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Abstract
Exploring a new concept before instruction can improve learning, but can also be challenging. Individual differences in achievement motivation influence how learners respond to challenge and may therefore moderate the benefits of exploratory learning. Higher mastery orientation generally yields increased effort in response to challenge, whereas higher performance orientation yields withdrawal, suggesting that mastery orientation may help individuals better cope with and learn from exploration. Second- through fourth-grade children (N=159) were given novel mathematical equivalence problems to solve as either an exploratory learning activity before instruction or as practice after instruction. Higher mastery orientation was associated with increased reliance on sophisticated problem-solving strategies during exploration and improved conceptual learning. In contrast, higher performance orientation corresponded with increased reliance on ineffective problem-solving strategies during exploration and impaired procedural learning. The current findings suggest that exploration prior to instruction can improve children’s adoption of sophisticated problem-solving strategies and heighten their conceptual knowledge, primarily if they approach learning with a mastery mindset.
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Achievement Motivation and Knowledge Development during Exploratory Learning
	 Exploratory learning activities, which ask learners to engage new topics before receiving instruction, can be useful in teaching individuals new concepts. Such activities give learners an opportunity to experience the conceptual boundaries of a particular topic firsthand and realize the limits of their own understanding prior to instruction (DeCaro & Rittle-Johnson, 2012; Hiebert & Groews, 2007). By wrestling with different solution approaches or conceptual perspectives in a trial-and-error fashion, learners encounter a broader range of both correct and incorrect strategies than might normally be encountered during more traditional “tell-then-practice” methods of instruction (Bonawitz et al., 2011; Schwartz, Chase, Oppezzo, & Chin, 2011). As a result, individuals who have an opportunity to explore a new concept before receiving instruction on the topic may develop a more sophisticated appreciation of the advantages, or disadvantages, associated with particular solution approaches. This experience may translate into deeper conceptual knowledge development and better retention (Bjork, 1994; Schwartz, Lindgren, & Lewis, 2009; Schwartz et al., 2011). 
For example, DeCaro and Rittle-Johnson (2012) compared the impact of solving unfamiliar problems before or after instruction on elementary-school children’s understanding of a novel mathematical concept (mathematical equivalence). Half of the children in the experiment received instruction on the concept, including definitions and examples, and then solved relevant problems with accuracy feedback (instruct-first condition). The other children received the same tutoring materials, but in reverse order of presentation: They first solved the problems with accuracy feedback, as an exploratory learning activity, and then received instruction (solve-first condition). Although children in both conditions learned the problem-solving procedures equally well, children in the solve-first condition understood he concept of mathematical equivalence better, as shown by their heightened performance on conceptual knowledge assessments. These learning differences emerged immediately after the tutoring intervention and were sustained two weeks later. Importantly, these gains in conceptual knowledge occurred even though children in the solve-first condition made more mistakes and tended to pursued more simplistic, incorrect strategies during the exploratory solve phase—indicating children benefitted conceptually from exploration.   
Similar results have been found with other age groups and in other domains. For example, Schwartz et al. (2011) examined the learning of eighth-grade students who explored density problems before receiving instruction. These students exhibited better understanding of the problem structure and better transfer to novel problems at a later test compared to those who received instruction before solving the density problems. Similar results have been found for ninth-grade students learning descriptive statistics (Kapur, 2012; Schwartz & Martin, 2004), seventh-grade students learning about average speed (Kapur, 2010; Kapur & Bielaczyc, 2012) and college students learning key principles of cognitive psychology (Schwartz & Bransford, 1998), biology (Taylor, Smith, VanStolk, & Spiegelman, 2010), and physics (Day, Nakahara, & Bonn, 2010).  
Although exploratory learning can enhance conceptual knowledge, such exploration comes with a certain amount of challenge for the learner. Individuals typically make more mistakes during the initial steps of an exploratory learning activity, and they must focus on those mistakes in order to develop more sophisticated conceptualizations of the problem or solution (Kapur, 2010). This learning process often entails considerable effort, as individuals engage in trial-and-error learning or hypothesis-testing (Klahr, 2009; Kirschner, Sweller, & Clark, 2006; Rittle-Johnson, 2006; Sweller, 2009). Learners may also encounter considerably more confusion about how to proceed (Dewey, 1910; Hiebert & Groews, 2007). In some cases, these learning challenges may pose a “desirable difficulty” (Bjork, 1994) or “productive failure” (Kapur, 2010, 2012) that encourages learners to rethink their previous conceptions and develop better understanding, thereby preparing them to learn from further instruction (Schwartz & Bransford, 1998). In other cases, the difficulty posed by exploratory learning may be too high (Fyfe, DeCaro, & Rittle-Johnson, under review; Kirschner et al., 2006). 
Achievement Motivation and Response to Challenge
In this study, we ask whether some learners may be better motivated than others to cope with the challenges posed by exploratory learning and thereby capitalize on the instructional experience. Research on achievement motivation demonstrates that individuals approach learning events with different goals and conceptions of what constitutes “ideal” learning performance. These differences influence how individuals interpret and respond to challenge during learning (Dweck & Leggett, 1988; Elliot & McGregor, 2001). Individuals can have both mastery and performance goals to different degrees (Barron and Harackiewicz, 2006). Individuals higher in mastery orientation desire personal growth (i.e., learning goals) and tend to view challenge such as confusion or difficulty as an opportunity to learn something new. Therefore, they generally seek challenge and respond to it with increased effort and interest. In fact, mastery orientation may lead individuals to interpret the effort they exert as rewarding, because effort engenders growth (Diener & Dweck, 1978, 1980). Conversely, individuals higher in performance orientation desire to prove their ability (i.e., performance goals). As such, they tend to interpret effort as a sign of incompetence, leading them to interpret difficult learning activities as a potential threat and to withdraw from challenges (cf. Dweck, 1986).
