Katherine L. McEldoon, Bethany Rittle-Johnson, Marci DeCaro \& Sun-Joo Cho
Vanderbilt University

Focus

This project investigates the dimensional structure of an elementary level mathematical equivalence construct
-How is mathematical equivalence knowledge change best measured? -What are the benefits of a multidimensional model?

Mathematical Equivalence

- Mathematical equivalence is the principle that two ides of an equation represent the same value Foundational concep is -Provides the foundat
proficiencies (kieran, 1992:

Children's Understanding of Equivalence Bad News: 35 years of research show that a majority of first through sixth graders treat the equal sign perationally (e.g., Alibali, 1999
Operational View
-View " $"$ " as
operations \qquad $-8+4=+5$, most get 12 (add to equal) or 17 (add all) - Relational View

$$
\begin{aligned}
& \text { - View "V" as me } \\
& \text { same value }
\end{aligned}
$$

We want to a) push kids' understanding of equivalence forward, and b) chart their progress

Method

Assessing Equivalence Knowledge -Despite its critical importance, there is no standard measure of equivalence knowledge -Instead, researchers often make up their own measures
-Our literature review found no study that reported validity
of a particular measure of equivalence knowledge

- Potential Impact of valid measure
-Comparing research
-Charting developmental sequences
-Formative and summative assessment -Formative and summative assessment
-Informing differentiated instruction

This mathematical equivalence assessmen was administered to $1572^{\text {nd }}$ through $4^{\text {th }}$ grader as part of an instructional intervention study at three time points: pretest, post test, and retention test.
All analyses were completed with Item Response Theory methodology.

Correlational Structure
of Dimensions
Unidimensional: No information
Two Dimensional:

Three Dimensional:

The correlational structure between dimensions can be examined using multidimensional models. This can help elucidate the natur of the construct being measured.

Pre Test

Post Test
Retention Test

Benefits of Multi
 -A mutlidimensional model allows us to have more detailed knowledge of components of children's understanding - A multidimensional model gives us an ability estimate of each student for each knowledge component -The relationship between the knowledge components can be examined
 -This will allow for a more fine grained measure of knowledge change due to instructional intervention
 - More rigorous measurement methodology will allow for more generalization and comparison across research studies

References

Aibali, M. W. (1999). How chididen change their inids. Strategy change can be

 $\xrightarrow{\substack{\text { titeragiang } \\ \text { Heneman }}}$
 ${ }^{2332-236}$
 NNeil, N. M. New York Simon \& Schusiser

Contact

Acknowledgments

