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Knowledge of mathematical equivalence is a foundational concept in algebra. We developed an assessment of equivalence knowledge using a construct modeling approach. Second through sixth graders (N = 174) completed a written assessment of equivalence knowledge on two occasions, two weeks apart.  The assessment was both reliable and valid along a number of dimensions. The relative difficulty of items was consistent with the predictions from our construct map and accuracy increased with grade level. This study provides insights into the order in which students typically learn different aspects of equivalence knowledge and illustrates a powerful, but under-utilized, approach to measurement development. 
Objectives

To increase students’ success in algebra, there is an emerging consensus that educators must re-conceptualize the nature of algebra as a continuous strand of reasoning throughout school rather than a course saved for middle or high school (National Council of Teachers of Mathematics, 2000).  Part of this effort entails assessing children’s early algebraic thinking.  In the current paper, we describe development of an assessment of one component of early algebraic thinking – knowledge of mathematical equivalence. Mathematical equivalence is the principle that two sides of an equation represent the same value. We employed a construct modeling approach 
 ADDIN EN.CITE 
(Wilson, 2003, 2005)
 and developed a construct map (i.e., a proposed continuum of knowledge progression) for students’ knowledge of mathematical equivalence. We used the construct map to develop a comprehensive assessment, administered the assessment to students in Grades 2 to 6, and then used the data to evaluate and revise the construct map and the assessment. The findings provide insights into the typical sequence in which learners acquire equivalence knowledge. The study also illustrates an approach to measurement development that is particularly useful for detecting changes in knowledge over time or after intervention.  
Theoretical Perspective

Too often, researchers in education and psychology use measures that have not gone through a rigorous measurement development process, a process that is needed to provide evidence for the validity of the measures (AERA/APA/NCME, 1999). For example, Hill and Shih (2009) found that less than 20% of studies published in the Journal for Research in Mathematics Education over the past 10 years had reported on the validity of the measures.  Without this information, we cannot know if measures assess what they intended or if conclusions based on them are warranted.  

A construct modeling approach to measurement development is a particularly powerful approach for researchers interested in understanding knowledge progression. The core idea is to develop and test a construct map, which is a representation of the continuum of knowledge that people are thought to progress through for the target construct.  Although Mark Wilson has written an authoritative text on the topic (Wilson, 2005), there are only a handful of examples of using a construct modeling approach in the empirical research literature 
 ADDIN EN.CITE 
(e.g., Claesgens, Scalise, Wilson, & Stacy, 2009; Wilson & Sloane, 2000)
.  We illustrate how this approach was used to develop a reliable and valid measure of mathematical equivalence knowledge.

Although few previous studies have paid careful attention to measurement issues, a large number of studies have assessed children’s knowledge of mathematical equivalence (sometimes called mathematical equality). Understanding mathematical equivalence is a critical prerequisite for understanding higher-level algebra (e.g., Kieran, 1992; MacGregor & Stacey, 1997). Given the importance of mathematical equivalence, it is concerning that students often fail to understand it.  Many view the equal sign operationally, as a command to carry out arithmetic operations, rather than relationally, as an indicator of equivalence 
 ADDIN EN.CITE 
(e.g., Jacobs, Franke, Carpenter, Levi, & Battey, 2007; Kieran, 1981; McNeil & Alibali, 2005)
. Evidence for this has primarily come from three types of tasks: (1) solving open equations, such as 8 + 4 = ( + 5, (2) evaluating the structure of equations, such as deciding if 3 + 5 = 5 + 3 is true or false, and (3) defining the equal sign 


(Baroody & Ginsburg, 1983; Behr, Erlwanger, & Nichols, 1980; e.g., Carpenter, Franke, & Levi, 2003; Li, Ding, Capraro, & Capraro, 2008; Seo & Ginsburg, 2003) ADDIN EN.CITE . The primary source of U.S. children’s difficulty understanding mathematical equivalence is thought to be their prior experiences with the equal sign (e.g., Baroody & Ginsburg, 1983; Carpenter et al., 2003). What is less clear is how a correct understanding of mathematical equivalence develops without specialized interventions.

The primary goal of the current study was to develop an assessment that could detect systematic changes in children’s knowledge of equivalence across elementary-school grades (2nd through 6th). To accomplish this, we utilized Mark Wilson’s Construct Modeling approach to measurement development 
 ADDIN EN.CITE 
(Wilson, 2003, 2005)
. The core idea is to develop and test a construct map, which is a representation of the continuum of knowledge that people are thought to progress through for the target construct. Our construct map for mathematical equivalence is presented in Table 1. We hypothesized that there would be a transition phase between a rigid operational view and a relational view of equivalence, which we labeled Level 2: Flexible operational view. We also included a fourth level of understanding to capture a more flexible and sophisticated relational understanding of equivalence – comparing the expressions on the two sides of the equal sign.

Table 1.  Construct Map for Mathematical Equivalence Knowledge
	Level 4: Comparative
	Compare the expressions on the two sides of the equal sign, including recognizing that doing the same thing to both sides maintains equivalence.  Relational definition considered the best definition.

