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Background / Context:  

An emerging consensus suggests that guided discovery, which combines discovery and 
instruction, is a more effective educational approach than either one in isolation (e.g., Alfieri et 
al., 2011; Mayer, 2004; Schwartz & Bransford, 1998). However, guided discovery is a broad 
construct, making it difficult to determine the optimal combination of discovery and instruction 
in a given situation. In the current study, we examine two specific forms of guided discovery, 
testing if conceptual instruction should precede or follow exploratory problem solving. We 
compare these results with previous, contrasting findings to better understand the timing of 
instruction and discovery. 

There are several reasons to suggest that providing instruction prior to exploratory 
problem solving is more effective than the converse. Prior instruction can familiarize learners 
with domain principles and give them the opportunity to discover how the principles apply 
during problem solving (Wittwer & Renkl, 2008). That is, prior instruction can facilitate the 
integration of the provided information with the problem solving activity. Prior instruction may 
also help reduce the cognitive demands of problem solving, by narrowing the problem space and 
limiting subsequent exploration (Bonawitz et al., 2011). Finally, prior instruction may facilitate 
the discovery of correct procedures (e.g., Chen & Klahr, 1999). Learners often fail to discover 
correct procedures on their own (e.g., Klahr & Nigam, 2004) and sometimes invent incorrect 
ones (Rittle-Johnson, 2006). Past research suggests that prior instruction can facilitate discovery 
of other domain knowledge, including correct procedures (e.g., Perry, 1991). 

However, a number of researchers suggest delaying instruction until after exploration 
(e.g., Hiebert & Grouws, 2007; Schwartz et al., 2009). Learning from instruction often requires a 
level of knowledge that novices do not have. Providing prior exploration can facilitate the 
development of this knowledge and thus better prepare them to learn from instruction (Schwartz 
& Bransford, 1998). Further, delaying instruction may allow learners to explore more broadly 
(DeCaro & Rittle-Johnson, 2012) and to extract knowledge about problem structure, which is 
key for transfer (Schwartz et al., 2011). Growing evidence has accumulated in support of 
delaying instruction (e.g., Kapur, 2011; Schwartz & Martin, 2004). For example, middle school 
students who explored a set of density problems before hearing a lecture exhibited better transfer 
than students who heard the lecture first and practiced the problems after (Schwartz et al., 2011). 
In a recent experiment, we also found support for delaying conceptual instruction (DeCaro & 
Rittle-Johnson, 2012).  

Initial studies on the timing of instruction raise several issues that warrant further 
consideration. For example, the majority of them provide instruction on a specific procedure. In 
this case, subsequent problem solving is no longer exploratory because students are told how to 
complete it. In contrast, prior conceptual instruction does not transmit ready-made solutions that 
may undermine the process of discovery, but rather guides the discovery activity (Wittwer & 
Renkl, 2008). Relatedly, the instruction should not remove the need for struggle during 
exploration, but rather provide guidance so that the struggle is productive (e.g., Hiebert & 
Grouws, 2007). If the exploratory activity is too simple, any prior guidance may prevent struggle 
and thus render it less helpful. Finally, the instruction and exploration should be well-matched to 
promote knowledge integration. In DeCaro and Rittle-Johnson (2012), evidence suggested that 
children did not sufficiently link the conceptual instruction and subsequent problem-solving, 
which potentially hindered the integration of knowledge. Thus, in the current study, we 
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employed conceptual instruction, created a challenging problem solving task to maintain 
struggle, and had children explain the problems as a way to facilitate integration of the learned 
information with the exploratory activity. This study adds to a growing body of literature seeking 
to identify specific forms of guided discovery and the conditions under which they are effective. 
 