For example, Diener and Dweck (1978, 1980) compared how mastery- and performance-oriented 4th-6th graders reacted to failure in a difficult category-learning task. Participants first completed several solvable categorization problems matched to their age group, with accuracy feedback. Afterward, they encountered four unsolvable problems that were too advanced for their age group. While completing the solvable problems, children exhibited equal degrees of problem-solving accuracy and positive affect. They also had equally sophisticated problem-solving approaches. However, their behavior quickly diverged during the unsolvable trials. Children with higher mastery orientation responded with increased interest and effort—attributing the setback to a need for more effort. In addition, they maintained a high degree of strategy sophistication or invented more sophisticated problem-solving strategies to successfully deal with the new challenge. In contrast, children with higher performance orientation responded with increased negative affect and disinterest—attributing failure to lack of ability. These children defensively withdrew their effort or regressed to developmentally simpler strategies that could not lead to success. Thus, children with higher mastery orientation coped better with this difficult task and, in some cases, developed more sophisticated understanding of the problem itself, as evidenced by their invention of novel problem-solving strategies (cf. Graham & Golan, 1991). 
Similar observations have been made in confusing learning conditions. Licht and Dweck (1984) asked 5th-grade children to complete a self-guided lesson on psychological principles of learning. For half of the learners, the text was extremely poorly written (confusing condition), and for the other half, the text was not confusing. Regardless of their motivational orientation, learners struggled initially in the confusing condition, earning significantly lower scores on a comprehension test than their counterparts in the non-confusing condition. Learners with higher performance orientation improved with repeated attempts; however, they never scored as well as their counterparts in the non-confusing condition. Learners with higher mastery orientation prevailed with repeated attempts, eventually equaling their counterparts in the non-confusing condition. 
Other research has demonstrated that individuals with different achievement goal orientations prefer different types of learning situations. Individuals with higher mastery orientation generally prefer tasks that present an opportunity for skill development, despite posing the possibility of setbacks (e.g., mistakes, confusion). In contrast, individuals with higher performance orientation generally prefer tasks that readily demonstrate their competency without setbacks, yet do not necessarily promote development (e.g., Butler, 1999; Elliot & Dweck, 1988; cf. VandeWalle & Cummings, 1997; for review see Dweck & Leggett, 1988; Elliot, 1999; Hidi & Renninger, 2006; Grant & Dweck, 2003).    
Current Study
Individuals may respond to exploratory learning activities like they respond to challenge more generally. That is, based on their typically positive reaction to challenge, learners with higher mastery orientation may be better equipped to deal with the potential confusion and intellectual obstacles posed by exploration. We examined this possibility by reanalyzing previously-reported-data (DeCaro & Rittle-Johnson, 2012) to examine the role of achievement motivation. 
In DeCaro and Rittle-Johnson’s (2012) original study, learners who explored novel mathematics problems before receiving formal instruction (solve-first condition) made more mistakes during initial problem-solving than learners in a more traditional instruct-first condition; however, they demonstrated deeper conceptual knowledge when tested two weeks later. The current study evaluated whether, and how, individual differences in achievement motivation may have influenced learning from exploration. Specifically, we compared the problem-solving strategies, and subsequent learning, of individuals higher or lower in mastery versus performance orientation across the solve-first and instruct-first conditions. By examining whether exploratory learning activities are best suited for individuals that are more motivated for this type of learning, the present research can provide additional insight into the ongoing debate about the relative advantages and disadvantages of exploratory learning and direct instruction (cf. Alfieri et al., 2011; Kirschner et al., 2006; Tobias, 2009). This research may also reveal how learning advantages (or disadvantages) emerge during exploration.
Second- through fourth-grade children were taught the concept of mathematical equivalence—that values on both sides of the equal sign represent the same quantity. This concept is fundamental for future conceptual development within mathematics, such as early algebra understanding (Carpenter, Franke, & Levi, 2003; McNeil & Alibali, 2005). Children in these grades generally can successfully solve simple mathematics problems involving the equal sign (e.g., 2+3=_). However, they often lack a relational understanding of mathematical equivalence (e.g., understanding that 2+3 is “the same as” 5). Children often demonstrate their misconceptions of the equal sign with the strategies they use for more complex mathematical equivalence problems such as 4+5+3=_+3 (e.g., McNeil & Alibali, 2005; Perry, Church, & Goldin-Meadow, 1988). Children rarely see such problems with operations on both sides of the equal sign in elementary school (Powell, 2012).  Hence, when asked to solve them, children often view the equal sign as a procedural cue (Baroody & Ginsburg, 1983). For example, they may ignore the values to the right of the equal sign and sum the numbers on the left-hand side of the equation (resulting in the incorrect answer 12; add-to-equals strategy). Alternatively, they may sum every number in the equation, ignoring the sides delineated by the equal sign (resulting in the incorrect answer 15; add-all strategy; McNeil, 2008). 
These types of incorrect strategies reflect a rigid operational understanding of the equal sign, and they indicate a developmentally immature understanding of mathematical equivalence (Perry, Church, & Meadow, 1998; Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011). Such misconceptions cannot yield a correct answer. More importantly, they undermine the acquisition of conceptual understanding, because they limit children’s ability to notice how mathematical equivalence problems differ from more standard addition problems (McNeil & Alibali, 2000, 2005). An operational view of the equal sign can persist even after children learn its relational meaning. Indeed, college-educated adults can even be induced to make errors that reflect an operational view (McNeil, Rittle-Johnson, Hattikudur, & Peterson, 2010). Inaccurate responses based on an operational understanding of the equal sign resemble learning errors identified in the achievement motivation literature, in which performance orientation leads otherwise able children to perseverate on disconfirmed strategies, or revert to less mature representations of a problem, after failure trials (e.g., Diener & Dweck, 1980; cf. Dweck & Leggett, 1988). Thus, it is important to understand the factors that contribute to the development and retention of conceptual knowledge in this domain.
Hypotheses
Considering the literatures on exploratory learning and achievement motivation, we predicted different learning outcomes depending on the type of knowledge assessed. We assessed learners’ knowledge of mathematical equivalence both immediately after they completed an individual tutoring session, and approximately two weeks later. We also examined problem-solving strategies during the tutoring session itself. In the predictions that follow, we expected achievement motivation to impact learning most in the solve-first condition, because of the pronounced need to persist in the face of difficulty in this condition. 
