OVERCOMING MISCONCEPTIONS: INSIGHTS FROM RESEARCH ON UNDERSTANDING THE EQUAL SIGN

Bethany Rittle-Johnson in collaboration with P. Matthews, M. DeCaro, R. Taylor, K. McEldoon & E. Fyfe

VANDERBILT
PEABODY COLLEGE
International Conference on Conceptual Change
1 September 2012

Project website

vanderbi.lt/earlyalgebra

A Common Misconception

ES1. What does the equal sign (=) mean?

ES1. What does the equal sign (=) mean?

It means sum or difference.

ES1. What does the equal sign (=) mean?

EX. Little Is the sum.

□ Apparent when asked to solve equations with operations on both sides of the equal sign.

$$3 + 7 = \square + 6$$

□ "because 3 plus 7 equals 10."

Reflects an Operational View of equal sign

Misconceptions Galore!

- □ In Science
 - □ Force as a property of physical objects (Chi, Slotta, & de Leeuw, 1994).
 - Sun and moon revolve around the earth (Vosniadou & Brewer, 1992, 1994).
 - In Mathematics
 - Incorrectly apply natural number concepts to rational numbers (Durkin, 2012; Hartnett & Gelman, 1998; Merenluoto & Lehtinen, 2002; Stafylidou & Vosnjadou, 2004).
 - E.g., .25 is bigger than .7 because 25 is bigger than 7
 - Immature understanding

Misconceptions Necessitate Conceptual Change

- □ "The term conceptual change is used to characterize the kind of learning required when the new information to be learned comes in conflict with the learners' prior knowledge a major reorganization of prior knowledge is required—a conceptual change." Vosniadou & Verschaffel (2004) p. 445
- Contrast with additive knowledge change enrichment of prior knowledge.

Talk Themes

7

- Conceptual change happens gradually over time as learners adjust their knowledge to integrate particular instances that contradict their current knowledge.
 - A construct modeling approach is useful to assessing, and thus helping understand, this change process.
- Instructional methods that support additive knowledge change can also be appropriate for supporting conceptual change.
 - Focus on self-explanation & problem exploration.
- Illustrate for understanding mathematical equivalence.
 - Principle that two sides of an equation represent the same value (also called equality). Symbolized by "="
 - □ Relational view of equal sign

Why Math Equivalence?

8

- Mathematical equivalence is an early developing & foundational concept in algebra
 - Provides the foundation for key algebra proficiencies (e.g., Carpenter et al., 2003; Kieran, 1992; Knuth, Stephens, McNeil, & Alibali, 2006; MacGregor & Stacey, 1997)

From Knuth, Alibali, Hattikuder, McNeil & Stephens (2008)

Prevalence of Misconception

□ 35 years of research indicates that a majority of first through sixth graders in the U.S. have operational view of equal sign (e.g., Weaver, 1973, Behr, Erlwanger & Nichols, 1980; Perry, 1991; Alibali, 1999; Powell & Fuchs, 2010)

Operational View is Not Universal

 Misconception not based on interactions in natural world; rather product of experience with mathematics instruction

Potential Source of Misconception

11

 Explicit definition of equal sign is rare: not present in textbook series we analyzed

Potential Source of Misconception

- □ In U.S., overwhelming exposure to equations in **operations** = **answer** format (e.g., 2 + 2 = 4)
 - Textbook Analysis: Percentage of Instances of the Equal Sign in Each Equation Structure (Rittle-Johnson et al., 2011)

		Grade					
	1	2	3	4	5	6	Average
Operations = Answer	97	82	70	52	38	31	62
Operations both sides	0	1	6	6	3	8	4

- □ Instruction on meaning of equal sign less effective if given with problems in operations = answer format (McNeil, 2008)
- Teachers overestimate children's knowledge of equivalence (e.g., Bisanz, Sherman & Watchorn, 2010)

13

Research Question:

How does children's knowledge of math equivalence develop?

Talk Theme 1

- Conceptual change happens gradually over time as learners adjust their knowledge to integrate particular instances that contradict their current knowledge
 - A construct modeling approach is useful to assessing, and thus helping understand, this change process.

Construct Modeling Approach

- □ Core idea (Wilson, 2005):
 - □ Develop and test a construct map a representation of the continuum of knowledge that people are thought to progress through.

Equivalence Construct Map*

Level	Description	Core Equation Structure(s)
evel 4:		
omparative		
elational		
Level 3:		
Basic		
Relational		
Level 2:		
Flexible		
Operational		
Level 1:		
Rigid		
Operational		

^{*} For children in U.S. & Canada Knowledge change is gradual and dynamic, not stages.

