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Theoretical Perspective. Some theories of learning focus on how much children learn through 
exploration and self-discovery of their environment without explicit instruction from a more 
knowledgeable other (Hirsh-Pasek, Golinkoff, Berk, & Singer, 2009; Piaget, 1973; Schulz & 
Bonawitz, 2007; Sylva, Bruner, & Genova, 1976). Other theories focus on how children learn 
through guidance and instruction from more knowledgeable others such as parents and teachers 
(Csibra & Gergely, 2009; Kirschner, Sweller, & Clark, 2006; Vygotsky, 1978). Both exploration 
and instruction are thought to benefit learning in numerous ways. For example, allowing learners 
to explore a new environment or topic area may increase their motivation, encourage broad 
hypothesis testing, and improve depth of understanding (Bonawitz, Shafto, Gweon, Goodman, 
Spelke, & Schulz, 2011; Piaget, 1973; Sylva et al., 1976). At the same time, children learn 
extensively from social partners, and teaching children new information directly can lessen the 
burden on cognitive resources and support the development of accurate knowledge (Kirschner et 
al., 2006; Klahr & Nigam, 2004; Sweller, van Merrienboer, & Paas, 1998; Tomasello, Carpenter, 
Call, Behne, & Moll, 2005). 
 

 Contemporary learning theorists have begun to integrate exploration and instructional 
guidance rather than contrast the two (e.g., Mayer, 2004; Schwartz & Bransford, 1998). This 
stems in part from the fact that learners left to discover knowledge on their own often fail to 
invent correct concepts and procedures (Klahr & Nigam, 2004; Rittle-Johnson, 2006). At the 
same time, explicit instruction alone often leads to rote memorization that is easily forgotten and 
is not integrated with learners’ prior knowledge (Fisher, Hirsh-Pasek, Newcombe, & Golinkoff, 
2013; Schwartz & Bransford, 1998). By combining instructional guidance with exploratory 
learning, one can avoid unfruitful dichotomies and capitalize on the strengths of each (Lorch, 
Lorch, Calderhead, Dunlap, Hodell, & Freer, 2010; Mayer, 2004; Schwartz & Bransford, 1998). 

 
In this paper, I focus on combining exploration and direct instruction in the context of 

explanation and mathematics problem solving. Explanation is an important source of knowledge, 
and explanations can be generated by the learner (i.e., self-explanation) or provided by experts 
(i.e., instructional explanations).  Self-explanation is a constructive activity – learners must 
construct the explanation based on their prior knowledge, features of the current example and 
recently encountered material (Chi, 2009). Instructional explanations provided by more 
knowledge others, such as teachers and parents, are meant to elucidate underlying reasons or 
pattern.  Both types of explanations can improve learning but also have limitations (Renkl, 2002; 
Rittle-Johnson, 2006; Wittwer & Renkl, 2010). 
 



Objective.  The objective of this paper is to synthesize three of our recent studies on exploration 
and explanation.  Across studies, all children explored unfamiliar mathematics problems and 
received instructional explanations.  We manipulated the order of exploration and instruction to 
evaluate the impact of the timing of instructional explanations on exploration and learning.  
Studies varied in whether children were prompted to self-explain during the explore phase. 
 

Empirical evidence comes from elementary school children learning about mathematical 
equivalence. Mathematical equivalence is the idea that two sides of an equation represent the 
same quantity. Math equivalence is foundational for arithmetic and algebra and requires 
knowledge of concepts (e.g., the meaning of the equal sign) and procedures (e.g., for solving 
problems with operations on both sides of the equal sign) (Kieran, 1981). Yet, elementary 
curricula do not typically include definitions of the equal sign or math equivalence problems—
problems with operations on both sides of the equal sign (Powell, 2012). Children in Western 
countries have a persistent misconception about the meaning of the equal sign, often interpreting 
it as an operator symbol meaning “get the answer,” rather than as a relational symbol that 
indicates two equal amounts (e.g., Baroody & Ginsburg, 1983; McNeil & Alibali, 2005). Further, 
this misconception often leads to poor performance on math equivalence problems (e.g., McNeil 
& Alibali, 2005). 
 
Research Evidence. In the first study, 159 2nd-4th graders learned about mathematical 
equivalence during a one-on-one tutoring session (DeCaro & Rittle-Johnson, 2012). Children 
explored unfamiliar math equivalence problems and received instructional explanations in one of 
two orders: explore-instruct or instruct-explore.  During the explore phase, we also manipulated 
whether children were prompted to self-explain or were given additional problems to solve (to 
control for time on task).  Thus, children participated in one of four conditions. 
 