Conceptual Knowledge. Our main interest in the present research was how achievement motivation affects learners’ conceptual knowledge, their ability to grasp the underlying principles of mathematical equivalence, after exploration. Prior work suggests that exploration before instruction primarily benefits conceptual knowledge, but is mistake-prone and initially more confusing than solving problems after instruction (Kapur, 2012; Kapur & Bielaczyc, 2013, Schwartz et al., 2009; cf. Alfieri et al., 2011; Kirshner et al., 2006). Previous research also indicates that individual differences in achievement motivation influence learning and performance primarily when children encounter challenging tasks (Dweck, 1986). Mastery orientation typically leads children to respond to initial setbacks with increased resolve, and by maintaining or inventing more sophisticated learning strategies (e.g., Diener & Dweck, 1978, 1980). Thus, we expected higher mastery orientation to be associated with improved conceptual knowledge, specifically in the more demanding solve-first condition. 
The prediction for performance orientation in the solve-first condition is less straightforward. Higher performance orientation often leads individuals to respond to setbacks with defensive withdrawal of effort and regressive thinking (e.g., Diener & Dweck, 1978, 1980). Therefore, performance orientation may be detrimental to conceptual knowledge in the solve-first condition. Alternatively, performance orientation may not actually hurt conceptual knowledge, compared to that obtained in the instruct-first condition. Instead, performance orientation may simply hinder one’s ability to profit from the exploratory learning opportunity. This prediction is supported by Barron and Harackiewicz’s (2001) multiple-motives hypothesis, which suggests that mastery and performance goals represent separate motivational signals with potentially different degrees of relevance for conceptual versus procedural understanding. According to this hypothesis, the mastery motive is more relevant to conceptual knowledge than the performance motive, because understanding and deeper processing of information are more clearly central to personal development and less diagnostic of ability (Barron & Harackiewicz, 2001; cf. Grant & Dweck, 2003). Thus, performance orientation may alternatively have no discernible impact on conceptual knowledge in our study.
Procedural Knowledge. We also evaluated procedural knowledge, or the ability to execute the correct action sequences to solve problems (e.g., Rittle-Johnson & Alibali, 1999). Procedural knowledge is strongly correlated with conceptual knowledge (Rittle-Johnson & Alibali, 1999). However, problem-solving assessments provide especially diagnostic information about ability. Therefore, according to Barron and Harackiewicz’s (2001) multiple-motives hypothesis, performance orientation may be more relevant to procedural knowledge than mastery orientation (cf. Grant & Dweck, 2003). We therefore predicted a positive, but weaker, relationship between mastery orientation and procedural knowledge in the solve-first condition. Moreover, we predicted a negative relationship between performance orientation and procedural knowledge (cf. Dweck & Leggett, 1988; Grant & Dweck, 2003). 
Problem-Solving Strategies. In addition to assessing knowledge outcomes (after tutoring), we examined children’s problem-solving strategies during the tutoring session. Such information may reveal how achievement motivation impacts learning from exploration. Because children in the solve-first condition completed the problems as an exploratory activity, we expected them to use poorer problem-solving strategies. At least initially, learners may rely more on operational strategies that indicate developmentally simpler views of the equal sign as an operational symbol or procedural cue (i.e., “add-all” or “add-to-equals”). In addition, they may less frequently use relational strategies that indicate a deeper understanding of the equal sign as a relational symbol. Hence, we expected the exploratory (“solve”) phase of the solve-first condition to pose a significant challenge, which would generally lead children to use less sophisticated problem-solving strategies while they struggled to make sense of the new problems they were facing.  
Although we thought the solve-first condition would be more challenging, we expected mastery orientation to promote a more adaptive response to these setbacks (cf. Diener & Dweck, 1978, 1980). Specifically, in the solve-first condition, mastery orientation should be associated with decreased reliance on operational strategies and increased usage of relational strategies. In contrast, performance orientation should be associated with increased reliance on operational strategies and decreased usage of relational strategies.  
Method
Participants
Participants were second- through fourth-grade children at a suburban public school serving a middle-class population. Children who scored below 80% on a pretest assessing procedural and conceptual knowledge of mathematical equivalence were selected for the study. The final sample (N = 159, 56% female) consisted of 77 second-graders, 56 third-graders, and 26 fourth-graders (age M = 8.5 years, range 7.3-10.8 years). Approximately 18% were ethnic minorities (10% African-American, 6% Asian, and 2% Hispanic). 
Research Design and Procedure
	Consenting children first completed a pretest in their classrooms, followed by a self-report measure of their achievement motivation orientation. This session lasted approximately 30 minutes. Within one week following the pretest, children selected for the study participated in individuals tutoring sessions on mathematical equivalence. Children were randomly assigned to the instruct-first condition (n = 79: 40 second-graders; 27 third-graders; 12 fourth-graders) or the solve-first condition (n = 80: 37 second-graders; 29 third-graders; 14 fourth-graders). The session ended with a posttest assessing children’s procedural and conceptual knowledge. The entire session lasted approximately 45 minutes. Approximately two weeks later, children completed an equivalent retention test. The retention test also included a measure of far-transfer, which consisted of problems that were developmentally advanced for this age group.  
Tutoring Session
	Conditions. The instruct-first and solve-first conditions were identical, except that the presentation order for the instruction (“instruct”) and problem-solving (“solve”) portions of the lesson were reversed. Thus, in the instruct-first condition, the problems served as practice after a lesson on mathematical equivalence. In the solve-first condition, these same problems served as an exploratory learning activity followed by formal instruction. 
Instruction. During instruction (adapted from Matthews & Rittle-Johnson, 2009), children were taught the relational meaning of the equal sign. Five number sentences (e.g., 3+4=3+4) were individually shown on the computer screen. The experimenter explained the structure of each number sentence (i.e., that there are two sides) and the explicit meaning of the equal sign (i.e., that the equal sign means that both sides are “equal or the same”). 
Problem-Solving. During the problem-solving phase, children completed six mathematical equivalence problems presented individually on the computer. The problems progressed in difficulty. Problem 1 was a three-operand problem, involving an operation on the right side of the equation (i.e., 10=3+_); this type of problem is typically within this age group’s ability, unlike Problems 2-3, which involved operations on both sides of the equal sign and were four-operand problems (e.g., 3+7=_+6), or Problems 4-6 which contained five operands (e.g., 5+3+9=5+_; Alibali, 1999). Children could use pencil and paper to solve each problem. After entering their answer on the computer, children were asked to report their problem-solving strategy. Then they were shown the correct answer. Children were additionally assigned to either self-explain on each problem (i.e., explain why particular answers were correct/incorrect) or second set of six problems instead; however, this manipulation had no discernible effects and will not be discussed further.