Equivalence Construct Map

17

Level	Description	Core Equation Structure(s)
Level 4:		
Comparative		
Relational		
Level 3:		
Basic		
Relational		
Level 2:		
Flexible		
Operational		
Level 1:	Define equal sign operationally. Only	Operations = answer
Rigid	successful with equations with an	structure: $a + b = c$
Operational	operations = answer structure.	

Equivalence Construct Map

Level	Description	Core Equation Structure(s)
Level 4: Comparative Relational		
Level 3: Basic Relational	Successful with operations on both sides of the equal sign. Recognize and generate relational definition of the equal sign.	Operations on both sides: e.g., $a + b = c + d$
Level 2: Flexible Operational		
Level 1: Rigid Operational	Define equal sign operationally. Only successful with equations with an operations = answer structure.	Operations = answer structure: $a + b = c$

Equivalence Construct Map: Transitional Knowledge

19

Level	Description	Core Equation Structure(s)
Level 4: Comparative Relational		
Level 3: Basic Relational	Successful with operations on both sides of the equal sign. Recognize and generate relational definition of the equal sign.	Operations on both sides: e.g., $a + b = c + d$
Level 2: Flexible Operational	Successful with atypical equation structures that remain compatible with an operational view of the equal sign.	Operations on right <i>or</i> no operations: $c = a + b & a = a$
Level 1: Rigid Operational	Define equal sign operationally. Only successful with equations with an operations = answer structure.	Operations = answer structure: $a + b = c$

Equivalence Construct Map: Advanced Knowledge

Level	Description	Core Equation Structure(s)
Level 4: Comparative Relational	Compares the expressions on the two sides of the equal sign. Recognizes relational definition as the best definition.	Operations on both sides with multi-digit numbers or multiple instances of a variable.
Level 3: Basic Relational	Successful with operations on both sides of the equal sign. Recognize and generate relational definition of the equal sign.	Operations on both sides: e.g., $a + b = c + d$
Level 2: Flexible Operational	Successful with atypical equation structures that remain compatible with an operational view of the equal sign.	Operations on right <i>or</i> no operations: c = a + b & a = a
Level 1: Rigid Operational	Define equal sign operationally. Only successful with equations with an operations = answer structure.	Operations = answer structure: a + b = c

Comparative Relational Thinking: Level 4 Example

3. (STSO) Without adding 89 + 44, can you tell if the number sentence below is true or false?

$$89 + 44 = 87 + 46$$

True

False

Can't tell without adding

How do you know?

se 89-87=24 they 200 2 to 44 it is even

(modified from Jacobs, et al, 2007)

Tasks

- 1. Solving Equations items: abilities to solve open equations.
 - 8 + 4 = \bigcap + 5
- 2. Structure of Equations items: knowledge of valid equation structures.
 - 3 + 5 = 5 + 3 True or False
- 3. Defining the Equal Sign items: explicit knowledge of equal sign.
 - What does the equal sign mean?

(e.g., Alibali, 1999; Behr, Erlwanger, & Nichols, 1980; Falkner, Levi, & Carpenter, 1999; Li, Ding, Capraro, & Capraro, 2008; McNeil, 2007; Rittle-Johnson & Alibali, 1999; Weaver, 1973)

Assessment

23

- 31-item written assessment, using items from past research. (available on project website)
- Selected items so at least two per construct map level for each of the three common item types.
- □ Created **2 parallel forms** (to use as pretest and posttest in future research).

Data Source

- \square Study 1: Assessment administered to 174 students in 2^{nd} - 6^{th} grade classrooms.
 - Administered twice in the fall, two weeks apart.
 - For details, see Rittle-Johnson, Matthews, Taylor & McEldoon (2011)
- $\hfill\Box$ Study 2: Assessment administered to 224 students in $2^{nd}\text{-}6^{th}$ grade classrooms.
 - Administered once in spring
 - For details, see Matthews, Rittle-Johnson, Taylor & McEldoon (2012)

Construct Validity

25

- Compare empirical data to construct map
 - Rasch model type of Item Response Theory (IRT) model.
 - Estimates the difficulty of each item and the ability of each student simultaneously.
 - Wright Map graphical display of the results that helps us evaluate our construct map.

