OVERCOMING
 MISCONCEPTIONS: INSIGHTS FROM RESEARCH ON UNDERSTANDING THE EQUAL SIGN

Bethany Rittle-Johnson
in collaboration with P. Matthews, M. DeCaro, R.
Taylor, K. McEldoon \& E. Fyfe

VANDERBILT

Project website

vanderbi.It/earlyalgebra

A Common Misconception

ES1. What does the equal sign (=) mean?
It means sum or differanse,

ES1. What does the equal sign ($=$) mean?

\square Apparent when asked to solve equations with operations on both sides of the equal sign.
$\square 3+7=\square+6$

$$
3+7=\square+6
$$

Reflects an Operational View of equal sign

Misconceptions Galore!

In Science
\square Force as a property of physical objects (Chi, Slotta, \& de Leevw, 1994).
\square Sun and moon revolve around the earth (Vosniadou \& Brever, 1992, 1994).

In Mathematics

- Incorrectly apply natural number concepts to rational
numbers (Durkin, 2012; Hartnett \& Gelman, 1998; Merenluoto \& Lehtinen, 2002; Stafylidou \& Vosniadou, 2004).
- E.g., .25 is bigger than .7 because 25 is bigger than 7

Immature understanding

Misconceptions Necessitate Conceptual Change

\square "The term conceptual change is used to characterize the kind of learning required when the new information to be learned comes in conflict with the learners' prior knowledge a major reorganization of prior knowledge is required-a conceptual change." - Vosniadou \& Verschaffel (2004) p. 445
Contrast with additive knowledge change enrichment of prior knowledge.

Talk Themes

1. Conceptual change happens gradually over time as learners adjust their knowledge to integrate particular instances that contradict their current knowledge.

- A construct modeling approach is useful to assessing, and thus helping understand, this change process.

2. Instructional methods that support additive knowledge change can also be appropriate for supporting conceptual change.

- Focus on self-explanation \& problem exploration.
$\square \quad$ Illustrate for understanding mathematical equivalence.
\square Principle that two sides of an equation represent the same value (also called equality). Symbolized by "="

Why Math Equivalence?

- Mathematical equivalence is an early developing \& foundational concept in algebra
- Provides the foundation for key algebra proficiencies (e.g., Carpenter et al., 2003; Kieran, 1992; Knuth, Stephens, McNeil, \& Alibali, 2006; MacGregor \& Stacey, 1997)

Prevalence of Misconception

35 years of research indicates that a majority of first through sixth graders in the U.S. have operational view of equal sign (e.g., Weaver, 1973, Behr, Erlwanger \& Nichols, 1980; Perry, 1991; Alibali, 1999; Powell \& Fuchs, 2010)

Operational View is Not Universal

Watchorn, Lai \& Bisanz (2009)

Capraro,Yetkiner, Ozel \& Capraro (2009)

- Misconception not based on interactions in natural world; rather product of experience with mathematics instruction

Potential Source of Misconception

Explicit definition of equal sign is rare: not present in textbook series we analyzed

Potential Source of Misconception

In U.S., overwhelming exposure to equations in operations $=$ answer format (e.g., $2+2=4$)

- Textbook Analysis: Percentage of Instances of the Equal Sign in Each Equation Structure (Rittle-Johnson et al., 2011)

	\mathbf{y}	Grade					
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Average
Operations =Answer	97	82	70	52	38	31	62
Operations both sides	0	1	6	6	3	8	4

\square Instruction on meaning of equal sign less effective if given with problems in operations = answer format (McNeil, 2008)
\square Teachers overestimate children's knowledge of equivalence (e.g., Bisanz, Sherman \& Watchorn, 2010)

Research Question:

How does children's knowledge of math equivalence develop?

Talk Theme 1

\square Conceptual change happens gradually over time as learners adjust their knowledge to integrate particular instances that contradict their current knowledge
\square A construct modeling approach is useful to assessing, and thus helping understand, this change process.

Construct Modeling Approach

Core idea (Wilson, 2005):
Develop and test a construct map - a representation of the continuum of knowledge that people are thought to progress through.

Equivalence Construct Map*

	Level	Description	Core Equation Structure(s)
	Level 4: Comparative Relational		
	Level 3: Basic Relational		
	Level 2: Flexible Operational		
	Level 1: Rigid Operational		

* For children in U.S. \& Canada

Knowledge change is gradual and dynamic, not stages.

