group (mean
change = +0.54), evaluation scores decreased for both the
procedural-instruction and control groups (mean change =
—0.26 and —0.17, respectively). There was no longer an
overall effect for receiving instruction, F(1, 45) = 1.01, and
children in the conceptual-instruction group outperformed
children in the procedural-instruction group, F(1, 45) =
11.94. These results suggest that improvements in evalua-
tion scores for the procedural-instruction group were primar-
ily due to children rating the instructed procedure higher in
Session 2 (while decreasing their rating of other correct

procedures), and may not reflect true increases in conceptual
understanding.

Changes in Procedural Knowledge
Learning New Procedures From Instruction

Most of the children in both instruction groups used a
correct procedure on the posttest (see Table 8). In the
procedural-instruction group, every child but one adopted
the instructed procedure on the posttest, and these children
used the instructed procedure on all four posttest problems.
In the conceptual-instruction group, more than half of the
children generated the equalize procedure on at least one
posttest problem, about a third of the children generated the
grouping procedure, and one child generated the add-
subtract procedure. This variability in procedure generation
by children in the conceptual-instruction group supports our
claim that the conceptual instruction did not directly teach a
specific procedure. Overall, children in the conceptual-
instruction group used a larger variety of procedures on the
posttest than did children in the procedural-instruction group
(Ms = 1.29 vs. 1.00), 1(30) = 2.42, but children in the two
groups solved an equivalent number of problems correctly
on the posttest (and on the two standard problems presented
in Session 2).

Table 7
Mean Change in Evaluation of Each Procedure for Each Instruction Group
Conceptual Procedural
Procedure instruction instruction Control
Correct procedures
Equalize +0.53 (1.76) ~0.43 (1.23) —0.09 (1.22)
Add subtract —0.09 (0.94) —0.47 (0.40) —0.22 (0.78)
Grouping +0.15 (0.82) +1.03 (1.87) —0.28 (0.34)
Incorrect procedures
Add all —0.79 (0.53) —0.30 (0.97) +0.06 (1.28)
Add to equal sign 0.00 (0.76) ~0.30 (0.70) —0.03 (0.63)
Carry —0.18 (0.06) +0.03 (0.10) 0.00 (0.06)

Note.

The numbers in parentheses are the mean evaluations in Session 2.
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Table 8

Percentage of Children in the Conceptual- and
Procedural-Instruction Groups Who Used Correct
Procedures on the Posttest

Procedure
Instruction Add Any
group Grouping Equalize subtract correct
Conceptual 29 59 6 82
Procedural 93 0 0 93
Note. Children could use more than one correct procedure on the

posttest.

Success on Transfer Problems

Children in the conceptual-instruction group succeeded
on the greatest number of transfer problems (M = 5.9 out of
10), followed by children in the control group (M = 2.7) and
children in the procedural-instruction group (M = 1.7). As
these scores suggest, there was not an overall effect for
instruction, but there was an effect for instruction type, F(1,
45) = 9.30. Order of presentation of the transfer problems
did not influence success. The surprising finding that chil-
dren in the control group outperformed children in the
procedural-instruction group was due to the fact that four
children in the control group solved all 10 of the transfer
problems correctly, whereas none of the other children in the
control group solved more than two transfer problems
correctly (M = 0.25).5 With these 4 children omitted from
the analysis, there was both a positive effect of instruction,
F(1, 45) = 1190 and an effect for instruction type,
F(1,45) = 14.84.

To explore transfer performance further, we examined
differences on specific problem types. Because we were
primarily interested in differences due to type of instruction,
and because of the ambiguities in the control group, we
focused on differences between the two instruction groups.
As shown in Figure 3, the instruction groups differed on four
out of the five types of transfer problems. On problems that
only required adapting the procedure to a new operation
(multiplication), the two groups were equally successful. On
all of the other transfer problem types, children in the
conceptual-instruction group solved more problems cor-
rectly than children in the procedural-instruction group.

