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Abstract 

Background: The sequencing of learning materials greatly influences the knowledge that learners 

construct. Recently, learning theorists have focused on the sequencing of instruction in relation 

to solving related problems. The general consensus suggests explicit instruction should be 

provided; however, when to provide instruction remains unclear.  

Aims: We tested the impact of conceptual instruction preceding or following mathematics 

problem solving to determine when conceptual instruction should or should not be delayed. We 

also examined the learning processes supported to inform theories of learning more broadly. 

Sample: We worked with 122 second- and third-grade children.  

Method: In a randomized experiment, children received instruction on the concept of math 

equivalence either before or after being asked to solve and explain challenging equivalence 

problems with feedback.  

Results: Providing conceptual instruction first resulted in greater procedural knowledge and 

conceptual knowledge of equation structures than delaying instruction until after problem 

solving. Prior conceptual instruction enhanced problem solving by increasing the quality of 

explanations and attempted procedures.  

Conclusions: Providing conceptual instruction prior to problem solving was the more effective 

sequencing of activities than the reverse. We compare these results with previous, contrasting 

findings to outline a potential framework for understanding when instruction should or should 

not be delayed. 

 

Key words: mathematics, self-explanation, instruction, problem solving, exploratory learning 
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An alternative time for telling: When conceptual instruction prior to problem solving improves 

mathematical knowledge 

Research in psychology and education indicates that the sequencing of learning material 

can be just as important as the content itself (e.g., McNeil et al., 2012; Murdock, 1962; Saffran, 

Aslin, & Newport, 1996). For example, research on the use of multiple representations suggests 

that learners exhibit better transfer when concrete examples precede abstract examples, rather 

than the reverse (e.g., Goldstone & Son, 2005; McNeil & Fyfe, 2012). Further, research on 

practice effects indicates that learners benefit when different problem types are interleaved, 

rather than sequenced in a blocked order (e.g., Rohrer, 2012). Clearly, learners exposed to the 

same material can gain varying levels of knowledge based solely on how it is sequenced. 

Recent work has focused on the sequencing of instruction and problem solving. Several 

researchers suggest delaying instruction until learners have been prepared to attend by 

participating in a preceding problem-solving task (e.g., Schwartz & Bransford, 1998). Others 

suggest providing instruction first, to ensure learners quickly hone in on key information during 

subsequent problem solving (e.g., Kirschner, Sweller, & Clark, 2006). We contrasted these 

alternative sequences in the domain of math equivalence. Specifically, we tested the impact of 

providing conceptual instruction before or after mathematics problem solving. 

Several researchers in psychology and education recommend delaying instruction until 

after an exploration phase with relevant problems (e.g., Kapur & Bielaczyc, 2012; Schwartz, 

Lindgren, & Lewis, 2009). Schwartz et al. (2009) have proposed a preparation for future 

learning account, suggesting that problem exploration facilitates knowledge of problem structure 

that helps learners understand subsequent instruction at a deeper level. Similarly, Kapur and 

Bielaczyc (2012) endorse delaying instruction to increase productive failure, suggesting that 
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struggling with novel problems first can help learners make sense of instruction later. Having 

learners struggle to solve problems prior to instruction is also a recommended practice in 

mathematics education (e.g., Dewey, 1910; Hiebert & Grouws, 2007). None of these accounts 

predicts that learners will successfully solve the initial problems, but rather that learners gain key 

experiences from problem solving that augments learning from subsequent instruction. 

Growing evidence has accumulated in support of delaying instruction (e.g., DeCaro & 

Rittle-Johnson, 2012; Kapur, 2011, 2012; Schwartz & Martin, 2004; Schwartz, Chase, Oppezzo, 

& Chin, 2011). For example, middle-school students who explored density problems prior to 

instruction demonstrated greater transfer than students who received instruction before solving 

the problems (Schwartz et al., 2011). Similarly, middle-school students learned a math concept 

better when they solved problems over several class periods followed by a culminating lecture, 

than when they received a lecture followed by practice during each class period (Kapur, 2011). 

Despite evidence supporting this solve-instruct approach, it seems unlikely that it will 

optimize learning under all conditions. Rather, the most effective order may depend on features 

of both instruction and problem solving. For example, most studies that have manipulated the 

order of instruction and problem solving have given instruction on the concepts and procedures 

(e.g., Kapur, 2011; Schwartz & Martin, 2004; Schwartz et al., 2011). Conceptual instruction 

focuses on domain principles, whereas procedural instruction focuses on step-by-step 

procedures (Hiebert & LeFevre, 1986). Including procedural information may render subsequent 

problem solving a rote practice activity (e.g., Schwartz et al., 2011). Thus, when instruction 

includes procedures, it may be best to delay instruction to give learners a chance to generate 

procedures on their own. In contrast, conceptual instruction does not transmit ready-made 

solutions and may be more effective before problem solving.  
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Several lines of research support this hypothesis. For example, providing conceptual 

instruction first can familiarize learners with relevant principles, allow them to integrate the 

principles with the problem-solving activity, and engage in productive cognitive processing (e.g., 

Berthold & Renkl, 2010; Wittwer & Renkl, 2008). Prior conceptual instruction may also help 

reduce the demands of problem solving (e.g., Sweller, van Merrienboer, & Paas,1998), by 

narrowing the problem space and limiting subsequent search (Bonawitz et al., 2011). Finally, 

learners solving problems without instruction often fail to generate correct procedures (e.g., 

Klahr & Nigam, 2004; Mayer, 2004). Prior conceptual instruction can facilitate the generation of 

correct procedures (e.g., Perry, 1991). 