 See Table 1 for an overview of findings from the intervention for the explore-instruct vs. 
instruct-explore conditions.  As expected, children in the explore-instruct conditions solved 
fewer problems correctly in the explore phase than those in the instruct-explore conditions. In 
contrast, strategy variability was greater in the explore-instruct condition.  Both groups tried the 
same number of correct strategies; however, the explore-instruct condition tried more incorrect 
strategies. Surprisingly, differences in self-explanation quality (among those who were prompted 
to self-explain) were small and unreliable. Instructional explanations did not seem to impact self-
explanation quality. Finally, the explore–instruct group was more likely to encode the structure 
of math equivalence problems correctly on a mid-test. The mid-test was given between the 
explore and instruct phases. We measured children’s encoding of the problem structures by 
asking children to reproduce equivalence problems from memory. Exploring the problems 
allowed children in the explore–instruct condition to better notice the structure of the equations 
than children who had received explicit instruction.  Overall, the timing of instruction impacted 
exploration, but not explanation, during the explore phase.   
 

On both an immediate posttest and a two-week retention test, children in the explore-
instruct conditions demonstrated greater conceptual knowledge than children in the instruct-
explore conditions (see Figure 1).  This was true for both explicit knowledge of the equal sign 
and knowledge of equation structures.  The two groups did not differ in procedural knowledge – 
in accuracy at solving math equivalence problems with familiar problem features (learning) or 



with novel problem features (transfer).  Contrary to expectations, self-explanation prompts did 
not impact performance relative to solving additional problems. 

 
The results of Study 1 highlight potential consequences of providing instruction prior to 

problem exploration.  Instructional explanations can reduce exploration and learning.  However, 
we had expected instructional explanations to impact self-explanation quality, as it had in past 
research (Matthews & Rittle-Johnson, 2009). In Study 2, we worked to improve the connection 
between the instructional explanations and the self-explanation prompts.  Different explanation 
prompts can trigger different cognitive processes and lead to different learning outcomes (Nokes, 
Hausmann, VanLehn, & Gershman, 2011). Thus, in Study 2, we used conceptual self-
explanation prompts to facilitate knowledge integration.  We also employed two techniques 
thought to activate and engage misconceptions better: inclusion of familiar problem types in line 
with a common misconception and side-by-side contrast of the familiar problem with a novel 
problem type (Vosniadou & Vamvakoussi, 2006). 

 
 In Study 2, we worked with 122 second- and third-grade students (Fyfe, DeCaro, & 

Rittle-Johnson, 2014).  Once again, children explored unfamiliar math equivalence problems and 
received instructional explanations in one of two orders: explore-instruct or instruct-explore.  
During the explore phase, all children solved familiar and unfamiliar math problems and were 
prompted to self-explain.   

 
 See Table 1 for an overview of findings from the intervention.  As expected, children in 
the explore-instruct conditions solved fewer problems correctly in the explore phase than those 
in the instruct-explore conditions. Unlike Study 1, strategy variability was similar in the two 
conditions.  However, this was because the explore-instruct group tried more incorrect strategies 
but fewer correct strategies.  Children in the explore-instruct condition were less likely to 
discover a correct strategy. Unlike Study 1, there were also differences in self-explanation 
quality. Instructional explanations increased conceptual self-explanations.  Finally, children in 
the instruct-explore group were more likely to encode the structure of the problems correctly at 
mid-test, unlike in Study 1. Overall, there were no advantages to exploration prior to 
instructional explanations during the intervention; rather, instruction first aided learning. 
  

As would be expected from intervention behavior, children in the instruct-explore 
condition demonstrated greater knowledge across the posttest and retention test (see Figure 1, 
panel B).  They had greater success on procedural knowledge items, both learning and transfer 
problems.  They also had greater conceptual knowledge of problem structure.  Conceptual 
knowledge of the equal sign was similar.  Explanation quality during the intervention partially 
mediated the effect of condition on learning outcomes.  Accuracy during the intervention was 
also an important mediator. 

 
The findings of Study 1 and 2 highlight how relatively minor changes can impact the 

relation between instructional explanations and exploration, both for exploration behaviors and 
for learning outcomes.  In a final study, we were interested in testing these effects in a classroom 
setting.  Effective self-explanation seemed hard to accomplish in classrooms.  Effective 
exploration may be easier to achieve. 