Procedure Use on the Transfer Problems

Children who received conceptual instruction tended to
use correct procedures on transfer problems (most often
equalize), whereas children who received procedural instruc-
tion usually reverted to their old incorrect procedures or
switched to other common incorrect procedures (e.g., change
from using add all to using add to equal sign; see Figure 4).
Only 13% of children in the procedural-instruction group
attempted to apply a correct procedure to all of the transfer
problems, compared to 59% of children in the conceptual-
instruction group, x%(1, N = 32) = 7.04. Further, 29% of
children in the conceptual-instruction group used more than
one correct procedure on the transfer test, whereas none of

the children in the procedural-instruction group did, x(1,
N = 32) = 5.23. As seen in Figure 4, the poor transfer in the
procedural-instruction group did not result from faulty
adaptation of a correct procedure, such as simply adding the
second and third addends even when the other two addends
were not the same (e.g., adding 4 + 3 in problem 7 + 4 +
3 = __ 4+ 3); such attempts occurred on fewer than 5% of
trials. Group differences also were not simply attributable to
differences in which correct procedure children used. Chil-
dren in the procedural-instruction group adopted the group-
ing procedure (N = 14) and solved an average of fewer than
two transfer problems correctly, whereas children in the
conceptual-instruction group who generated only the group-
ing procedure on the posttest (N = 4) solved an average of
five transfer problems correctly, #(16) = 1.54, p = .14.

In summary, children in both instruction groups learned
correct procedures. However, learning in the procedural-
instruction group was overly specified and narrow. Rather
than attempt to adapt their new, correct procedure to novel
problems, children in the procedural-instruction group sim-
ply reverted to incorrect procedures. In contrast, children in
the conceptual-instruction group generalized their new
knowledge much more broadly.

Discussion

The present study examined the relations between concep-
tual and procedural knowledge of mathematical equiva-
lence. By assessing children’s knowledge both before and
after randomly assigned instruction, we obtained causal
evidence that conceptual and procedural knowledge influ-
ence one another. The findings from this study hinged on the
use of adequate and repeated assessments of both conceptual
and procedural knowledge. Instead of using categorical
knowledge assessments, which cannot detect gradual changes
in children’s understanding, we used multiple, continuous
measures of both conceptual and procedural knowledge.
Using these measures, we found converging results about
the interconnections between the two types of knowledge.
We first discuss these relations and then explore potential
mechanisms that may underlie them. Finally, we consider
implications of this work for education.

Relations Between Conceptual
and Procedural Knowledge

The present results highlight the causal, bidirectional
relations between conceptual and procedural knowledge in
children learning mathematical equivalence. Children who
received conceptual instruction not only increased their

3 Children in the control group did not solve the pretest problems
presented during the experimental session, so these 4 children may
be similar to the children who were originally assigned to an
instruction group but who then solved the final pretest problem
correctly (see Footnote 2). Indeed, the proportion of children
assigned to the instruction groups who solved the final pretest
problem (and most of the transfer problems) correctly was compa-
rable to the proportion of children in the control group who
succeeded on the transfer problems.
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Figure 3. Percentage correct (with error bars representing standard errors) on each type of transfer
problem for children in the conceptual- and procedural-instruction groups. Asterisks indicate

significant differences between the groups.

conceptual understanding, but also generated several cor-
rect, flexible problem-solving procedures. Children who
received procedural instruction not only adopted a correct
problem-solving procedure, but also increased their concep-
tual understanding. Thus, conceptual understanding can lead
to procedure generation, and procedural knowledge can lead
to gains in conceptual understanding.

These results suggest that there is an iterative relationship
between conceptual and procedural knowledge. Increases in
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one type of knowledge can lead to gains in the other type of
knowledge, which in turn may lead to further increases in
the first. Thus, at least under some circumstances, concep-
tual and procedural knowledge develop in tandem, rather
than independently.