Although these studies suggest that providing conceptual instruction prior to problem 

solving is beneficial, DeCaro and Rittle-Johnson (2012) found the opposite. Children who solved 

and explained problems prior to conceptual instruction solved fewer problems correctly during 

the intervention, but demonstrated better understanding of the math concept on a posttest than 

children who received conceptual instruction first. To our knowledge, this is the only experiment 

that manipulated the timing of instruction and problem solving using conceptual instruction only.  

Given the potential benefits of providing conceptual instruction first and the paucity of 

research on the topic, it is important to explore the boundary conditions for when conceptual 

instruction should be delayed. For example, in domains with misconceptions, the misconceptions 

should be activated and addressed to optimize learning (e.g., Vosniadou & Vamvakoussi, 2006). 

However, previous studies on the timing of instruction have not involved tasks with common 

misconceptions or have not activated misconceptions during problem solving. When problem 

solving does activate challenging misconceptions, it seems likely that prior conceptual 

instruction will be beneficial. In the current study, we employed two techniques thought to 
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activate and engage misconceptions: inclusion of familiar problem types in line with a common 

misconception, and side-by-side contrast of the familiar problem with a novel problem type 

(Vosniadou & Vamvakoussi, 2006).  

The use and nature of self-explanation prompts during problem solving may also matter. 

Most studies in the area have not included explanation prompts. Self-explanation prompts can 

help learners integrate information (e.g., Chi, 2000), and conceptual instruction can improve the 

quality of self-explanations (e.g., Matthews & Rittle-Johnson, 2009). Thus, their inclusion during 

problem solving may particularly benefit learners who receive conceptual instruction first. 

Although DeCaro and Rittle-Johnson (2012) had some children self-explain, children did not 

often use the information from the instruction to explain subsequent problems. That is, providing 

conceptual instruction first did not reliably increase the conceptual content of children’s 

explanations. Different explanation prompts can trigger different cognitive processes and lead to 

different learning outcomes (e.g., Nokes, Hausmann, VanLehn, & Gershman, 2011). Thus, in the 

current study, we used conceptual self-explanation prompts to facilitate knowledge integration. 

In sum, prior conceptual instruction is thought to support key learning processes 

including knowledge integration and procedure generation, suggesting that conceptual 

instruction may be better prior to problem solving. However, research testing the sequence of 

conceptual instruction and problem solving found benefits for the solve-instruct approach 

(DeCaro & Rittle-Johnson, 2012). Here, we adopted the general design from DeCaro and Rittle-

Johnson (2012) to further examine when conceptual instruction should precede or follow 

mathematics problem solving. We made changes to facilitate integration and generation by 

activating misconceptions and using conceptual self-explanation prompts. Thus, in contrast to 
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DeCaro and Rittle-Johnson (2012), conceptual instruction prior to problem solving may support 

greater learning than the reverse. 

We examined children’s learning in the domain of math equivalence—the idea that two 

sides of an equation represent the same quantity. Math equivalence is foundational for arithmetic 

and algebra and requires knowledge of concepts (e.g., the meaning of the equal sign) and 

procedures (e.g., for solving problems; Kieran, 1981). Yet, elementary curricula do not typically 

include definitions of the equal sign or math equivalence problems—problems with operations 

on both sides of the equal sign (e.g., 3+4+5=3+__; Powell, 2012). Children in Western countries 

often interpret the equal sign as an operator, meaning “get the answer,” rather than as a relational 

symbol that indicates two equal amounts (e.g., Baroody & Ginsburg, 1983; McNeil & Alibali, 

2005). Further, this operational view often leads to poor performance on math equivalence 

problems (e.g., McNeil & Alibali, 2005). In the current study, children received instruction on 

the concept of math equivalence either before or after solving math equivalence problems.  

Method 

Participants 

 Consent was obtained from 183 second- and third-grade children from 12 classrooms in 

two public schools serving a middle-class population. A pretest assessing both procedural and 

conceptual knowledge of math equivalence (see assessment) was administered to identify 

children who demonstrated a high level of prior knowledge. Forty-seven children were excluded 

for scoring 75% or higher on either the conceptual or procedural knowledge pretest measure. We 

used this exclusion criterion to retain a sample of children who had a range of prior knowledge, 

but still had room to learn from the intervention. Data from 14 additional children were excluded 

due to experimenter error (n=2), missing assessments (n=3), or diagnosed learning disabilities 
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(n=9). The final sample (N = 122, M age = 8.2 years, 57% female, 31% ethnic minorities) 

consisted of 81 second-graders from six classrooms and 41 third-graders from six classrooms. 