Purpose / Objective / Research Question / Focus of Study: 

The goal of this study was to examine two specific forms of guided discovery, testing 
whether conceptual instruction should precede or follow exploratory problem solving. In both 
cases, the problem solving is considered exploratory because children have not been told how to 
solve the problems; rather, children are expected to generate or apply their own problem solving 
procedures. The difference is in the timing of conceptual instruction. Providing instruction first 
offers more initial guidance and should support the integration of knowledge. Solving problems 
first offers less initial guidance, but may better prepare students to learn from the instruction. The 
focus of instruction was math equivalence—the idea that two sides of an equation represent the 
same quantity. Elementary curricula rarely include explicit instruction on math equivalence 
(Rittle-Johnson et al., 2011) and children often exhibit difficulties with the relevant concepts and 
procedures. Thus, math equivalence is an apt domain in which to investigate guided discovery.   

 
Setting: 
 We worked with children from 12 second- and third-grade classrooms in two urban, 
public schools in Tennessee.  
  
Population / Participants / Subjects:  

Participants were 183 second- and third-grade children. Forty-seven were excluded from 
participation for scoring above 75% on a pretest designed to assess children’s prior knowledge of 
math equivalence. Data from 14 additional children were excluded due to incomplete data (n = 5) 
or diagnosed learning disabilities (n = 9). The final sample consisted of 122 children (M age = 8 
yrs, 2 mo; 57% female; 31% ethnic minorities). 
 
Intervention / Program / Practice:  
  The intervention had a conceptual instruction phase and an exploratory problem solving 
phase. The two phases were identical for all children; the only difference between conditions was 
the timing of the two phases (instruct-solve vs. solve-instruct). During instruction, children were 
taught the concept of math equivalence. Specifically, in the context of five nonstandard number 
sentences (e.g., 3 + 4 = 3 + 4), the experimenter provided a relational definition of the equal sign 
and explained how the two sides were equal. No procedures were discussed.  

During problem solving, children solved 12 problems, presented in four sets. Each set 
contained three problems with similar addends. The first problem in each set was a standard 
arithmetic problem and the last two were math equivalence problems with operations on both 
sides of the equal sign (e.g., 5 + 3 + 9 = !, 5 + 3 + 9 = ! + 7, 5 + 3 + 9 = 5 + !). Problems in a 
set were displayed on the same screen to facilitate spontaneous comparison. After each problem, 
children received accuracy feedback. On the math equivalence problems, children were 
prompted to self-explain. Specifically, after the correct answer was given, children were asked to 
explain it (e.g., “Why does x make this a true number sentence?”). Finally, on the last problem in 
each set children were asked to describe their problem solving procedure before receiving 
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feedback. The problem-solving phase was intended to be difficult so that all children experienced 
a certain amount of struggle.  
 
Research Design: 
 We used a pretest – intervention – posttest design followed by a two-week retention test. 
Children were randomly assigned to one of two conditions: instruct-solve or solve-instruct. 
 
Data Collection and Analysis:  
 Children completed a pretest in their classrooms in one 25-minute session. Within 1 
week, they completed a one-on-one tutoring intervention and posttest in a single session lasting 
approximately 50 minutes. Two weeks later they completed the retention test in small groups. A 
previously developed math equivalence assessment (Rittle-Johnson et al., 2011) was given at 
pretest, posttest, and retention test. It included conceptual (10 items) and procedural (8 items) 
knowledge scales. The procedural scale included both learning and transfer items. The 
conceptual scale assessed two key concepts: the meaning of the equal sign and the structure of 
equations. Items and scoring criteria are presented in Table 1. We also examined performance 
during the intervention by coding children’s problem-solving procedures and the quality of their 
self-explanations. Coding is currently completed for half of the sample, (interrater agreement is 
high; kappas = 89% - 92%), and the remaining coding is currently underway.  
 
Findings / Results:  

To analyze performance on the posttest and retention test, we examined procedural and 
conceptual knowledge using two mixed-factor ANCOVAs. The model included time (posttest 
and retention test) and knowledge subscale as the within-subject effects and condition (instruct-
solve and solve-instruct) as the between-subject effect. For procedural knowledge, the subscales 
were learning and transfer, and for conceptual knowledge, the subscales were equal sign and 
structure. To control for differences in prior knowledge and cognitive functioning, we included 
procedural and conceptual knowledge at pretest, age, working memory capacity, and retrieval 
fluency as covariates. 