Knowledge Assessments
	Children’s knowledge was assessed several times (i.e., tutoring, posttest, and retention test) and across different evaluative content, including problem-solving ability (procedural knowledge), conceptual knowledge, far-transfer, and problem-solving strategy. A short assessment was also taken mid-way through tutoring; this data is reported in DeCaro and Rittle-Johnson (2012) but is not central to the present discussion.  
	Problem-Solving Strategies. Children’s problem-solving strategies during the tutoring session were categorized based on their verbal reports as relational, operational, or other incorrect (kappa = .80; Table 1). Relational strategies evidenced a deliberate attempt to equalize the values on each side of the equation or conceptualize the values as equivalent (Rittle-Johnson et al., 2011). Operational and other incorrect strategies both evidenced an erroneous conceptualization of the equal sign. However, operational strategies represented misconceptions previously identified as developmentally less sophisticated and fundamentally inadequate (i.e., add-all and add-to-equals strategies; McNeil, 2008; McNeil & Alibali, 2005; Perry et al., 1988; cf. Rittle-Johnson et al., 2011). These categories allowed us to examine how children’s conceptualizations developed in sophistication during training, especially in response to initial setbacks. 
Posttest and Retention Test. We measured children’s conceptual and procedural knowledge of mathematical equivalence by adapting assessments from past research (e.g., McNeil & Alibali, 2005; cf. Rittle-Johnson et al., 2011; Matthews et al., 2012). Conceptual knowledge items assessed two key concepts: the symbolic meaning of the equal sign and the structure of equations (10 items; Table 2). Each item was scored using the criteria in Table 2. Two raters independently coded 20% of the items requiring an explanation, and interrater agreement was high (kappas = .89-.96). Procedural knowledge items consisted of eight mathematical equivalence problems, with operations on both sides of the equal sign (e.g., 4+5+8=_+8), and two easier nonstandard problems (e.g., 7=_+5). Answers to procedural knowledge items were scored as correct if they came within one point of the correct answer, to reduce false negatives. Performance on both assessments was reported as percentage correct.
The retention test was identical to the posttest, but also included seven far-transfer items. Far-transfer (kappas = .77-.93; Table 2)  assessed learners’ ability to apply the concept of mathematical equivalence to solve especially difficult problems that were not directly targeted during tutoring, and which required a deeper level of inference involving the concept of math equivalence (e.g., 17+12=29 is true. Is 17+12+8 = 29+8 true or false? How do you know?”; cf. Rittle-Johnson et al., 2011). Each of these problems spanned both conceptual and procedural knowledge: correlations at retention test were r(159) = .37, p < .001 and r(159) = .57, p < .001 for conceptual and procedural knowledge scores respectively. Hence, learners not only had to understand the concept of mathematical equivalence to do well on far-transfer, but also properly execute problem-solving procedures. 
Because we were most interested in long-term learning, and because the results of the posttest mirrored those of the retention test, we report only the results of the retention test.
Achievement Motivation
We assessed children’s achievement motivation at the end of the pretest session, using items adapted from Elliot and Church (1997). Two items assessed mastery orientation: a ) “I want to learn as much as possible about math, even if I have to work hard,” and b) “In math class, I prefer course material that really challenges me so I can learn new things” (α=.72). Two items assessed performance orientation: a) “In math class, it is important for me to do well compared to others in my class,” and b) “It is important for me to show that I am smart” (α=.50). Items were adapted to more clearly tap the concepts of effort (i.e., “working hard”) and ego involvement (i.e., “I am smart”) that are central to Dweck’s (1986) formulation of achievement motivation (cf. Dweck & Leggett, 1988; Grant & Dweck, 2003). Children responded on a 6-point Likert-type scale ranging from 1 (Strongly Disagree) to 6 (Strongly Agree) with no indifference point. We created mastery-orientation and performance-orientation scores for each individual by averaging the two responses on each subscale (Elliot & Church, 1997). 
Results
	We examined the impact of mastery and performance orientation on learning in the two tutoring conditions. Learning measures included conceptual knowledge, procedural knowledge, and far transfer. We also examined children’s problem-solving strategies during tutoring. We used hierarchical linear regression for all analyses to examine mastery and performance orientation as separate signals (Barron & Harackiewicz, 2001). The predictors in the regression model were mastery orientation score, performance orientation score, condition (0 = instruct-first, 1 = solve-first), and two interaction terms (Condition × Mastery Orientation, Condition × Performance Orientation). Preliminary analyses showed no significant two-way interactions between mastery and performance orientation, or three-way interaction with condition, so they were not included in the final model. Thus, the final model represents the independent and joint effects of achievement motivation and instructional condition on the dependent variables. We also included children’s age and conceptual and procedural knowledge pretest scores as statistical controls for prior knowledge. Each predictor was centered to preserve its original unit of measurement. Significant interactions were explored through simple slopes analyses. Estimated means were plotted in figures as one standard deviation above and below the mean to represent the effect of low versus high achievement motivation on the dependent variable as a function of condition (Cohen, Cohen, West, & Aiken, 2003). 
No significant main effects of performance or mastery orientation emerged in any of our analyses (Fs<1). Therefore, only results for Condition and the Condition × Achievement Motivation interactions will be reported. Children in the instruct-first and solve-first conditions did not differ at pretest by their procedural knowledge, conceptual knowledge, or achievement motivation (Fs<1). Mastery and performance orientation were not correlated, r(156) = .08, p=.151, further supporting the conclusion that these were separate motivational signals simultaneously contributing to learners’ behavior (Barron & Harackiewicz, 2001; Senko, Hulleman, & Harackiewicz, 2011). 
Conceptual Knowledge
We expected higher mastery orientation to be associated with better conceptual knowledge in the solve-first condition. Research indicates that performance orientation could either hurt conceptual development, yielding a marked decrease in acquired knowledge, or hinder learners’ ability to use exploration to their benefit, as evidenced by a lack of improvement but no discernible decline in knowledge acquisition (Barron & Harackiewicz, 2001; Grant & Dweck, 2003).










