

Preschoolers' Knowledge of Repeating Patterns Over Time

Michael R. Miller, Abbey M. Loehr, Emily R. Fyfe, Bethany Rittle-Johnson, Laura E. McLean, & Katherine L. McEldoon Vanderbilt University

Patterns & Math

- Patterning is a spontaneous, recurrent activity of young children that is central to early mathematics education (NCTM, 2000).
- Working with repeating patterns (e.g., ABBABB) helps children learn to make generalizations important for algebra (Papic et al., 2011).
- Evidence is currently limited on the growth of different repeating pattern skills (Clements & Sarama, 2009; Rittle-Johnson et al., in press).

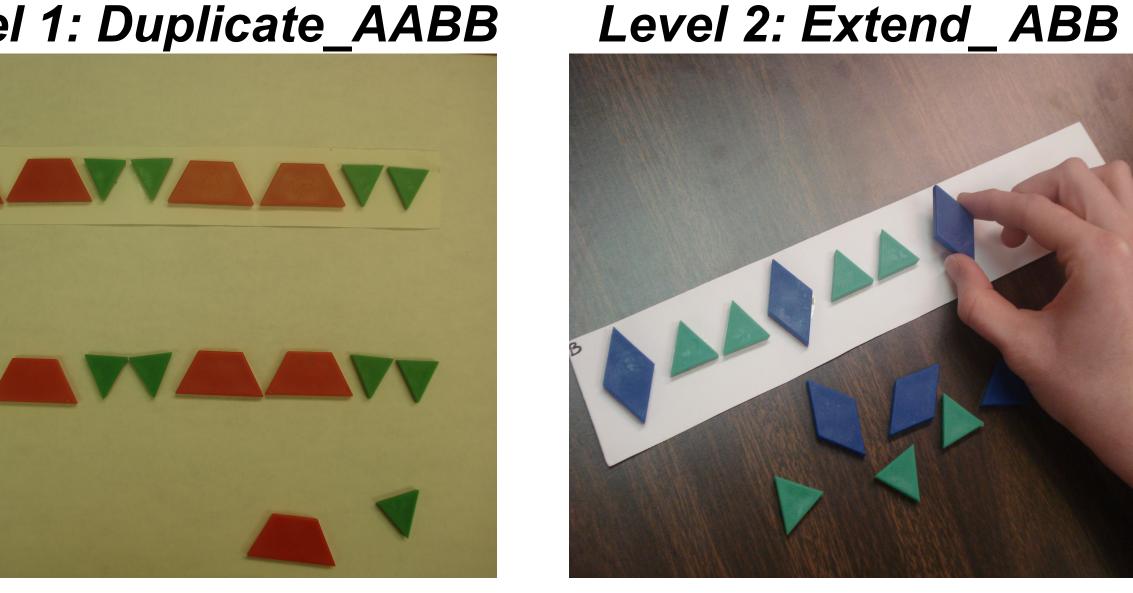
Goals

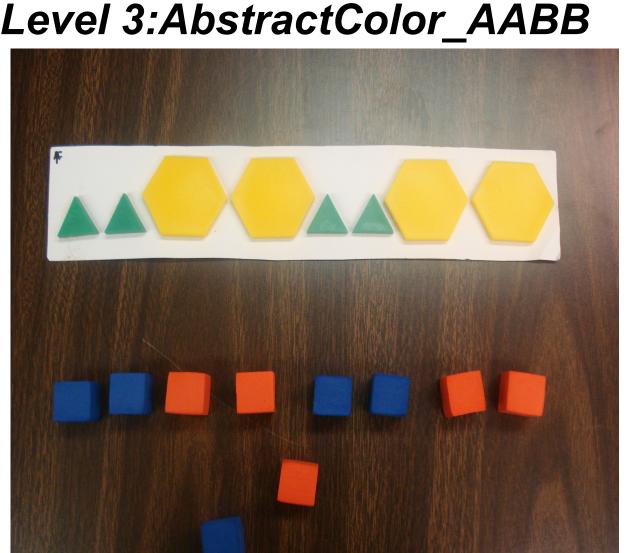
- Examine the relative difficulty of different repeating pattern skills for preschoolers.
- Develop and test a construct map (Wilson, 2005) that represents the continuum of repeating pattern knowledge that preschoolers are thought to progress through.
- Investigate changes in preschoolers' repeating pattern knowledge over time.