25

Interpreting the Wright Map

26

Key:

- On left: Each "#" is 2 students. Each "." is 1 student.
- <u>On right</u>: Individual items
- <u>Center</u>: Interval measurement scale in Logits, with 0 set to — mean difficulty

Data from Matthews et al (2012)

31	Probability of Success: Operations on Both Sides is Key			
	Sample Items	Lower Ability ⊖=-1.35	Higher Ability Θ= 0.61	
	Level 3: 7 + 6 + 4 = 7 + Level 3: + 2 = 6 + 4			
	Level 2: 8 = 6 + Level 1: + 5 = 9	0.98	1.00	

32	Probability of Success: Operations on Both Sides is Key			
	Sample Items	Lower Ability ⊖=-1.35	Higher Ability Θ= 0.61	
	Level 3: $7 + 6 + 4 = 7 + \square$ Level 3: $\square + 2 = 6 + 4$			
	Level 2: 8 = 6 +	0.80	0.97	
	Level 1: + 5 = 9	0.98	1.00	

33	Probability of Success: Operations on Both Sides is Key			
	Sample Items	Lower Ability ⊖=-1.35	Higher Ability Θ= 0.61	
	Level 3: 7 + 6 + 4 = 7 + Level 3: + 2 = 6 + 4	0.26	0.72	
	Level 2: 8 = 6 + \[Level 1: \[] + 5 = 9	0.80	1.00	
	Level 1: + 3 - 9	0.76	1.00	

34	Probability of Success: Task Type is Not Key			
	Sample Items	Lower Ability ⊖=-1.35	Higher Ability Θ= 0.61	
	Level 3: 7 + 6 + 4 = 7 + Level 3: + 2 = 6 + 4	0.26	0.72	
	Level 2: 4 = 4 + 0 True or false	0.77	0.96	
	Level 2: 8 = 6 + \[Level 1: \[] + 5 = 9	0.80	1.00	
	Level 1 1 3 - 7	0.70	1.00	

35	Probability of Success: Level 4: Comparative Relational			
	Sample Items	Lower Ability ⊖=-1.35	Higher Ability Θ= 0.61	
	Level 4: Explain "89 + 44 = 87 + 46"	0.03	0.18	
	Level 3: 7 + 6 + 4 = 7 +	0.26	0.72	
	Level 3:	0.29	0.75	
	Level 2: 8 = 6 +	0.80	0.97	
	Level 1: + 5 = 9	0.98	1.00	

36	Probability of Success: Relation to Defining the Equal Sign			
	Sample Items	Lower Ability Θ=-1.35	Higher Ability Θ= 0.61	
	Level 4: Explain "89 + 44 = 87 + 46"	0.03	0.18	
	Level 3 - 4: Define =	0.05	0.29	
	Level 3: Rate relational definition of =	0.40	0.83	
	Level 3: 7 + 6 + 4 = 7 +	0.26	0.72	
	Level 3: + 2 = 6 + 4	0.29	0.75	
	Level 2: $4 = 4 \pm 0$ True or false	0.77	0.96	
	Level 2: 8 = 6 +	0.80	0.97	
	Level 1: + 5 = 9	0.98	1.00	

Equivalence Construct Map*

37

Level	Description	Core Equation Structure(s)
Level 4: Comparative Relational	Compares the expressions on the two sides of the equal sign. <i>Generates relational definition</i> and recognizes it as the best definition.	Operations on both sides with multi-digit numbers or multiple instances of a variable
Level 3: Basic-Implicit Relational	Successful with operations on both sides of the equal sign. Recognize and generate relational definition of the equal sign.	Operations on both sides: e.g., $a + b = c + d$
Level 2: Flexible Operational	Successful with atypical equation structures that remain compatible with an operational view of the equal sign.	Operations on right <i>or</i> no operations: c = a + b & a = a
Level 1: Rigid Operational	Define equal sign operationally. Only successful with equations with an operations = answer structure.	Operations = answer structure: $a + b = c$

^{*} For children in U.S. & Canada

Summary of Construct Map

- Developed a valid and reliable measure of students' knowledge of equivalence.
 - Replicated findings across 2 studies.
- □ Construct map captures shifts in knowledge of equivalence over grade levels.
 - Incorporate flexible operational view as transition.
 - Distinguish implicit from explicit relational knowledge. Capture developing comparative thinking.
- Construct modeling approach is a useful tool for understanding conceptual change.

Benefits of Construct Modeling Approach

39

- Captures incorrect ways of thinking as well as correct ways.
- Permits testing of whether performance on specific items fit expectations.
- Probabilistic approach captures variability in individuals' thinking & performance.
- □ Produces a criterion-referenced measure that is particularly appropriate for assessing the effects of an intervention (Wilson, 2005).