Equivalence Construct Map

Level	Description	Core Equation Structure(s)
Level 4:		
Comparative		
Relational		

Equivalence Construct Map

Level	Description	Core Equation Structure(s)		
Level 4: Comparative Relational	Successful with operations on both sides of the equal sign. Recognize and generate relational definition of the equal sign.	Operations on both sides: e.g., $\mathrm{a}+\mathrm{b}=\mathrm{c}+\mathrm{d}$		
Basic 3: Relational	Level 2: Flexible Operational	Define equal sign operationally. Only successful with equations with an operations = answer structure.		Operations = answer
:---				
structure: a + b=c				

Equivalence Construct Map: Transitional Knowledge

Level	Description	Core Equation Structure(s)
Level 4: Comparative Relational		
Level 3: Basic Relational	Successful with operations on both sides of the equal sign. Recognize and generate relational definition of the equal sign.	Operations on both sides: e.g., $\mathrm{a}+\mathrm{b}=\mathrm{c}+\mathrm{d}$
Level 2:	Successful with atypical equation structures that remain compatible with Flexible	Operations on right or no operations: C = a +b \& a = a
Leverational 1: Rigid Operational	Define equal sign operationally. Only successful with equations with an operations = answer structure.	Operations =answer structure: a $+\mathrm{b}=\mathrm{c}$

Equivalence Construct Map: Advanced Knowledge

Level	Description	Core Equation Structure(s)
Level 4:	Compares the expressions on the two sides of the equal sign. Recognizes relational definition as the best Comparative Relational	Operations on both sides with multi-digit numbers or multiple instances of a variable.
Level 3: Basic Relational	Successful with operations on both sides of the equal sign. Recognize and generate relational definition of the equal sign.	Operations on both sides: e.g., $\mathrm{a}+\mathrm{b}=\mathrm{c}+\mathrm{d}$
Level 2: Flexible Operational	Successful with atypical equation structures that remain compatible with an operational view of the equal sign.	Operations on right or no operations: $\mathrm{c}=\mathrm{a}+\mathrm{b} \& \mathrm{a}=\mathrm{a}$
Level 1: Rigid Operational	Define equal sign operationally. Only successful with equations with an operations = answer structure.	Operations $=$ answer structure: $\mathrm{a}+\mathrm{b}=\mathrm{c}$

Comparative Relational Thinking: Level 4 Example

3. (sse) Without adding $89+44$, can you tell if the number sentence below is true or false?

$$
89+44=87+46
$$

True False Can't tell without adding
How do you know?

(modified from Jacobs, et al, 2007)

Tasks

22

1. Solving Equations items: abilities to solve open equations.

- $8+4=\square+5$

2. Structure of Equations items: knowledge of valid equation structures.

- $3+5=5+3$ True or False

3. Defining the Equal Sign items: explicit knowledge of equal sign.

- What does the equal sign mean?
(e.g., Alibali, 1999; Behr, Erlwanger, \& Nichols, 1980; Falkner, Levi, \& Carpenter, 1999; Li, Ding, Capraro, \& Capraro, 2008; McNeil, 2007; Rittle-Johnson \& Alibali, 1999; Weaver, 1973)

Assessment

$\square 31$-item written assessment, using items from past research. (available on project website)
Selected items so at least two per construct map level for each of the three common item types.
Created 2 parallel forms (to use as pretest and posttest in future research).

Data Source

24
\square Study 1: Assessment administered to 174 students in $2^{\text {nd }}-6^{\text {th }}$ grade classrooms.

- Administered twice in the fall, two weeks apart.
- For details, see Rittle-Johnson, Matthews, Taylor \& McEldoon (2011)
- Study 2: Assessment administered to 224 students in $2^{\text {nd }}-6^{\text {th }}$ grade classrooms.
- Administered once in spring
- For details, see Matthews, Rittle-Johnson, Taylor \& McEldoon (2012)

Construct Validity

- Compare empirical data to construct map
- Rasch model - type of Item Response Theory (IRT) model.
- Estimates the difficulty of each item and the ability of each student simultaneously.
- Wright Map - graphical display of the results that helps us evaluate our construct map.

