Preparing to Learn from Math Instruction by Solving Problems First

Marci S. DeCaro & Bethany Rittle-Johnson

Should children be taught new concepts directly...

or discover these ideas for themselves?

Should children be taught new concepts directly...

Discovery Learning

or discover these ideas for themselves?

Discovery Learning

Lessens burden on cognitive resources

(Kirschner et al., 1996)

Discovery Learning

111

Increases motivation and depth of understanding

(Wise & O'Neill, 2009)

Lessens burden on cognitive resources

(Kirschner et al., 1996)

How can aspects of both approaches be combined to improve learning?

Discovery Learning

Increases motivation and depth of understanding

(Wise & O'Neill, 2009)

Evidence

 College students who explored examples learned more deeply from a psychology lecture than those who summarized a text

(Schwartz & Bransford, 1998)

 9th graders who explored datasets before instruction on descriptive statistics learned more from new instructional resources than those who received extended instruction

(Schwartz & Martin, 2004)

Current Study

- Extended to elementary-school children's math learning using an easily-implemented exploratory activity
- Examined learning mechanisms

Current Study

- 2 conditions
 - Instruct Solve
 - Solve Instruct
- Self-explanation (no effects)

Current Study

Exploring problems should...

- Help children better gauge their understanding of the underlying concept (or lack thereof)
- Challenge them to try to new ways to solve problems, helping them notice important problem features

... prepare children to learn from instruction at a deeper level

(Bjork, 1994; Carpenter et al., 2003;

Duffy, 2009; Mayer, 2004; Schwartz & Martin, 2004;

Schwartz, Sears, & Chang, 2007)

Math Equivalence

Operations on both sides of the equal sign represent the same quantity 3 + 4 = 3 + 4

Children often treat the equal sign operationally

```
3 + 4 = \Box + 4
```

- "It means add the numbers" or "get the answer"

Need to get to a relational view

– Look at relations across both sides of the equal sign Important prerequisite for understanding algebra, even in early grades (NCTM, 2006)

Procedure

Pretest

- -2^{nd} -4th graders
- suburban public school
- Selected if scored < 80%</p>

-N = 159

Intervention & Immediate Posttest Retention Test (≈ 2 weeks)

Math Equivalence Assessment

Procedural knowledge

Solving problems correctly

- Conceptual knowledge
 - Understand concept of equivalence

Is 4 + 8 = 8 + 4 True or False?

What does the equal sign mean?

(Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011)

Tutoring Intervention

Conceptual Instruction

3 + 4 = 3 + 4

There are two sides to this problem...

What the **equal sign** means is that the things on both sides of the equal sign are **equal** or **the same...**

Problem Solving

3 + 4 + 8 = 🗆 + 8

How did you get your answer?

7 is the right answer.

Tutoring Intervention

Conceptual Instruction

$$3 + 4 = 3 + 4$$

There are two sides to this problem...

What the **equal sign** means is that the annual sign are **equal** or **the same...**

Problem Solving

3 + 4 + 8 = 🗆 + 8

How did you get your ans

7 is the right answer.

Solve – Instruct

Instruct – Solve

Posttest & Retention Test Results

Procedural Knowledge (Problem Solving)

No effect of order

Posttest & Retention Test Results

Conceptual Knowledge

*Solve-Instruct order led to greater learning

Why Do Exploratory Experiences Help?

Problem Solving Accuracy at Intervention

*Solve-Instruct group had lower accuracy at intervention

Example: "Do you understand what the equal sign means?"

Yes (2) Maybe (1) Probably Not (0)

	Block 1	Block 2
Instruct-Solve		
	Instruct	Solve
Solve-Instruct		
	Solve	Instruct

Example: "Do you understand what the equal sign means?"

Yes (2) Maybe (1) Probably Not (0)

	Block 1	Block 2
Instruct-Solve	1.67 (.05)	1.67 (.04)
	Instruct	Solve
Solve-Instruct		
	Solve	Instruct

Example: "Do you understand what the equal sign means?"

Yes (2) Maybe (1) Probably Not (0)

	Block 1	Block 2	
Instruct-Solve	1.67 (.05)	1.67 (.04)	
	Instruct	Solve	
Solve-Instruct	1.54 (.05)	1.71 (.04)	
	Solve	Instruct	

*Solve-Instruct group initially rated their understanding as lower

Example: "Do you understand what the equal sign means?"

Yes (2) Maybe (1) Probably Not (0)

	Block 1	Block 2	
Instruct-Solve	1.67 (.05)	1.67 (.04) r =	.13
	Instruct	Solve	
Solve-Instruct	1.54 (.05)	1.71 (.04) r =	.27*
	Solve	Instruct	

*Solve-Instruct group initially rated their understanding as lower, and were more accurate

Strategy Variability at Intervention

Number of Different Strategies Used

	Instruct- Solve	Solve- Instruct	Standard Error
Correct Strategies	1.17	1.34	.08
(3 possible)			

Strategy Variability at Intervention

Number of Different Strategies Used

	Instruct- Solve	Solve- Instruct	Standard Error
Correct Strategies (3 possible)	1.17	1.34	.08
Incorrect Strategies (2 possible)	.47	.74*	.07

*Solve-Instruct group used a wider variety of strategies

Encoding of Problem Structure at Intervention

- 2 problems shown for 5s each (e.g., $5 + 2 = \Box + 3$)
 - Write down from memory
 - Often make systematic errors in line with misconceptions (e.g., 5 + 2 = □) (McNeil & Alibali, 2004)

	Encoding Accuracy
Instruct-Solve	44% (4%)
Solve-Instruct	54% * (4%)

*Solve-Instruct group encoded problem features at a higher level

Summary

Exploring problems prior to instruction boosted subsequent conceptual knowledge

 Solve-Instruct group outperformed Instruct-Solve group

Summary

Microgenetic analyses support the idea that exploratory experiences prepare children to learn from instruction

- Help children better gauge their understanding of the underlying concept (or lack thereof)
 - Solved problems more poorly during intervention
 - More accurate ratings of understanding (less illusion of competence)

Summary

Microgenetic analyses support the idea that exploratory experiences prepare children to learn from instruction

- Challenge them to try to new ways to solve problems, helping them notice important problem features
 - Tried a wider variety of problem-solving strategies
 - Better encoding of problem structure

Conclusions

Demonstrates one practical way learning situations can be structured to improve children's understanding

- Solve novel problems with feedback
- Combines elements of discovery learning and direct instruction
 - Joins a growing body of literature

- Examines processes supporting learning
- Better understanding of what factors improve learning – can design learning environments to maximize learning

⁽e.g., Schwartz & colleagues)

Acknowledgements

Laura McLean Ellen O'Neil Children's Learning Lab Percy Priest Elementary School

NSF CAREER Grant DRL-0746565

IES Postdoctoral Grant R305B080008

marci.decaro@vanderbilt.edu bethany.rittle-johnson@vanderbilt.edu

http://peabody.vanderbilt.edu/earlyalgebra.xml