In Study 3, we worked with 47 2nd grade students in small groups during their math class.  
Children were not prompted to self-explain given the difficulties of implementing this 
consistently in small groups.  During the explore phase, we included more familiar problems, but 
not ones that activate misconceptions.  We also did not provide immediate feedback, both 
because it was no longer practical and because evidence indicates that immediate feedback can 
harm learning for children with some knowledge of a correct procedure (Fyfe, Rittle-Johnson, & 
DeCaro, 2012). The posttest was given the day following the intervention.  A retention test was 
not given. 

 
Because data was collected in classrooms, we had less evidence on behavior during the 

intervention.  Accuracy in the explore phase was higher in the instruct-explore condition (88% vs. 
60% correct).  However, at posttest, those in the explore-solve condition had greater knowledge 
(see Figure 1, panel C).  In particular, their procedural knowledge was higher for learning and 
transfer problems.  Conceptual knowledge was similar across conditions. 
 

Significance. Overall, the timing of instructional explanations relative to problem solving 
impacted learning.  However, the optimal timing seemed to vary based on whether learners were 
supported in generating self-explanations that built on the instructional explanations and in 
whether they were confronted with misconceptions during the explore phase.  

 
The benefits of exploring prior to instruction converge with broader research on the 

benefits of an explore-instruct approach. For example, Schwartz and colleagues suggest that 
problem exploration should be used to prepare students for future instruction because explicit 
instruction often presupposes a level of prior knowledge that novices lack (Schwartz & 
Bransford, 1998; Schwartz, Chase, Chin, & Oppezzo, 2011; Schwartz & Martin, 2004). 
Exploring a set of domain-relevant problems can help build up their knowledge and thus prepare 
them to learn more from instruction. Prior exploration can also create opportunities for 
productive failure (Kapur, 2011, 2012), in which learners experience difficulty discovering 
correct solutions, but ultimately process subsequent instruction at a deeper level. Finally, 
instruction is criticized for constraining future exploration (Bonawitz et al., 2011), which can 
have negative consequences for learning untaught information. The proposed solution is 
“delaying instruction until the learner has had a chance to investigate on her own” (Bonawitz et 
al., 2011, p. 328). This perspective is also in line with Dewey’s (1910) vision of thinking and 
education, which incorporated learning through active inquiry and facilitated guidance. Finally, 
teachers in mathematically precocious countries, such as Japan, endorse teaching in line with the 
explore-instruct approach. They believe that “students learn best by first struggling to solve 
mathematics problems [and] then participating in discussions about how to solve them” (Stigler 
& Hiebert, 1998, p. 3).  

 
The current findings also highlight the need to identify boundary conditions for the 

benefits of exploration prior to instruction. There is a time for providing instruction before 
exploration. Providing instructional explanations, promoting concept-based self-explanations and 
activating misconceptions during problem solving is one promising time.  More generally, the 
studies illustrate the need to consider both exploration and explanation in learning and 
instruction. Both the source of explanations (i.e., self or instructional explanation) and their 
timing can impact learning. 



Table 1:  
Performance During the Intervention For Explore-Instruct vs. Instruct-Explore Conditions 
 
 
 Study 1  

(DeCaro & Rittle-Johnson, 2012) 
Study 2 

(Fyfe, DeCaro & Rittle-Johnson, 
2014) 

 Explore-
Instruct 

Instruct-
Explore 

Explore-
Instruct 

Instruct-
Explore 

Solution 
accuracy in 
explore phase 

52%* 65% 34%* 55% 

# correct 
strategies used 

1.2 1.3 0.8 * 2.2  

# incorrect 
strategies used 

0.74* 
(out of 2) 

0.47  
(out of  2) 

3.0* 
(out of 5) 

1.6  
(out of 5) 

Frequency of 
concept-based 
explanations 

26% 35% 26%* 46% 

Accuracy 
encoding 
problem 
structure at 
mid-test 

54%* 44% 37%* 52% 

Note: * Conditions differ at p < .05 



 
Figure 1: Accuracy Across Posttest and Retention Study for Procedural and Conceptual Knowledge for 
Instruct-Explore (darker bars) and Explore-Instruct (lighter bars) Conditions 
*Indicates Condition Difference at p < .05 
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