However, although conceptual and procedural knowledge
influence one another, the strength of their influence may not
be symmetrical. Children who received procedural instruc-
tion showed greater gains on both the question and evalua-
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Figure 4. Percentage of transfer trials (with error bars representing standard errors) on which each
type of procedure was used by children in the conceptual- and procedural-instruction groups.
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tion tasks than children in the control group, but these gains
were modest and were smaller than the gains made by
children who received conceptual instruction. Children in
the procedural-instruction group also had significantly poorer
transfer performance than children in the conceptual-
instruction group. They often did not try to use the instructed
procedure on problems that differed only in small ways from
the instructional problems, a finding that is consistent with
previous research on transfer performance (Singley & Ander-
son, 1989). The children did not seem to have sufficient
conceptual understanding to apply and adjust the procedure
to novel problems. Thus, outcomes on the question, evalua-
tion, and transfer tasks all suggest that gains in procedural
knowledge can lead to improved conceptual understanding,
but that such improvement may be limited.

In contrast, gains in conceptual understanding led to fairly
consistent improvements in procedural knowledge in this
study. Children who received conceptual instruction were
just as likely to learn a correct procedure as children who
received procedural instruction, and conceptual instruction
led to better transfer performance than procedural instruc-
tion. Thus, conceptual knowledge seemed to have a greater
impact on procedural knowledge than the reverse.

Past research supports the idea that there is an asymmetric
relationship between conceptual and procedural knowledge.
Perry (1991) also found that conceptual instruction was
more effective than procedural instruction at promoting
broad transfer. Further, studies have shown that most
children who understand fundamental concepts within a
domain are able to use a correct procedure for solving
related problems (e.g., Briars & Siegler, 1984; Cauley, 1988;
Cowan & Renton, 1996), whereas children who learn
procedures sometimes never master the concepts behind
them (e.g., Fuson, 1990; Kouba, Carpenter, & Swafford,
1989). For example, Hiebert and Wearne (1996) found that
conceptual understanding predicted future procedural skill,
but that a significant number of children who adopted a
correct procedure did not learn the related concepts over the
course of 3 years.

An asymmetric relationship between the two types of
knowledge may be due in part to individual differences in
the use of procedural knowledge for generating conceptual
knowledge. In our study, about half of the children who
received procedural instruction also improved in their con-
ceptual understanding of the domain. This suggests that
some children try to figure out why procedures work,
whereas others are content to use a procedure without
understanding it. In comparison, most children who received
conceptual instruction generated a correct procedure. Thus,
children may commonly use their conceptual knowledge to
generate procedures, but they may vary in whether they use
procedural knowledge to generate new concepts.

Mechanisms Through Which Conceptual and
Procedural Knowledge Influence One Another

The present findings demonstrate that conceptual and
procedural knowledge influence one another. However, they
leave open the question of how each type of knowledge

influences the other. The data provide some clues about
possible mechanisms.

First, consider how conceptual knowledge might influ-
ence procedure generation. One possibility is that gains in
conceptual knowledge help children to recognize that their
problem-solving procedures are incorrect. As children so-
lidify their conceptual knowledge, they may begin to realize
that their problem-solving procedures are inconsistent with
that knowledge. By highlighting such inconsistencies, gains
in conceptual understanding may lead children to change
their problem-solving procedures. In this study, the idea that
conceptual understanding helps children to recognize incor-
rect procedures is supported by children’s evaluations of
incorrect procedures in Session 2. Children who received
conceptual instruction gave lower ratings to the most
commonly used incorrect procedure, add all, in Session 2
than did children who received procedural instruction or no
instruction (see Table 7). Thus, conceptual knowledge may
influence procedure generation by helping children recog-
nize the need for new procedures.

A second possibility is that conceptual knowledge con-
strains procedure generation. That is, conceptual knowledge
may prevent children from generating incorrect procedures.
In this study, most children in the conceptual-instruction
group generated correct procedures—ones that were consis-
tent with the concepts presented in the instruction. Indeed,
the most commonly generated procedure, equalize, had the
most straightforward mapping to the conceptual instruction.
Some children also generated additional correct procedures
when faced with novel transfer problems. Children in the
conceptual-instruction group also recognized multiple cor-
rect procedures and distinguished them from incorrect
procedures on the evaluation task in Session 2 (see Table 7).
Thus, conceptual knowledge may influence procedure gen-
eration by helping children to identify essential elements of
correct procedures and by helping them to monitor whether
potential procedures are worth trying.