At retention test, learners in the solve-first condition demonstrated higher conceptual knowledge than learners in the instruct-first condition (, SE = .03,). This effect of condition was qualified by a Mastery Orientation × Condition interaction (, SE = .04,). As depicted in Figure 1, higher mastery orientation was associated with higher conceptual knowledge in the solve-first condition (, SE = .03,), indicating that higher mastery orientation helped children learn from exploration. As predicted, mastery orientation was unrelated to conceptual knowledge in the instruct-first condition (, SE = .03,). There was no Performance Orientation × Condition interaction (, SE = .04,), indicating that performance orientation neither helped nor hurt conceptual knowledge attainment in the solve-first condition or instruct-first condition. Thus, as expected, individuals higher in mastery orientation benefitted most from exploration, with regard to their conceptual knowledge development, whereas performance orientation had no discernible influence on conceptual knowledge. 
Procedural Knowledge
We expected higher mastery orientation to be associated with improved procedural knowledge in the solve-first condition. However, this effect may be weaker than that for conceptual knowledge to the extent that demonstrated ability on a test is less relevant to mastery-oriented individuals (multiple-motives hypothesis: Barron & Harackiewicz, 2001). In contrast, we expected higher performance orientation to be associated with poorer procedural knowledge in the solve-first condition (cf. Barron & Harackiewicz, 2001; Grant & Dweck, 2003).
There was no overall effect of condition on procedural knowledge at retention test; on average, learners in the two conditions solved problems about equally well (B = .02, p = .634). However, a Mastery Orientation × Condition interaction emerged (B = .12, SE = .06, p = .036). As depicted in Figure 1, the interaction was driven by a cross-over effect. Higher mastery orientation was associated with a trend towards higher procedural knowledge in the solve-first condition (B = .07, SE = .04, p = .118), whereas it was associated with a trend towards poorer procedural knowledge in the instruct-first condition (B = -.05, SE = .04, p = .159). Hence, higher mastery orientation generally improved procedural knowledge in the solve-first condition, compared to the instruct-first condition, but the simple effects were not as reliable. 
A significant Performance Orientation × Condition interaction also emerged (B = -.11, SE = .05, p = .041; Figure 1). Higher performance orientation was associated with lower procedural knowledge in the solve-first condition (B = -.09, SE = .04, p = .035) but was unrelated to procedural knowledge in the instruct-first condition (B = .02, SE = .03, p = .536). Higher performance orientation reduced gains in procedural knowledge from exploration. 
Far Transfer
Far transfer items assessed whether learners developed a more sophisticated, comparative conceptualization of mathematical equivalence, and could additionally execute appropriate problem-solving procedures to solve these rather difficult, novel problems. Because of the complex nature of these items, mastery and performance orientation could have differential effects. Mastery orientation is likely to positively predict performance in the solve-first condition, because of its hypothesized association with conceptual knowledge (Barron & Harackiewicz, 2005) and task difficulty (Grant and Dweck, 2003). In contrast, higher performance orientation is likely to negatively predict performance, because of its hypothesized negative relationship with task difficulty (Grant and Dweck, 2003) and presumed relevance for procedural problem-solving tasks (Barron & Harackiewicz, 2005). 