	Level 3: Relational 
	Accept and solve equations with operations on both sides and recognize and generate a relational definition of the equal sign (although it co-exists with an operational definition).

	Level 2: Flexible Operational
	Accept and solve equations not in operations-equals-answer format that do not directly contradict an operational view of the equal sign, such as equations with operations on the right or with no operations.  Continue   to think of equal sign operationally, or in other non-relational ways.

	Level 1: Rigid Operational 
	Only accept and solve equations in operations-equals-answer format correctly; define the equal sign operationally (e.g., it means “get the answer”).


Method

We used our construct map to guide creation of an assessment of mathematical equivalence knowledge, with items chosen to tap knowledge at each level of the construct map using a variety of problem formats.  We developed a pool of possible assessment items from the past research and selected and modified items so that there were at least two per construct map level for each of the three common item types identified in the literature review - solving equations, evaluating the structure of equations, and defining the equal sign.
We administered an initial long version of the assessment to 174 children in grades 2 through 6. Analyses of these results and input of a domain expert informed the creation of two shorter, comparable forms of a revised assessment, which were administered to the same students two weeks later. 
Results

In presenting our results, we focus on the revised forms of the assessment, with data from the initial assessment used as supporting evidence when appropriate.

Evidence for Reliability
Internal consistency, as assessed by Cronbach’s (, was high for both of the revised assessments (Form 1 = .94; Form 2 = .95).  Performance on the assessment was also very stable between testing times. There was a high test-retest correlation overall for both Form 1, r(26) = .94, and for Form 2, r (26) = .95.  

Evidence for Validity 
First, experts’ ratings of items provided evidence in support of the face validity of the test content. Four experts in mathematics education rated most of the test items to be important (rating of 3) to essential (rating of 5) items for tapping knowledge of equivalence, with a mean rating of 4.1.

Next, we confirmed that we could equate scores across the two forms.  Our forms were administered to equivalent groups, demonstrated similar statistical properties, and received similar difficulty estimates for most paired items. Having met these criteria, it is reasonable to use a random groups design in IRT to calibrate the scores from the two forms, placing all item difficulties and student abilities on the same scale. 

To evaluate the internal structure of the assessment, we evaluated whether the a priori predictions of our construct map about the relative difficulty of items were correct (Wilson, 2005). An item-respondent map (i.e., a Wright map) generated by the Rasch model was used to evaluate our construct map. In brief, a Wright map consists of two columns, one for respondents and one for items. On the left column, respondents (i.e., participants) with the highest estimated ability on the construct dimension are located near the top of the map, while those with the least ability are located near the bottom. On the right column, the items of greatest difficulty are located near the top of the map and those of least difficulty are located near the bottom of the map. 
The Wright map seen in Figure 1 allows for quick visual inspection of whether our construct map correctly predicted relative item difficulties. As can be seen in Figure 1, the items we had categorized as Level 4 items were indeed the most difficult items (clustered near the top with difficulty scores greater than 1), the items we had categorized as Levels 1 and 2 items were indeed fairly easy items (clustered near the bottom with difficulty scores less than -1), and Level 3 items fell in between as predicted. Overall, the Wright map supports our hypothesized levels of knowledge, progressing in difficulty from a rigid operational view at Level 1 to a comparative view at Level 4. This was confirmed by Spearman’s rank order correlation between hypothesized difficulty level and empirically derived item difficulty, ((62) = .84 p < .01. Additional evidence for the validity of the assessment is that ability estimates should increase with grade level. Ability estimates can be thought of as students’ predicted success on the equivalence assessment. As expected, mean ability estimates progressively increased as grade level increased, ((173) = .76, p < .01. 

To gather evidence based on relation to other variables, we examined the correlation between students’ standardized math scores on the Iowa Test of Basic Skills (ITBS) and their estimated ability on our equivalence assessment.  As expected, there was a significant positive correlation between students’ scores on the equivalence assessment and their grade equivalent scores on the ITBS for mathematics (r (86) = .85 and r (83) = .87, p’s < .01, for Forms 1 and 2 respectively), even after controlling for their reading score on the ITBS (r (86) = .79 and r (83) = .80, p’s < .01, for Forms 1 and 2 respectively).  This was true within each grade level as well. This positive correlation between our assessment and a general standardized math assessment provides some evidence of convergent validity.

Characterizing Students’ Knowledge Levels

Much of the power of IRT results from the fact that it models participants’ responses at the item level, as opposed to classical test models which are modeled on responses at the level of test scores. Thus, with IRT, we can use participant ability and item difficulty estimates to glean specific information about individual student knowledge and about the relative skill levels of cross-sections of students. For summary purposes, we can partition students into groups according to knowledge levels of our construct map. Students can be classified as working on developing knowledge at a particular level based on their ability estimate.
The distribution of ability levels by grade is listed in Table 2.  In second grade, almost all students were at Level 2, or a flexible operational view, meaning they were in the process of gaining a more flexible, operational view of equivalence.  In third grade, a majority of the students had gained a flexible, operational view and were working on a relational view of equivalence (Level 3) or had advanced to beginning to compare the two sides of an equation (Level 4).  From fourth to sixth grade, an increasing number of students were advancing to Level 4, with all of the sixth graders reaching Level 4.  Note that classification at a particular level indicates that students are working on learning this knowledge, not that they have mastered it.