Interpreting the Wright Map

26
Excerpt

PERSONS - LOGITS - ITEMS

Key:

- On left: Each "\#" is 2 students. Each "." is 1 student.
- On right: Individual items
- Center: Interval measurement scale in Logits, with 0 set to mean difficulty

Interpreting the Wright Map:
 Probability of Success

persons - logits - items $\quad \square$ Based on ability of

Interpreting the Wright Map

PERSONS - LOGITS - ITEMS

\square Compare probability of success based on difficulty of item:
\square For student of average ability:

- This level 2 item correct 94% of time This level 3 item correct 50\% of time
$\operatorname{Pr}($ success $)=\frac{1}{1+e^{-(\theta-d)}}$

Probability of Success:

Operations on Both Sides is Key

Lower Ability $\theta=-1.35$

Level $3: 7+6+4=7+\square$
Level 3: $\square+2=6+4$

Level 2: $8=6+\square$
Level $1: \square+5=9$

Probability of Success:

Operations on Both Sides is Key

Sample Hems	Lower Ability $\Theta=-1.35$	Higher Ability $\Theta=0.61$
Level 3: $7+6+4=7+\square$		
Level 3: $\square+2=6+4$		
Level 2: $8=6+\square$		
Level 1: $\square+5=9$	0.98	1.00

Probability of Success:

Operations on Both Sides is Key

Sample Ifems	Lower Ability $\theta=-1.35$	Higher Ability $\Theta=0.61$
Level 3: $7+6+4=7+\square$		
Level 3: $\square+2=6+4$		
Level 2: $8=6+\square$	0.80	0.97
Level 1: $\square+5=9$	0.98	1.00

Probability of Success:

Operations on Both Sides is Key

Probability of Success:

Task Type is Not Key

Sample liems	Lower Ability $\theta=-1.35$	Higher Ability $\theta=0.61$
		0.72
Level 3: $7+6+4=7+\square$	0.26	0.75
Level 3: $\square+2=6+4$	0.29	0.96
Level 2: $4=4+0$ True or false	0.77	0.97
Level 2: $8=6+\square$	0.80	1.00
Level 1: $\square+5=9$	0.98	

Probability of Success:

Level 4: Comparative Relational

Sample lfems	Lower Ability $\theta=-1.35$	Higher Ability $\theta=0.61$
Level 4: Explain " $89+44=87$ $+46^{\prime \prime}$	0.03	0.18
Level 3: $7+6+4=7+\square$	0.26	0.72
Level 3: $\square+2=6+4$	0.29	0.75
Level 2: $8=6+\square$	0.80	0.97
Level 1: $\square+5=9$	0.98	1.00

Probability of Success:

Relation to Defining the Equal Sign

Sample Items	Lower Ability $\theta=-1.35$	Higher Ability $\theta=0.61$
evel 4: Explain " $89+44=87$	0.03	0.18
Level 3-4: Define =	0.05	0.29
Level 3: Rate relational definition of $=$	0.40	0.83
Level 3: $7+6+4=7+\square$	0.26	0.72
Level 3: $\square+2=6+4$	0.29	0.75
Level 2: 4-4 + - -	0.77	0.96
Level 2: 8	0.80	0.97
Level 1: $\square+5=9$	0.98	1.00

Equivalence Construct Map*

Level	Description	Core Equation Structure(s)
Level 4: Comparative Relational	Compares the expressions on the two sides of the equal sign. Generates relational definition and recognizes it as the best definition.	Operations on both sides with multi-digit numbers or multiple instances of a variable
Level 3: Basic-Implicit Relational	Successful with operations on both sides of the equal sign. Recognize and generate relational definition of the equal sign.	Operations on both sides: e.g., $a+b=c+d$
Level 2: Flexible Operational	Successful with atypical equation structures that remain compatible with an operational view of the equal sign.	Operations on right or no operations: $c=a+b \& a=a$
Level 1: Rigid Operational	Define equal sign operationally. Only successful with equations with an operations $=$ answer structure.	Operations $=$ answer structure: $a+b=c$

Summary of Construct Map

\square Developed a valid and reliable measure of students' knowledge of equivalence.

- Replicated findings across 2 studies.
\square Construct map captures shifts in knowledge of equivalence over grade levels.
- Incorporate flexible operational view as transition.
- Distinguish implicit from explicit relational knowledge. Capture developing comparative thinking.
\square Construct modeling approach is a useful tool for understanding conceptual change.