There was no main effect of condition (, SE = .04,). However, as illustrated in Figure 2, a trend emerged for the Mastery Orientation × Condition interaction term (, SE = .05,). Higher mastery orientation was associated with significantly higher far-transfer scores in the solve-first condition (, SE = .04,), but was unrelated to far-transfer in the instruct-first condition (, SE = .03,), indicating a potential benefit to far transfer due to exploration. 






Additionally, there was a significant Performance Orientation × Condition interaction (, SE = .04,; Figure 2). Higher performance orientation was associated with lower far-transfer scores in the solve-first condition (, SE = .04,), but was unrelated to scores in the instruct-first condition (, SE = .03,). Performance orientation reduced children’s ability to solve complex far-transfer problems after an exploratory learning condition. Thus, individual differences in achievement motivation impacted learners’ readiness to address these more complex far-transfer items, after an exploratory learning activity.
Problem-Solving Strategies
	To provide further insight into how the knowledge benefits and decrements observed at retention test may have emerged, we examined the problem-solving strategies children used during the solve block of the tutoring session. The solve block consisted of six problems that increased in difficulty, beginning with a three-operand problem, which had an operation on the right side of the equation and is typically within children’s ability, and progressing to four- and then five-operand problems which had operations on both sides of the equal sign. We first examined children’s overall strategy selection; then we examined their problem-solving strategies on three-, four-, and five-operand problems separately. These analyses enabled us to explore how many mistakes children made initially in the two conditions and how they reacted to those learning setbacks. Data from six children (1 solve-first condition, 5 instruct-first condition) were dropped from these analyses due to incomplete data.
	Overall Strategy Use. Table 3 summarizes the statistical results for children’s usage of relational and operational strategies for all six problems, and separately for each type of problem. Looking at all six problems (overall column), we see that there was a main effect of condition on relational strategy use (B = -.12, p = .014). On average, children in the solve-first condition used relational strategies less often than children in the instruct-first condition. This finding reflects the overall difficulty of exploratory learning in the solve-first condition, compared to the instruct-first condition. This effect of condition across all six problems was qualified by interactions with both mastery orientation (B = .15, p = .024) and performance orientation (B = -.16, p < .010). As illustrated in Figure 3 and summarized in Table 2, higher mastery orientation was associated with increased use of relational strategies in the solve-first condition (B = .11, p = .021). In contrast, higher performance orientation was associated with decreased use of relational strategies in this condition (B = -.11, p = .019). As predicted, neither mastery nor performance orientation was associated with relational strategy use in the instruct-first condition (B = -.03 and B = .04, respectively). In fact, children in the solve-first condition with higher mastery orientation appear to have matched their instruct-first counterparts in use of relational strategies (Figure 3).  
Operational strategy use was consistent with these findings. As summarized in Table 2 and illustrated in Figure 3, there was a main effect of condition on operational strategy use (B = .09, p = .014). On average, children in the solve-first condition were more likely to use operational strategies than children in the instruct-first condition. There was no Mastery Orientation × Condition (B = -.04, p = .336). However, there was a Performance Orientation × Condition interaction (B = .10, p = .016). Higher performance orientation was associated with increased use of operational strategies in the solve-first condition (B = .09, p = .011), suggesting that the difficulty associated with exploratory learning lead these children to persist with developmentally immature strategies. As predicted, there was no effect of performance orientation in the instruct-first condition (B = -.02, p = .507).
Thus, though the solve-first condition posed a significant challenge to learners overall (i.e., averaged across all six problems), mastery orientation was associated with increased reliance on relational strategies, whereas performance orientation was associated with decreased reliance on relational strategies and a concurrent increase in operational strategies.
	Strategy Use by Problem Type. Table 3 also summarizes the effects of condition and achievement motivation separately for each type of problem (three-, four-, and five-operand). Main effects of condition for both relational and operational strategy use revealed that learners struggled with the four-operand problems in the solve-first condition. They responded to these more difficult problems with less relational strategy use (B = -.24, p < .001) and greater operational strategy use (B = .14, p = .007) relative to the instruct-first condition. However, once learners subsequently encountered the even more difficult five-operand problems, the moderating impact of motivational orientation began to emerge. 
	Overall, higher mastery orientation was associated with maintenance of sophisticated strategy use on the five-operand problems, whereas performance orientation was associated with further decline. There was a Mastery Orientation × Condition interaction (B = .15, p = .054), such that individuals higher in mastery orientation in the solve-first condition used relational strategies more than their lower-mastery oriented counterparts on these problems (B = .12, p = .049). There was also a Performance Orientation × Condition interaction for both relational (B = -.23, p = .002) and operational strategy use (B = .16, p = .001). Individuals higher in performance orientation in the solve-first condition used relational strategies less on five-operand problems than those lower in performance orientation (B = -.18, p = .002) and simultaneously increased their usage of operational strategies (B = .11, p = .006). 
These effects are more clearly revealed in Figure 4, where we used a median split to depict strategy usage for each type of problem separately for high mastery orientation (n = 79) and high performance orientation (n = 76). Problems were encountered in the order presented in Figure 4. Children high in mastery orientation were more likely to use a relational strategy on the first, easier problem, in the solve-first condition than in the instruct-solve condition, suggesting that they were more likely to access their existing knowledge without instruction (see also Table 3). As children encountered four-operand problems in the solve-first condition, relational strategy use decreased and operational strategy use increased, regardless of motivational orientation. However, by the time they encountered five-operand problems, children with higher mastery orientation leveled off in their usage of relational strategies and simultaneously decreased their reliance on operational strategies—indicating a recovery. In contrast, children with higher performance orientation continued their decline in use of relational strategies while continuing to use operational strategies at a relatively high level—indicating failure to recover and, possibly, further decline. 
Discussion
	Exploratory learning prior to instruction is challenging (Klahr, 2009), but can also benefit learning of important concepts beyond the level gained with traditional tell-then-practice instruction (Schwartz, Lindgren, & Lewis, 2009). We tested the hypothesis that individual differences in achievement motivation influence the level and type of knowledge attained from exploration. Individuals higher in mastery orientation, who value learning goals, view challenging learning situations as an opportunity for knowledge growth and respond with increased effort and persistence. In contrast, individuals with higher performance orientation, who primarily seek to demonstrate ability, may view challenging learning situations as a threat to this goal and withdraw their effort or perseverate on disconfirmed strategies (e.g., Ames & Archer, 1988; Diener & Dweck, 1978; see Dweck & Leggett, 1988 for review). Thus, although previous research has demonstrated that exploratory activities benefit learning, there may be important individual differences in the ability to capitalize on this instructional format. 