Both of these explanations for the influence of conceptual
knowledge on procedure generation could be driven by
another underlying mechanism: Conceptual knowledge could
lead to changes in children’s encoding of the problems.
Correct encoding of problems is an essential step in success-
ful problem solving (Alibali, 1998; Siegler, 1976), and
recent work suggests that changes in encoding lead children
to generate new problem-solving procedures (Alibali, Mc-
Neil, & Perrott, 1998). Indeed, correctly identifying the
important features of a problem may be the first step in
recognizing the inadequacy of old procedures and in con-
structing new, correct procedures. In the current study, many
children encoded the problems incorrectly at Session 1, and
children who encoded the problems correctly at Session 1
tended to solve the problems correctly (see Table 4).
Furthermore, children in the conceptual-instruction group
demonstrated more change on the encoding item of the
question task than on any other item, and improvement on
this item differentiated them the most from the procedural-
instruction and control groups (see Table 6). Thus, concep-
tual knowledge may influence procedure generation by
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highlighting features of the problems that children need to
encode. ]

Next, consider how procedural knowledge might influ-
ence conceptual understanding. One possibility is that
procedural knowledge constrains conceptual understanding.
Knowledge of correct procedures may help children to zero
in on accurate conceptual knowledge. For example, correct
procedures for solving math equivalence problems are
inconsistent with naive conceptions of the equal sign as
meaning “get the answer” and as signaling the end of the
problem. In this study, procedural instruction led to im-
proved understanding of the equal sign and its implications
for the structure of equations (see Table 6). Thus, procedural
knowledge could influence conceptual understanding by
helping to eliminate misconceptions.

A second possibility is that, when children use proce-
dures, they sometimes think about why they work. When
procedures are easy to implement (such as the grouping
procedure in this study), children may not use all their
resources in implementing the procedure, and they may have
resources available to consider the basis of the procedure.
Further, in situations in which newly learned procedures
result in different solutions than prior procedures, children
may find this surprising, and this may lead them to consider
the conceptual basis of the new procedure.

There may also be individual differences in children’s
tendency to consider the conceptual basis of the procedures
they use. In this study, about half of the children who
received procedural instruction improved on each measure
of conceptual understanding. A similar result was found for
children learning multidigit arithmetic (Hiebert & Wearne,
1996). These individual differences are reminiscent of
individual differences among college students in their tenden-
cies to explain things spontaneously to themselves as they
read example problems (Chi, Bassok, Lewis, Reimann, &
Glaser, 1989; Pirolli & Recker, 1994; Renkl, 1997). In these
studies, students who self-explained were more successful
on posttest problems than those who did not self-explain.
Students who self-explained were also more likely to
recognize when they did not understand something, and this
recognition may have motivated them to try to explain the
reasoning behind the problems. Similar individual differ-
ences in self-explanation may help to account for variability
in how much children learn from procedural instruction. It is
possible that procedural knowledge influences conceptual
understanding only for those children who attempt to
self-explain why particular procedures are correct. If this is
the case, then prompting children to explain why procedures
are correct may help to increase the impact of procedural
knowledge on conceptual knowledge. In support of this
view, recent research indicates that prompting students to
generate explanations while they study leads to improved
learning (Chi, de Leeuw, Chiu, & LaVancher, 1994; Siegler,
1995).

Educational Implications

The present findings suggest that by fourth grade, most
children understand what it means for two quantities to be

equal. However, most children in late elementary school do
not fully understand the meaning of the equal sign or the
structure of equations. It is likely that children’s simplified
conception of the meaning and role of the equal sign
develops because they see thousands of problems with an
equal sign just before the answer and few with the equal sign
in other positions or contexts (Baroody & Ginsburg, 1983).
Even after exposure to the use of the equal sign in multiple
contexts, many children still do not extract the full, rela-
tional meaning of the equal sign. This simplified understand-
ing may become a serious handicap when children are
introduced to algebra (see Kieran, 1981; Sfard & Linchev-
ski, 1994). Indeed, without a prior understanding of equiva-
lence, algebraic equation-solving procedures may not make
sense. Children often have difficulties solving symbolic
algebra problems (Koedinger & MacLaren, 1997), and their
incomplete understanding of the meaning and role of the
equal sign may be one source of these difficulties.