Talk Themes

- Conceptual change happens gradually over time as learners adjust their knowledge to integrate particular instances that contradict their current knowledge.
 - A construct modeling approach is useful to assessing, and thus helping understand, this change process.
- Instructional methods that support additive knowledge change can also be appropriate for supporting conceptual change.
 - Focus on self-explanation & problem exploration.

Importance of Explanation

41

- □ Children often try to explain the world around them (Gopnik, 1998).
- Prompting people to generate explanations improves their learning:
 - □ For 4-year-olds to college students
 - In domains ranging from number conservation to human circulatory system

(e.g., Aleven & Koedinger, 2002; Atkinson, Renkl, & Merrill, 2003; Bielaczyc, Pirolli, & Brown, 1995; Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Neuman & Schwarz, 1998; Pine & Messer, 2000; Renkl, Stark, Gruber, & Mandl, 1998; Rittle-Johnson, Saylor & Swygert, 2008; Siegler, 1995, 2002; Wong, Lawson, & Keeves, 2002).

Explanation and Mathematics

- Unfortunately, children spend very little time explaining mathematical ideas
 - in school (Pianta et al., 2007)
 - at home (Smith-Chant et al., 2009)

Self-Explanation & Conceptual Change

43

- Prompting people to generate explanations improves their learning
 - Effective in domains without strong misconceptions to overcome, such as Geometry (i.e., additive learning).
 - Also effective at promoting conceptual change?
 - Explain correct and incorrect examples

Self-Explain Correct and Incorrect Answers to Math Equivalence Problems

44

When kids at another school solved it, Jane got 7, which is the right answer.

$$3 + 7 = 3 + 7$$

Jill got 13, which is a wrong answer:

$$3 + 7 = 3 + 13$$

- Tell me how you think she got 7, which is the right answer? Why do you think 7 is the right answer?
- □ Tell me how you think she got 13, which is the wrong answer? Why do you think 13 is the wrong answer?

(DeCaro & Rittle-Johnson, 2012; Matthews & Rittle-Johnson, 2009; McEldoon, Durkin & Rittle-Johnson, in press; Rittle-Johnson, 2006; Siegler, 2002)

Sample Explanations

45

3 + 7 = 3 + 7

Why is 7 the right answer?

"Because, um 3 plus 7 is 10. And then on the other side, it shows that 3 plus, and you're trying to find out what, what other

 $3 + 7 = 3 + \boxed{13}$

number equals 10. And 7 was the answer."

Why is 13 a wrong answer?

"Um it's the wrong answer because if 3 plus 13 that would be 16, and that equals 10 <pointing to left side>. And so she's basically kind of way off of the answer."

Key Self-Explanation Findings

46

Self-explanation:

- Of correct and incorrect examples more effective than explaining correct only (Siegler, 2002).
- 2. Does more than increase time on task (McEldoon, Durkin & Rittle-Johnson, in press).
- Enhances learning with or without instruction on correct procedures (Rittle-Johnson, 2006).
- 4. May be redundant with instruction on correct concepts (Matthews & Rittle-Johnson, 2009).

Available on project website: vanderbi.lt/earlyalgebra

Explaining Correct & Incorrect Examples: Design

- □ Siegler (2002)
- □ 3 conditions:
 - No explain
 - Self-explain correct answers
 - Self-explain correct & incorrect answers
- □ Solve 6 math equivalence problems with feedback
 - very brief!

2. Time on Task: Design

- □ Self-explaining greatly increases time on task
 - Evaluate relative to an alternative use of time: solving additional practice problems
- □ McEldoon, Durkin & Rittle-Johnson (in press)
- □ 3 conditions
 - No Explain Control (solve 6 problems)
 - Self-explain correct and incorrect answers (solve & explain 6 problems)
 - Additional Practice: solve twice as many problems (12) to help control for time on task

2. Time on Task: Results

51

Self-Explanation Does More Than Increase Time on Task

3. Instruction on A Correct Procedure: Design

- Impact of instructional context on self-explanation effects: varied in past research
 - □ No instruction (e.g., Siegler, 2002)
 - Instruction on correct procedure (McEldoon, Durkin & Rittle-Johnson, in press)
- □ Rittle-Johnson (2006)
- □ 4 conditions, crossing 2 factors:
 - Instruction on procedure Instructed vs. Invented
 - Self-explanation prompts No explain vs. explain
 - All solved 8 problems