	In the current study, second- through fourth-grade children were randomly assigned to one of two tutoring conditions. In the instruct-first condition, children received instruction on the concept of mathematical equivalence (i.e., the equal sign is a symbol that indicates two sides of an equation have the same value); then they practiced solving mathematical equivalence problems ranging from a single three-operand problem with an operation on the left side of the equation (e.g., 10=3+_) to more difficult five-operand problems with operations on both sides of the equation (e.g., 5+3+9=5+_). In the solve-first condition, children did these same instructional activities in reverse order, solving the problems as an exploratory learning activity before receiving formal instruction on the concept of mathematical equivalence. A retention test administered two weeks later assessed conceptual knowledge (i.e., knowledge of the mathematical equivalence concept), procedural knowledge (i.e., problem-solving ability), and far-transfer, which required a more sophisticated understanding of mathematical equivalence as well as application of appropriate procedures to solve especially difficult, novel problems. Taken together, these assessments enabled us to examine the effects of learning format and achievement motivation on different aspects of learning and performance. 
	Because exploratory learning invokes more confusion and difficulty than providing instruction on a concept first (Kirschner et al., 2006), we expected individual differences in achievement motivation to primarily impact learning in the solve-first condition. Indeed, at retention test, learners performed similarly in the less demanding instruct-first condition, but differed in the more demanding solve-first condition. Specifically, children higher in mastery orientation exhibited improved conceptual knowledge (and somewhat improved procedural knowledge) in the solve-first condition, relative their counterparts in the instruct-first condition. They also scored significantly better on far-transfer, which required the ability to apply both conceptual and procedural knowledge to solve especially difficult problems. Performance orientation, in contrast, did not facilitate learning from exploration. Children higher in performance orientation performed at the same level as their instruct-first counterparts on conceptual knowledge, but at a lower level on both procedural knowledge and far-transfer. Taken together, these findings suggest that children higher in mastery orientation are motivationally better suited to cope with, and thrive within, an exploratory learning environment. 
These observed differences in knowledge development were associated with concurrent differences in learners’ problem-solving strategies. Relational problem-solving strategies (e.g., equating values on each side of the equal sign) reflect a deeper understanding of mathematical equivalence. Operational strategies (e.g., adding every number in the equation, while ignoring the placement of the equals sign) reflect a more superficial understanding of mathematical equivalence and are developmentally less mature (Carpenter et al, 2003; Rittle-Johnson et al., 2011). In keeping with the higher demands placed on learners, children in the solve-first condition were less likely to use relational strategies, and more likely to use operational strategies, than their counterparts in the instruct-first condition. However, this overall effect of condition on strategy use was moderated by achievement motivation: Mastery orientation prepared students to learn from their mistakes. During exploration, higher mastery orientation was associated with greater use of relational strategies, whereas performance orientation was associated with increased usage of operational strategies and a concurrent decrease in usage of relational strategies. These differences emerged over time, when learners encountered increasingly complex problems. 
These findings are consistent with findings in the achievement motivation literature and may help explain why exploration was only useful to some children. Individual differences in achievement motivation have been shown to influence how learners cope with confusing task instructions and lessons (e.g., Licht & Dweck, 1984), respond and adapt to seemingly impossible problems (e.g., Diener & Dweck, 1978), process and engage with new material (Belenky & Nokes-Malach, 2012), and achieve long-term academic goals (e.g., Grant & Dweck, 2003; Blackwell, Trzesniewski, & Dweck, 2007; cf. Dweck & Leggett, 1988; Hidi & Renninger, 2006). The challenge and confusion associated with exploration may lead some children to abandon old strategies and explore new ones, but lead others to perseverate on disconfirmed strategies that ultimately impede learning. 
This particular observation may inform the ongoing debate about the relative benefits of exploratory learning and direct instruction. Exploration may pose a “desirable difficulty,” which prompts learners to develop an enriched understanding of underlying concepts and solutions (Bjork, 1994; Bonawitz et al., 2011). However, exploration may alternatively pose too significant a challenge (Kirschner et al., 2006). The current findings demonstrate that using exploratory problem-solving activities in combination with instruction can be beneficial—but namely for children who have a mastery mindset. It is important to emphasize that children in our experiment began with equal demonstrated ability (illustrated by similar pretest scores). It was only after learners encountered significant challenge, especially during the four- and five-operand problems of the exploratory (solve) phase, that they showed learning and performance differences. The current findings therefore highlight the importance of considering motivational influences on learning and strategy selection (cf. Dweck, 1986; Hidi & Renninger, 2006).    
Future research is needed to test the boundaries and pervasiveness of our findings. The current findings resulted from a single, scripted tutoring intervention, which focused on a particular mathematical domain and a relatively brief exploratory phase. In order to fully capture the relationship between achievement motivation and exploratory learning, it will be important to test these ideas in other learning environments. In this way, research can continue to provide important insights into knowledge development from exploration. 
For example, in the present research, children received performance feedback in the presence of the experimenter. Children high in performance orientation may feel threatened by such public feedback, given their concern with looking smart or impressive compared to other learners (e.g., Butler, 1999; cf. Elliot, 1999). Hence, experiencing difficulty during exploration in the presence of another person may counterproductively exacerbate performance orientation, leading to maladaptive learning behavior (cf. Dweck & Leggett, 1988). Performance-oriented children may therefore respond better to private, or confidential, feedback. However, to our knowledge, this particular hypothesis has not been tested in child learners (but see VandeWalle & Cummings, 1997; Ashford & Northcraft, 1992, for relevant research involving adults). Second, it may be important to consider the difficulty of the exploratory learning activity with respect to the ability of the learner. Even the most mastery-oriented learner is unlikely to profit from an exploratory activity that places too many demands on cognitive load (Senko & Harackiewicz, 2005). In addition, simple exploratory activities that reinforce learner competence may not have deleterious effects for learners higher in performance orientation. 
Finally, given the benefits of mastery orientation for exploration, future research might also examine the impact of scaffolding learner motivation during exploration—by promoting a mastery orientation for all learners (cf. Hidi & Harackiewicz, 2006). For example, students have been shown to adopt the achievement orientations emphasized by their instructors (e.g., Ames & Archer, 1988; Bong, 2009; Turner et al., 2002), or respond to situational goal inductions (e.g., Graham & Golan, 1991; McNeil & Alibali, 2000; Mueller & Dweck, 1998, Senko and Harackiewicz, 2005). Hence, it may be possible to lessen the detrimental effects of performance orientation, allowing the benefits of mastery orientation to be extended to more learners in certain learning contexts. 
	In conclusion, the current study demonstrates that, although exploratory learning activities can support knowledge development in general, achievement motivation can lead some individuals to especially profit from exploration. By understanding the demands such activities place on different individuals, we may better understand the factors that boost learning from exploration, allowing us to design more effective learning environments. 
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Table 1. Relational, Operational, and Other Incorrect Strategies