Benefits of Construct Modeling Approach

Captures incorrect ways of thinking as well as correct ways.
\square Permits testing of whether performance on specific items fit expectations.
\square Probabilistic approach captures variability in individuals' thinking \& performance.
\square Produces a criterion-referenced measure that is particularly appropriate for assessing the effects of an intervention (Wilson, 2005).

Talk Themes

40

1. Conceptual change happens gradually over time as learners adjust their knowledge to integrate particular instances that contradict their current knowledge.

- A construct modeling approach is useful to assessing, and thus helping understand, this change process.

2. Instructional methods that support additive knowledge change can also be appropriate for supporting conceptual change.

- Focus on self-explanation \& problem exploration.

Importance of Explanation

Children often try to explain the world around them (Gopnik, 1998).

Prompting people to generate explanations
improves their learning:
\square For 4 -year-olds to college students

- In domains ranging from number conservation to human circulatory system
(e.g., Aleven \& Koedinger, 2002; Atkinson, Renkl, \& Merrill, 2003; Bielaczyc, Pirolli, \& Brown, 1995; Chi, Bassok, Lewis, Reimann, \& Glaser, 1989; Neuman \& Schwarz, 1998; Pine \& Messer, 2000; Renkl, Stark, Gruber, \& Mandl, 1998; Rittle-Johnson, Saylor \& Swygert, 2008; Siegler, 1995, 2002; Wong, Lawson, \& Keeves, 2002).

Explanation and Mathematics

Unfortunately, children spend very little time explaining mathematical ideas
\square in school (Pianta et al., 2007)

- at home (Smith-Chant et al., 2009)

Self-Explanation \& Conceptual Change

Prompting people to generate explanations improves their learning
\square Effective in domains without strong misconceptions to overcome, such as Geometry (i.e., additive learning).
\square Also effective at promoting conceptual change?

- Explain correct and incorrect examples

Self-Explain Correct and Incorrect Answers to Math Equivalence Problems

When kids at another
school solved it, Jane got 7 , which is the right answer.

$$
3+7=3+7
$$

Jill got 13, which is a wrong answer:

$$
3+7=3+13
$$

Tell me how you think she got 7 , which is the right answer? Why do you think 7 is the right answer?
\square Tell me how you think she got 13 , which is the wrong answer? Why do you think 13 is the wrong answer?
(DeCaro \& Rittle-Johnson, 201 2; Matthews \& Rittle-Johnson, 2009; McEldoon, Durkin \& Rittle-Johnson, in press; Rittle-Johnson, 2006; Siegler, 2002)

Key Self-Explanation Findings

Self-explanation:

1. Of correct and incorrect examples more effective than explaining correct only (Siegler, 2002).
2. Does more than increase time on task (McEldoon, Durkin \& Ritrle-Johnson, in press).
3. Enhances learning with or without instruction on correct procedures (Rittle-Johnson, 2006).
4. May be redundant with instruction on correct concepts (Matthews \& Rittle-Johnson, 2009).

Available on project website: vanderbi.It/earlyallgebra

1. Explaining Correct \& Incorrect Examples: Design

\square Siegler (2002)
$\square 3$ conditions:

- No explain
- Self-explain correct answers
- Self-explain correct \& incorrect answers

Solve 6 math equivalence problems with feedback - very brief!

1. Explaining Correct \& Incorrect Examples: Results

Improves Transfer

2. Time on Task: Design

Self-explaining greatly increases time on task
\square Evaluate relative to an alternative use of time: solving additional practice problems
\square McEldoon, Durkin \& Rittle-Johnson (in press)
$\square 3$ conditions

- No Explain Control (solve 6 problems)
- Self-explain correct and incorrect answers (solve \& explain 6 problems)
- Additional Practice: solve twice as many problems (12) to help control for time on task

2. Time on Task: Results

Self-Explanation Does More Than Increase Time on Task

3. Instruction on A Correct Procedure: Design

\square Impact of instructional context on self-explanation effects: varied in past research
\square No instruction (e.g., Siegler, 2002)
\square Instruction on correct procedure (McEldoon, Durkin \& Rittle-Johnson, in press)
Rittle-Johnson (2006)
$\square 4$ conditions, crossing 2 factors: \square Instruction on procedure - Instructed vs. Invented \square Self-explanation prompts - No explain vs. explain - All solved 8 problems