Procedural Knowledge. Children’s procedural knowledge was moderate at posttest and 
remained similar two weeks later. There was a main effect of condition, F(1, 115) = 4.69, p = 
.03, !p

2 = .04. As shown in Figure 1, children in the instruct-solve condition exhibited higher 
procedural knowledge than children in the solve-instruct condition. No other effects were 
significant, Fs < 2.3. Thus, the advantage of instruct-solve over solve-instruct was maintained 
two weeks later and was consistent across the procedural learning and transfer subscales. 

Conceptual Knowledge. Children’s conceptual knowledge was moderate at posttest and 
dropped slightly at retention, as indicated by a marginal effect of time, F(1, 115) = 2.93, p = .09, 
!p

2 = .03. A main effect of subscale, F(1, 115) = 16.67, p < .001, !p
2 = .13, was qualified by a 

condition by subscale interaction, F(1, 115) = 3.52, p = .06, !p
2 = .03. No other effects were 

significant, Fs < 2. To follow up the interaction, we examined the effect of condition for each 
subscale (see Figure 2). There was a main effect of condition for the structure items, (p = .03), 
but not for the equal sign items, (p = .84). Children in the instruct-solve condition exhibited 
higher knowledge of structure than children in the solve-instruct condition at both time points. 

Procedure Use. We next explored procedure use during the intervention. Relative to 
children in the solve-instruct condition, children in the instruct-solve condition used a greater 
number of correct procedures (M = 2.2, SE = 0.3 vs. M = 0.8, SE = 0.3, F(1, 50) = 13.4, p = .001, 
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!p
2 = .21) and fewer incorrect procedures (M = 1.5, SE = 0.3 vs. M = 3.0, SE = 0.3, F(1, 50) = 

12.7, p = .001, !p
2 = .20). To test if correct procedure use predicted knowledge at posttest and 

retention test, we conducted our primary ANCOVAs with number of correct procedures as an 
added covariate. Correct procedure use predicted procedural, F(1, 49) = 27.9, p < .001, !p

2 = .36, 
and conceptual knowledge, F(1, 49) = 17.8, p < .001, !p

2 = .27. Further, its inclusion in the 
model eliminated the effect of condition for procedural knowledge (p = .61), as well as the 
condition by subscale interaction for conceptual knowledge (p = .75). Thus, promoting the use of 
correct procedures is one mechanism by which prior conceptual instruction improves learning.  

Self-Explanations. We also explored the quality of children’s explanations during the 
intervention. Children’s explanations of correct answers included a conceptual rationale on 
nearly 40% of all trials (see Table 2), though this differed significantly by condition, F(1, 50) = 
14.9, p < .001, !p

2 = .23. Children in the instruct-solve condition generated more conceptual 
explanations (M = 53%, SE = 6%) than children in the solve-instruct condition (M = 20%, SE = 
6%). To test if explanation quality predicted knowledge at posttest and retention test, we 
conducted our primary ANCOVAs with frequency of conceptual explanations as an added 
covariate. Conceptual explanations predicted both procedural, F(1, 49) = 20.8, p < .001, !p

2 = 
.30, and conceptual knowledge, F(1, 49) = 17.8, p < .001, !p

2 = .27. Further, its inclusion in the 
model eliminated the effect of condition for procedural knowledge (p = .56), as well as the 
condition by subscale interaction for conceptual knowledge (p = .75). Thus, enhancing the 
quality of explanations is another mechanism by which instruct-solve improves learning. 