	Correct Strategies
	Sample Explanation
   3 + 4 + 8 =  + 8

	Relational Strategies
	

	     Equalizer
	3+4 is 7, 7+8 is 15, and 7+8 is also 15

	     Grouping
	I took out the 8s and I added 3+4

	     Add-Subtract
	I did 8+4+3 equals 15, and subtract 8

	Other Correct Strategies
	

	     Incomplete Procedure
	I added 7 plus 8 (gave correct answer)

	     Insufficient Work
	I used my fingers

	Incorrect Strategies
	

	Operational Strategies
	

	     Add-All
	I added 8 and 3 and 4 and 8 together

	     Add-to-Equals
	I just added 3+4+8

	Other Incorrect Strategies
	

	     Don’t Know
	I don’t know

	     Other Incorrect
	I just added 8 to 3











Table 2. Representative Conceptual Knowledge and Far Transfer Assessment Items
	Concept
	Item
	Scoring criteria

	Conceptual Knowledge

	Structure of Equations
	1) Correct encoding: Reproduce 3 equivalence problems, one at a time, from memory after a 5 sec delay
	1 Point if put numerals, operators, equal sign and blank in correct respective positions for all 3 problems

	
	2) Recognize correct use of equal sign in multiple contexts
	

	
	(a) Indicate whether 7 equations in non-standard formats, such as 8 = 5+3 and 5+3 = 3+5, are true or false
	1 point if 75% of equations correctly identified as “true” or “false”  

	
	(b) Explain why 2 equations are true
	1 Point per explanation if shows through words or math that both sides of the equation are the same

	Meaning of Equal Sign
	1) Define the equal sign  
	1 Point if defined relationally (e.g., “both sides are the same”)

	
	2) Identify the pair of numbers from a list that is equal to another pair of numbers (e.g. 6+4) 
	1 Point if identified correct pair of numbers

	
	3) Identify the symbol from a list that, when placed in the empty box (e.g. “10 cents  one dime”), will show that the two sides are the same amount
	1 Point if chose the equal sign

	
	4) Rate definitions of the equal sign: Rate 3 definitions (2 fillers) as “good,” “not good,” or “don’t know”
	1 Point if rated the statement “The equal sign means two amounts are the same” or ”The equal sign means the same as” as a good definition.

	
	5) Which (of the above) is the best definition of the equal sign
	1 Point if chose the relational definition (see above) 

	
	6) Define the equal sign in the context of a money-related question (e.g., 1 dollar = 100 pennies)
	1 point if defined relationally

	

	Far Transfer 

	Maintains Equivalence
	1)  17 + 12 = 29 is true. Is 17 + 12 + 8 = 29 + 8 true or false? How do you know? (3 items)
	1 point if mention the same thing done to both sides (e.g., “They added 8 to both sides”)

	Compensatory Strategy
	2) Without adding 67 + 86, can you tell if the statement below is true or false? 67 + 86 = 68 + 85.  How do you know? 
	1 point if mention relations between values on the two sides (e.g.,“67 is one less then 68, same with 85 and 86”)

	
	3)  Solve 898 + 13 = 896 + . You can try to find a shortcut so you don’t have to do all the adding.    (2 items)
	1 point if within one of the correct answer

	Multiple Instances
	4)  Find the value of m. m + m + m = m + 12 

	1 point if within one of the correct answer





Table 3. Regression Slopes for Tutoring Session: Percent Usage of Relational and Operational Strategies by Condition, Achievement Motivation, and Problem Type (Overall and Three, Four, or Five Operands)

	
	
	
	
	Operands

	
	
	
	
	
	
	
	
	

	
	
	Overall 
	
	Three
	
	Four
	
	Five

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Relational Strategies
	
	
	
	
	
	
	
	

	Condition
	
	-.12*
	
	.04
	
	     -.24***
	
	-.11

	Mastery Orientation × Condition
	
	   .15**
	
	      .29***
	
	.12
	
	   .15*

	Instruct-First
	
	  -.03
	
	      -.05
	
	 -.05
	
	-.04

	Solve-First
	
	.11*
	
	      .24***
	
	.07
	
	   .12*

	Performance Orientation × Condition
	
	 -.16**
	
	      -.08
	
	 -.09
	
	    -.23**

	Instruct-First
	
	   .04
	
	.03
	
	.03
	
	   .05

	Solve-First
	
	  -.11*
	
	 -.06
	
	 -.06
	
	   -.18**

	
	
	
	
	
	
	
	
	

	Operational Strategies
	
	
	
	
	
	
	
	

	Condition
	
	 .09*
	
	-.09
	
	   .14**
	
	     .11**

	Mastery Orientation × Condition
	
	  -.04
	
	-.04
	
	.01
	
	-.08

	Instruct-First
	
	   .03
	
	-.01
	
	.03
	
	 .05

	Solve-First
	
	  -.01
	
	-.05
	
	.04
	
	-.03

	Performance Orientation × Condition
	
	 .10*
	
	 .08
	
	.03
	
	       .16***

	Instruct-First
	
	  -.02
	
	-01
	
	.03
	
	-.05

	Solve-First
	
	   .09**
	
	 .08
	
	.06
	
	     .11**

	
	
	
	
	
	
	
	
	



Note: MO = Mastery Orientation; PO = Performance Orientation; Slope coefficients represent unstandardized regression coefficients. *p<.05. **p<.01. ***p<.001.















Figure 1. Percent Correct Conceptual Knowledge at Retention Test

Procedural Knowledge
Conceptual Knowledge
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Note: Low and high mastery and performance orientation points are plotted at ±1 SD from the mean (centered). 











Figure 2. Percent Correct Far Transfer Items 
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Note: Low and high mastery and performance orientation points are plotted at ±1 SD from the mean (centered). 

Figure 3. Tutoring Session: Percent Usage of Relational Strategies and Operational Strategies Averaged Across All Six Problems

Relational Strategies
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Operational Strategies
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Note: Low and high mastery and performance orientation points are plotted at ±1 SD from the mean (centered). 










Figure 4. Percent Usage of Relational and Operational Strategies During Tutoring by Problem Type (Three, Four, and Five Operands) and High Mastery versus Performance Orientation

High Performance Orientation
High Mastery Orientation
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Note: Learners encountered the problems in the order shown; three-, four-, then five-operand problems. The three-operand problem had an operation on the right side of the equal sign, while fo
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