3. Instruction on A Correct Procedure:

Results

53
Explanation Enhances Learning With or Without Instruction on Procedure

4. Instruction on Underlying Concepts

Are self-explanation prompts also effective in combination with instruction on underlying concepts?
Matthews \& Rittle-Johnson (2009)
2 Conditions
\square All first received instruction on underlying concepts
\square No explain (with additional practice - solved 12 problems)

- Explain (solved and explained 6 problems)

4. Instruction on Underlying Concepts

Self-Explanation May Be Redundant with Instruction on Correct Concepts in Combination With Additional Practice

Key Self-Explanation Findings

Self-explanation:

1. Of correct and incorrect examples more effective than explaining correct only (Siegler, 2002)
2. Does more than increase time on task (McEldoon, Durkin \& Rittle-Johnson, in press)
3. Enhances learning with or without instruction on correct procedures (Rittle-Johnson, 2006)
4. May be redundant with instruction on correct concepts (Matthews \& Rittle-Johnson, 2009)

Example Instructional Methods

1. Self-explanation
2. Problem exploration

Problem Exploration

58
\square A key feature of teaching for understanding is to allow students to struggle some: try to figure something out that is not immediately apparent. (Hiebert \& Grouws, 2007)

Opportunities to Struggle Seem Rare in U.S. \& German Lessons

Percentage of Seatwork Time $8^{\text {th }}$ Grade Students Spent Doing Each Activity

When should
children be taught new concepts directly...
How can aspects of both approaches be combined to improve learning?

Discovery Learning
and when should they discover these ideas for themselves?

Combing Explicit Instruction and Problem-Solving Activities

\square Explicit instruction and problem-solving: Which should come first?
\square Explicit instruction followed by problem solving

- Method used in my past self-explanation research
\square Problem solving followed by explicit instruction
- Solve unfamiliar problems before instruction as a discovery activity

Exploratory Activities May Help Children Learn from Instruction

Evidence

- College students who explored examples learned more deeply from a psychology lecture than those who summarized a text
(Schwartz \& Bransford, 1998)
- $9^{\text {th }}$ graders who explored datasets before instruction and practice on descriptive statistics learned more from new instructional resources than those who received extended instruction followed by practice
(Schwartz \& Martin, 2004)

1. Problem exploration in Math Equivalence
 Instruction on Concept

$$
3+4=3+4
$$

There are two sides to this problem...
What the equal sign means is that the things
 Instruct - Solve \square sign are equal or the same...

Problem Solving

$$
3+4+8=\square+8
$$

<after solve> 7 is the correct answer.

Problem Exploration Highlights

Sometimes the best time for telling is after students explore (Schwartz \& Bransford, 1998)

During exploration, students do not need to figure out correct ideas. Rather, exploration:
\square Activates their prior knowledge
\square Helps them notice important features of problems
\square Helps them recognize misconceptions
\square Preparing them to learn from the instruction
Easy for teachers to implement

Problem Exploration Follow-Up: Role of Feedback

\square Opportunity to explore problems prepared children to learn from instruction.
Received accuracy feedback during exploration. Was this important?
Feedback touted as one form of guidance that may be particularly effective during problem solving (e.g., Alfieri et al., 2011).

Learners with low domain knowledge benefit from feedback; learners with high knowledge may not (e.g., Hofer, Nussbaumer \& Schneider, 2011)
(Fyfe \& Rittle-Johnson, 2012)

Role of Feedback

All children solved 12 problems followed by instruction
During solve phase, either:

- No feedback
- "OK, let's move on to the next problem."
\square Feedback
- e.g., "Good try, but you did not get the right answer." or "Good try, but that is not a correct way to solve that problem."

Prior knowledge:
\square All incorrect - never used correct procedure on pretest
Some correct - used correct procedure at least once on pretest

Feedback Summary

Feedback during exploration is important for children with little prior domain knowledge, but may be harmful for children with some prior knowledge.

Conclusion

1. Conceptual change happens gradually over time as learners adjust their knowledge to integrate particular instances that contradict their current knowledge

- A construct modeling approach is useful to assessing, and thus understanding, this change process.

2. Instructional methods that support additive knowledge change can also be appropriate for supporting conceptual change.
\square Self-explanation, esp. with incorrect examples, and problem exploration are valuable methods.

For More Information

Project website:
vanderbi.It/earlyalgebra