 
Conclusions:  
 Evidence suggests that guided discovery promotes deeper learning than discovery or 
instruction alone (Alfieri et al., 2011). We examined two forms of guided discovery, testing 
whether conceptual instruction should precede or follow exploratory problem solving. Providing 
conceptual instruction prior to exploration resulted in higher procedural learning, transfer, and 
conceptual knowledge of structure than delaying instruction—immediately and two weeks later. 
 Our results also suggest two potential explanatory mechanisms for the benefits of prior 
instruction. Children who received instruction prior to problem solving generated a greater 
number of correct strategies than children who solved the problems first. This is consistent with 
research indicating that prior instruction can facilitate the discovery and generalization of other, 
relevant domain knowledge (e.g., Chen & Klahr, 1999; Perry, 1991). Prior conceptual instruction 
also enhanced the quality of children’s explanations. It seems the self-explanation prompts 
helped children integrate the provided information with the problem-solving activity (e.g., Chi, 
2000), thus resulting in more conceptual explanations. Consistent with prior research, higher-
quality explanations were associated with greater learning outcomes (e.g., Chi et al., 1989).   
 The primary results are in contrast to several recent studies (e.g., Schwartz et al., 2011), 
including one of our own (DeCaro & Rittle-Johnson, 2012). Comparisons across these studies 
can help refine our conclusions and elucidate the boundaries for specific forms of guided 
discovery. For example, our problem-solving activity was more challenging and also elicited 
more information from the instruction relative to that in DeCaro and Rittle-Johnson (2012). 
Thus, when struggle is greater, but knowledge integration is supported, prior conceptual 
instruction may be more beneficial than delayed conceptual instruction. Other studies suggest 
that when the instruction is procedural in nature, exploring problems first may be more effective 
(e.g., Kapur, 2011; Schwartz & Martin, 2004). These results continue to push our understanding 
of different forms of guided discovery learning and the conditions under which they work. 
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Table 1 

Example Items from the Math Equivalence Assessment 

Item Type Example Items Scoring Criteria 
Procedural   
Learning Items  
(" = .87) 
(n = 4) 

Solve problem with operation on 
right side (8 = 6 + !) 

Use correct strategy (if 
ambiguous, must be ±1 of 
correct answer) 

 
Solve problem with operations on 
both sides, blank on right  
(7 + 6 + 4 = 7 + !) 

Same as above 

Transfer Items 
(" = .89) 
(n = 4) 

Solve problem with operations on 
both sides, blank on left  
(! + 6 = 8 + 6 + 5) 

Same as above 

 
Solve problem with operations on 
both sides, includes subtraction  
(5 – 2 + 4 = ! + 4) 

Same as above 

Conceptual   
Equal Sign Items  
(" = .66) 
(n = 5) 

Define equal sign Provide relational definition 
(e.g., the same amount as) 

 Rate definitions of equal sign as 
good, not good, or don’t know 

Rate “two amounts are the 
same” as a good definition  

Structure Items 
(" = .73) 
(n = 5) 

Reproduce math equivalence 
problems from memory 

Reconstruct numerals, operators, 
equal sign, and blank in correct 
location  

 Indicate whether equations such as 
3 = 3 are true or false 

Correctly recognize nonstandard 
equations as true or false 

 
Note. Cronbach alphas are for retention test. Alphas were similar at posttest, but somewhat lower 
at pretest largely due to floor effects on some items. 
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Table 2 
 
Children’s Explanations for Why an Answer Was Correct (e.g., “Why does x make this a true 
number sentence?”) 

Explanation Type Sample Explanation 
% Trials 

Instruct-
Solve 

Solve-
Instruct Total 

Equal Sides 
(Conceptual) They both have to equal the same 45 19 32 

Equal Sign 
(Conceptual) Because there’s an equal sign 8 2 5 

Answer Because that’s the answer 8 20 14 

Procedure Because you need to add 26 31 29 

Other That’s how you do it 13 28 20 

Note. Based on half the sample that has been coded thus far. 
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 Figure 1 
 
Procedural Learning and Transfer by Condition at Posttest and Retention Test 
 

 
Note. Scores are estimated marginal means. Error bars represent standard errors. 
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Figure 2 

Conceptual Knowledge of Structure and Equal Sign by Condition at Posttest and Retention Test 

 

Note. Scores are estimated marginal means. Error bars represent standard errors. 

 

 
 