3. Instruction on A Correct Procedure: Results

Explanation Enhances Learning With or Without Instruction on Procedure

4. Instruction on Underlying Concepts

- 54
- □ Are self-explanation prompts also effective in combination with instruction on underlying concepts?
- □ Matthews & Rittle-Johnson (2009)
- 2 Conditions
 - All first received instruction on underlying concepts
 - No explain (with additional practice solved 12 problems)
 - Explain (solved and explained 6 problems)

4. Instruction on Underlying Concepts

55

Self-Explanation May Be Redundant with Instruction on Correct Concepts in Combination With Additional Practice

Matthews & Rittle-Johnson (2009)

Key Self-Explanation Findings

56

Self-explanation:

- Of correct and incorrect examples more effective than explaining correct only (Siegler, 2002)
- Does more than increase time on task (McEldoon, Durkin & Rittle-Johnson, in press)
- Enhances learning with or without instruction on correct procedures (Rittle-Johnson, 2006)
- May be redundant with instruction on correct concepts (Matthews & Rittle-Johnson, 2009)

Example Instructional Methods

57

- 1. Self-explanation
- 2. Problem exploration

Problem Exploration

58

□ A key feature of teaching for understanding is to allow students to *struggle* some: try to figure something out that is not immediately apparent. (Hiebert & Grouws, 2007)

Opportunities to Struggle Seem Rare in U.S. & German Lessons Percentage of Seatwork Time 8th Grade Students Spent Doing Each Activity Practice Procedures Apply Concepts Invent Procedures or Concepts Germany Japan U.S. Stigler & Hiebert (1998)

61

When should children be taught new concepts directly...

Explicit Instruction

How can aspects of both approaches be combined to improve learning?

Discovery Learning

and when should they discover these ideas for themselves?

Combing Explicit Instruction and Problem-Solving Activities

- Explicit instruction and problem-solving: Which should come first?
 - Explicit instruction followed by problem solving
 - Method used in my past self-explanation research
 - □ Problem solving followed by explicit instruction
 - Solve unfamiliar problems before instruction as a discovery activity

Exploratory Activities May Help Children Learn from Instruction

Evidence

College students who explored examples learned more deeply from a psychology lecture than those who summarized a text

(Schwartz & Bransford, 1998)

□ 9th graders who explored datasets before instruction and practice on descriptive statistics learned more from new instructional resources than those who received extended instruction followed by practice

(Schwartz & Martin, 2004)

1. Problem exploration in Math Equivalence

There are two sides to this problem...

Instruction on Concept

$$3 + 4 = 3 + 4$$

What the equal sign means is that the things of sign are equal or the same...

Problem Solving

$$3 + 4 + 8 = \square + 8$$

<after solve> 7 is the correct answer.

(DeCaro & Rittle-Johnson, 2012)

Problem Exploration Highlights

- □ Sometimes the best time for telling is after students explore (Schwartz & Bransford, 1998)
- During exploration, students do not need to figure out correct ideas. Rather, exploration:
 - Activates their prior knowledge
 - □ Helps them notice important features of problems
 - Helps them recognize misconceptions
 - □ Preparing them to learn from the instruction
- □ Easy for teachers to implement

Problem Exploration Follow-Up: Role of Feedback

67

- Opportunity to explore problems prepared children to learn from instruction.
 - Received accuracy feedback during exploration. Was this important?
- □ Feedback touted as one form of guidance that may be particularly effective during problem solving (e.g., Alfieri et al., 2011).
 - Learners with low domain knowledge benefit from feedback; learners with high knowledge may not (e.g., Hofer, Nussbaumer & Schneider, 2011)

(Fyfe & Rittle-Johnson, 2012)

Role of Feedback

- □ All children solved 12 problems followed by instruction
- □ During solve phase, either:
 - No feedback
 - "OK, let's move on to the next problem."
 - Feedback
 - e.g., "Good try, but you did not get the right answer." or "Good try, but that is not a correct way to solve that problem."
- □ Prior knowledge:
 - □ All incorrect never used correct procedure on pretest
 - Some correct used correct procedure at least once on pretest

Feedback Summary

70

□ Feedback during exploration is important for children with little prior domain knowledge, but may be harmful for children with some prior knowledge.

Conclusion

71

- Conceptual change happens gradually over time as learners adjust their knowledge to integrate particular instances that contradict their current knowledge
 - A construct modeling approach is useful to assessing, and thus understanding, this change process.
- Instructional methods that support additive knowledge change can also be appropriate for supporting conceptual change.
 - Self-explanation, esp. with incorrect examples, and problem exploration are valuable methods.

For More Information

72

Project website:

vanderbi.lt/earlyalgebra