Construct Map

_				
Level	Skill			
Level 4: Pattern unit recognition	Identifies the pattern unit			
Level 3: Pattern abstraction	Translates patterns into new patterns with same structural rule			
Level 2: Pattern extension	Extends patterns at least one pattern unit			
Level 1: Pattern duplication	Duplicates patterns			

Based on Clements and Sarama (2009)

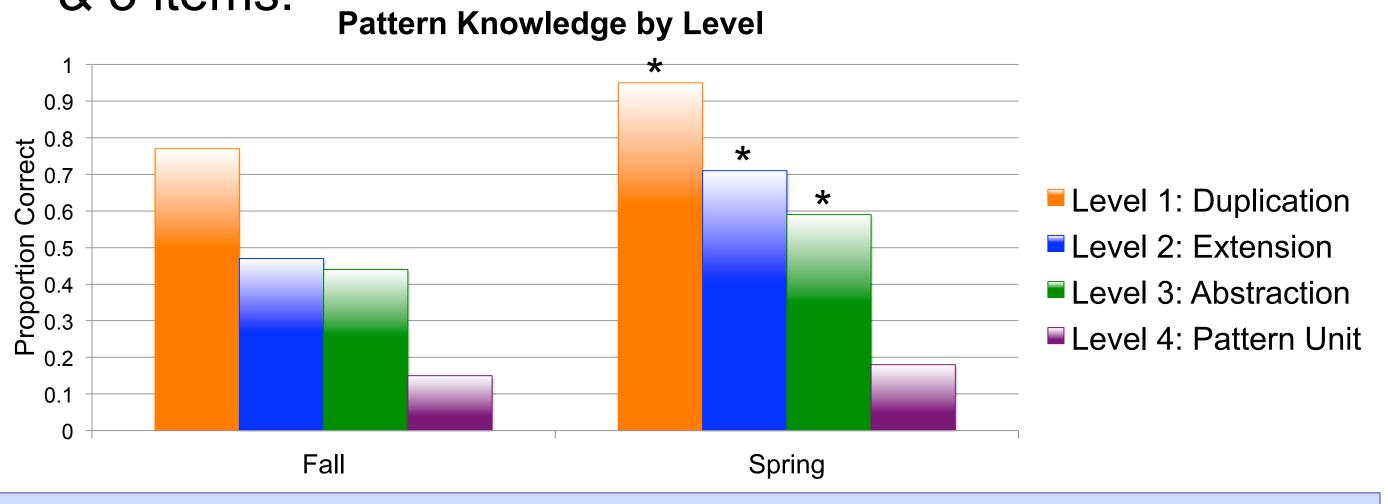

Method


Participants: 64 preschoolers (4.0 to 5.3 years in Fall). Design: Given brief pattern practice, and then assessed in Fall and Spring of school year.

Assessment: 10 items, each targeted at 1 of 4 levels of the construct map (dropped one Level 4 item).

Sample Tasks:

Level 1: Duplicate_AABB

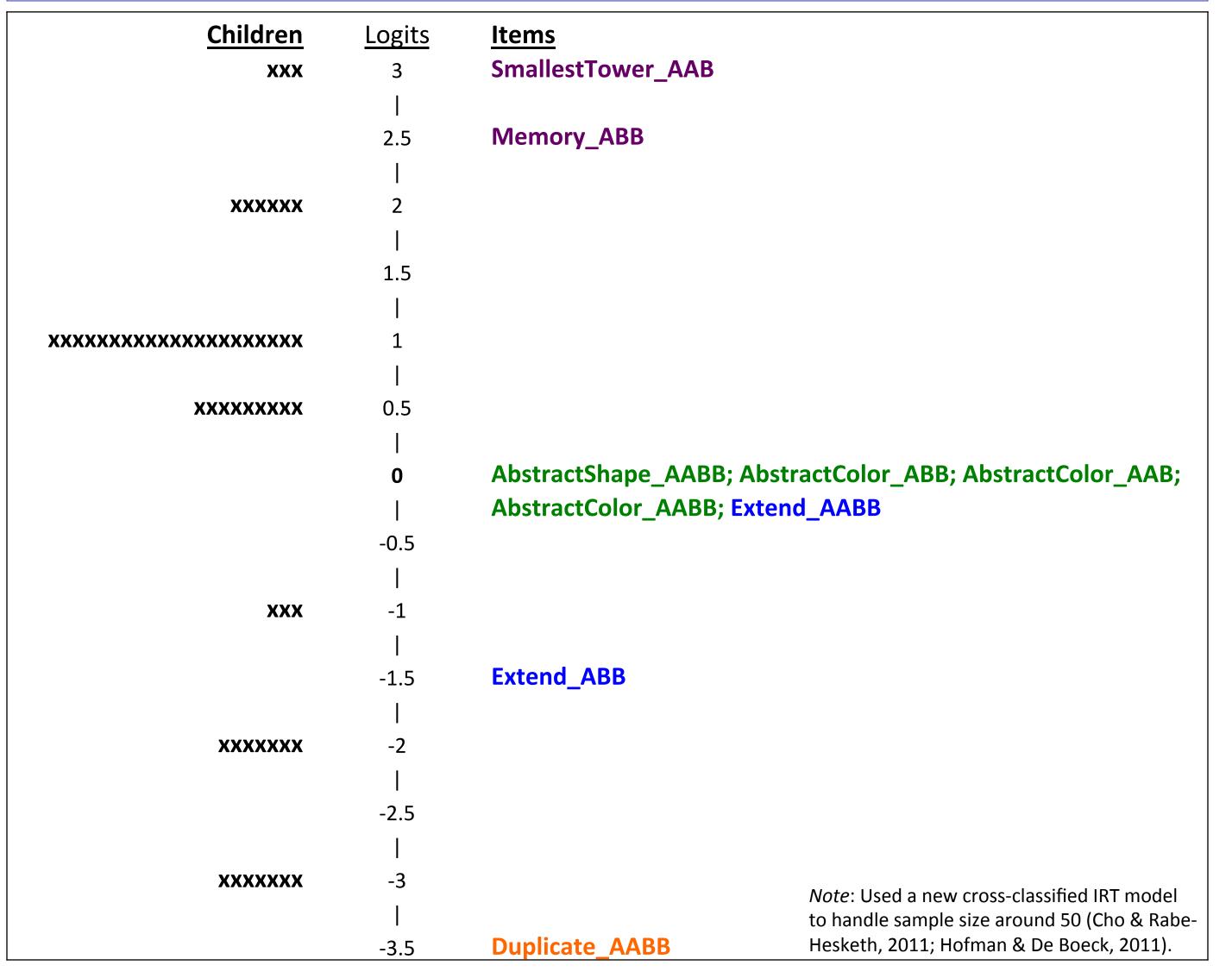


Wright Map - Fall

Children	Logits	Items			
	3				
XXX	1				
	2.5				
XXXXXX	2	SmallestTower_AAB			
		Memory_ABB			
XXXXXXXXX	1.5				
XXXXXX	1				
	0.5				
		Extend_AABB; AbstractShape_AABB			
	0	AbstractColor_ABB			
XXXXXXX	-0.5	AbstractColor_AABB			
		AbstractColor_AAB			
	-1				
XXXXXX		Extend_ABB			
XXXXXX	-1.5				
	-2				
		 Items directly across from a child (X) are expected to be solved 50% of the time. 			
	-2.5	• The greater the distance of an item below			
XXXXXXXXXXX		a child (X), the greater the expectation that the child will solve that item.			
	-3	The greater the distance of an item above			
		a child (X), the greater the expectation that			
	-3.5	the child will <i>not</i> solve that item.			

Improvements Over Time

Large improvements in proportion correct on Level 1, 2, & 3 items.



Error Analysis

Error type	Example for	% Used across trials		% Children who used	
	ABB pattern	Fall	Spring	Fall	Spring
Correct	ABBABB	46	62**	80	98*
Partial Correct	ABBAAB	12	19	60	75
Wrong Pattern AB	ABABAB	9	10	43	38
Wrong Pattern Other	AABBAABB	6	2**	42	14**
Sort	AAAABBBB	11	3**	48	17**
Random Order	ABBAA	10	3**	42	17**
Off Task	Made a tower	6	2*	20	9*

^{*} *p* < .05. ***p* < .01.

Wright Map - Spring

Conclusions

- 4-year-olds gain more accurate knowledge of repeating patterns over the preschool year.
 - Many advance beyond duplication and extension.
 - Learning to abstract patterns – although not being instructed in school!
- May provide a foundation for early algebraic thinking.
- Frequency of less sophisticated errors decreased over time.
- Construct map and assessment captured shifts in pattern knowledge over the preschool year.
- Future research should identify sources of change in pattern knowledge.
 - Better understand relevant cognitive mechanisms underlying preschoolers' patterning skills.
 - Further investigate links between patterns and mathematics learning.

References

- Cho, S.-J., & Rabe-Hesketh, S. (2011). Alternating imputation posterior estimation of models with crossed random effects. Computational Statistics and Data Analysis, 55, 12-25.
- Clements, D. H., & Sarama, J. (2009). Other content domains. Learning and teaching early math: The learning trajectories approach (pp. 189-202). New York: Routledge.
- Hofman, A., & De Boeck, P. (2011). Distributional assumptions and sample size using crossed random effect models for binary data: A recovery study based on the Imer
- NCTM (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
- Papic, M. M., Mulligan, J. T., & Mitchelmore, M. C. (2011). Assessing the development of preschoolers' mathematical patterning. Journal for Research in Mathematics Education, *42*, 237-268.
- Rittle-Johnson, B., Fyfe, E. R., McLean, L. E., & McEldoon, K. L. (in press). Emerging understanding of patterning in fouryear-olds. Journal of Cognition and Development
- Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, NJ: Lawrence Erlbaum Associates.