Table 2.  Percentage of Students Performing at Each Knowledge Level

	
	Knowledge level

	Grade
	1
	2
	3
	4

	2 (n = 37)
	14
	70
	14
	3

	3 (n = 42)
	2
	35
	40
	23

	4 (n = 33)
	3
	24
	21
	52

	5 (n = 34)
	0
	3
	18
	79

	6 (n = 28)
	0
	0
	0
	100


Discussion

Numerous past studies have pointed to the difficulties elementary-school children have understanding equivalence (e.g., Behr et al., 1980; Carpenter et al., 2003), underscoring the need for systematic study of elementary students’ developing knowledge of the concept. We used a construct modeling approach to develop and validate an assessment of mathematical equivalence knowledge.  We proposed a construct map that specified a continuum of knowledge progression from a rigid operational view to a comparative view. We created an assessment targeted at measuring the latent construct laid out by our map and used performance data from an initial round of data collection to screen-out weak items and to create two alternate forms of the assessment. The two forms of the revised assessment were shown to be reliable and valid along a number of dimensions, including good internal consistency, test-retest reliability, test content, and internal structure. In addition, our construct map was largely supported. Below, we discuss possible sources of increasing equivalence knowledge, benefits of a construct modeling approach to measurement development, and future directions. 
Developing Knowledge of Equivalence

Our construct map specified a continuum of knowledge progression from a viewing the equal sign operationally to comparing the two sides of an equation. Inspection of the Wright map (see Figure 1) indicated that items of a given level clustered together.  There did appear to be a transition level between a rigid operational view and a relational view.  In particular, items with operations on the right or without operations were easier than items with operations on both sides. In addition, some students in elementary school were advancing beyond a basic relational view (Level 3) and were comparing the relations between the two sides of an equation (Level 4).  By fifth and sixth grade, a majority of students were successful on Level 3 and some Level 4 items. A comprehensive assessment of children’s knowledge of mathematical equivalence requires items detecting transitional knowledge as well as items detecting more advanced relational thinking.  

We have also analyzed the use of the equal sign in the textbooks used at the participating school and gathered teacher reports of student exposure to equations in different formats.  Both analyses suggest that mere exposure to the equal sign is not the primary driver of knowledge change. Rather than simple exposure, explicit attention to ideas of equivalence in classroom discussion, with attention to the equal sign as a relational symbol, may promote knowledge growth, even in typical classrooms.  This is in line with teaching experiments conducted by Carpenter and colleagues on the effectiveness of classroom discussions of non-standard equations and what the equal sign means (Jacobs et al., 2007). 

Benefits of a Construct Modeling Approach to Measurement Development

A construct modeling approach to measurement development is a particularly powerful one for researchers interested in understanding knowledge progression, as opposed to ranking students according to performance. We found construct modeling to be very insightful and hope this article will inspire other educational and developmental psychologists to use the approach. This measurement development process incorporates four phases that occur iteratively: 1) propose a construct map based on the existing literature and a task analysis, 2) generate potential test items that correspond to the construct map and systematically create an assessment designed to tap each knowledge level in the construct map, 3) create a scoring guide that links responses to items to the construct map, and 4) after administering the assessment, use the measurement model, in particular Rasch analysis and Wright maps, to evaluate and revise the construct map and assessment (Wilson, 2005).  The assessment is then progressively refined by iteratively looping through these phases. Overall, repeatedly evaluating our theory against performance on individual items helped us to evaluate our commonsense assumptions that otherwise would have gone unquestioned.

Another benefit of a construct modeling approach is that it produces a criterion-referenced measure that is particularly appropriate for assessing the effects of an intervention on individuals (Wilson, 2005). We developed two versions of our equivalence assessment so that different versions could be used at different assessment points in future intervention or longitudinal research. Our equivalence assessment could also help educators modify and differentiate their instruction to meet individual student needs. 
Future Directions and Conclusions


Although we have made an important first step in validating a measure of equivalence knowledge, much still needs to be done.  A critical next step is to provide evidence for the validity of the measure with a larger and more diverse sample; a task we are currently undertaking. Further, we need to know the predictive validity of the measure – for example, does the measure help predict which students need additional math resources or who are ready for algebra in middle school?

In conclusion, our assessment and accompanying construct map for developing knowledge of mathematical equivalence are quite promising.  The construct map provides a means for tracking students’ developing knowledge of equivalence across elementary school and a construct modeling approach provides a criterion-referenced analysis of performance.  Multiple measures of reliability and validity support the promise of our measure.  In the future, this measure should be a valuable tool for researchers who are evaluating the effectiveness of different educational interventions and for teachers who want to differentiate their instruction.
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Figure 1. Wright Map for the Mathematical Equivalence Assessment.  Easiest items are at the bottom of the map (L1, L2, L3 & L4 indicate which Level the items was expected to be at). Each X represents one person. 
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