These findings also have broader implications for the
content of mathematics lessons. In this study, conceptual
instruction led to the greatest gains in conceptual understand-
ing and to the most transferable problem-solving skills.
Children who received conceptual instruction sometimes
generated multiple procedures, and they were able to adapt
their procedures to novel problems. Procedural instruction
led to more modest gains in both understanding and
problem-solving ability. When children were directly taught
a procedure, most children used the procedure on problems
that were formally identical to those used in instruction, but
they did not attempt to apply it to problems with minor
variations in surface features. Similar transfer results were
observed by Perry (1991) for children who were taught a
different procedure for solving mathematical equivalence
problems (add subtract), suggesting that these results are not
limited to a particular procedure. Taken together, these
findings suggest that, under certain circumstances, children
may benefit most from conceptual instruction that helps
them to invent correct procedures on their own. When
children are empowered with fundamental concepts, they
are able to solve novel problems on their own. Our results
are in line with current reforms in mathematics education,
which recommend emphasizing the conceptual underpin-
nings of tasks (NCTM, 1989).

However, at least five features of the current study should
be considered before generalizing these findings beyond the
instructions, task, and sample used in this study. First, the
conceptual instruction given in this study was closely tied to
the target problems. More abstract instruction may not be
sufficient for procedure generation. Second, correct proce-
dures for solving equivalence problems are not overly
complex or difficult for children of this age (note that some
children generated a correct procedure before the interven-
tion). It is possible that conceptual instruction may facilitate
procedure generation only under these conditions. Third,
instruction on procedures with more transparent mappings
to the underlying concepts or instruction on a procedure,
along with justification for why it works, may be as effective
as conceptual instruction. However, in this regard, it is
important to note that Perry (1991) found that children who
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received a combination of conceptual and procedural instruc-
tion on mathematical equivalence had transfer performance
similar to children who received only procedural instruction,
whereas children who received only conceptual instruction
had greater transfer performance than either of these two
groups. Fourth, children’s prior knowledge and educational
experiences may influence how they respond to different
types of instruction. Children who are frequently encour-
aged to construct their own procedures or to reflect upon
why procedures work may benefit more from procedural
instruction than children who receive more traditional
instruction. Finally, instruction on multiple procedures,
rather than a single procedure, may lead to greater understand-
ing and transfer. Past research has found that students who
know multiple procedures have better problem-solving
performance and are more likely to learn from instruction
than are students who use a single procedure (Alibali &
Goldin-Meadow, 1993; Coyle & Bjorklund, 1997; Koedinger
& Tabachneck, 1994; Siegler, 1995). Instruction on multiple
procedures might be beneficial for conceptual understanding
as well.

Future research should address these potential limitations,
to assess when conceptual instruction is sufficient on its
own, and when and what kind of procedural instruction is
appropriate or necessary. To better understand the develop-
mental relations between conceptual and procedural knowl-
edge, future studies should chart the changing relations
between the two types of knowledge over the course of
weeks or months and should examine the long-term effects
of different types of instruction. Additional studies are also
needed to extend this work to other domains and to more
diverse populations and to explore whether these findings
are applicable to more ecologically valid contexts, such as
the classroom.

In summary, the present study highlights the causal
relations between conceptual and procedural knowledge.
Conceptual instruction led to generation of correct, flexible
procedures for solving equivalence problems, and proce-
dural instruction led to gains in conceptual understanding.
Thus, the relations between conceptual and procedural
knowledge are not unidirectional. Instead, conceptual and
procedural knowledge appear to develop iteratively, with
gains in one type of knowledge leading to gains in the other.
However, conceptual knowledge may have a greater influ-
ence on procedural knowledge than the reverse. In this study,
teaching children the concept behind mathematical equiva-
lence problems, rather than a procedure for solving them,
was most effective at promoting flexible problem-solving
skill and conceptual understanding. Thus, although there are
reciprocal relations between conceptual and procedural
knowledge, their influence on one another may not be
equivalent.
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