Design 

 The experiment had a pretest–intervention–posttest design with a two-week delayed 

retention test. For the intervention, children were randomly assigned to the instruct-solve (n=60) 

or solve-instruct (n=62) conditions.  

Procedure 

 Children completed the pretest in their classrooms in one 20-minute session. Those who 

met our inclusion criterion then completed a one-on-one intervention and immediate posttest in a 

50-minute session at the school. The intervention consisted of a conceptual instruction phase and 

a problem-solving phase. The only difference between conditions was the sequencing of the 

phases. Two weeks after the intervention, children completed the retention test. 

 Instruction. During the conceptual instruction phase, children were taught the relational 

meaning of the equal sign in the context of five non-standard number sentences (e.g., 3+4=3+4). 

For each example, the experimenter identified the two sides of the number sentence, defined the 

equal sign as meaning the same amount as, and explained how the two sides of the number 

sentence were equal. No procedures were discussed. 

 Problem Solving. During the problem-solving phase, children solved 12 problems on a 

computer, presented in four sets. Each set contained three problems with similar addends. The 

first problem in each set was a standard arithmetic problem with operations on the left side of the 

equal sign and the blank on the right. Standard arithmetic problems activate an “operational” 

misconception, in which children focus on adding all the numbers together (McNeil & Alibali, 

2005). The two remaining problems in each set were math equivalence problems with operations 
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on both sides of the equal sign. The three problems in a set appeared one at a time, but remained 

visible on the same screen after they were solved.  

 After solving each problem, children received correct-answer feedback. On the math 

equivalence problems, children were also prompted to self-explain. Specifically, after the correct 

answer was given, children received one of two prompts: “Why does x make this a true number 

sentence?” or “Why does it make sense to put x in the box and not some other number?” (x 

denotes the correct answer). Finally, on the last problem in each set, children were asked to 

describe their problem-solving procedure before receiving feedback. Figure 1 provides a screen 

shot of a completed set of problems.  

 This problem-solving phase was similar to that used in DeCaro and Rittle-Johnson 

(2012), but with several differences. First, we presented problems in sets rather than individually 

to facilitate spontaneous comparison. Second, we began each set with one standard arithmetic 

problem to activate prior knowledge of standard equation formats. Third, our self-explanation 

prompts were more conceptual in nature and focused only on correct solutions. 

Measures and Coding 

 Assessment. The math equivalence assessment was adapted from past work (Matthews et 

al., 2012; Rittle-Johnson et al., 2011). Two parallel forms were used: Form 1 at pretest and Form 

2 at posttest and retention test. The assessment included procedural (8 items) and conceptual (10 

items) knowledge scales (see Table 1). The procedural scale assessed children’s use of correct 

strategies to solve learning and transfer problems. The conceptual scale assessed two key 

concepts of equivalence: the meaning of the equal sign and the structure of equations. Two 

previous studies used a construct-modeling approach to develop and validate the assessment 
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(Matthews et al., 2012; Rittle-Johnson et al., 2011). Results from this work indicate that items 

vary in difficulty and that children with higher scores know more about the construct. 

 Equation Structure Midtest. Three items from the assessment were also used to assess 

knowledge of structure mid-way through the intervention. These items were administered after 

the first phase of the intervention (i.e., problem solving or instruction). 

 Cognitive Ability Measures. We administered two measures of cognitive ability to serve 

as control variables. First, we measured working memory capacity using the backward digit-span 

task (Wechsler, 2003) and the backward letter-span task. One task was administered at the 

beginning and the other at the end of the intervention session, in counterbalanced order. 

Children were read a series of numbers or letters and asked to repeat the numbers/letters in 

reverse order. Children received one point for every correct series. Scores from the two tasks 

were averaged to form a working memory score.  

 We also measured retrieval fluency (Gaddes & Crocket, 1975 as cited in Brocki & 

Bohlin, 2004)—the controlled search and retrieval of information from long-term memory—at 

the end of the intervention session. Children were asked to name as many items from a category 

(i.e., “animals” and “things to eat”) as possible within a one-minute span. Children received one 

point for every distinct item named in a category. Scores from each category were averaged to 

form a fluency score. Five children were missing fluency scores. Imputing missing independent 

variables leads to more precise and unbiased conclusions than omitting participants with missing 

data (Peugh & Enders, 2004). We used the expectation-maximization algorithm for maximum 

likelihood estimation via the missing value analysis in SPSS (see Shafer & Graham, 2002).  
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Additional Measures. Several measures were administered for exploratory purposes 

(e.g., achievement goal measures), but were not relevant for the primary research question and 

thus are not considered further.  

Coding. On the conceptual knowledge assessment, several items required a written 

response. Two raters independently coded 20% of the responses, and agreement was high 

(kappas=.96–.98). On the procedural knowledge assessment, problem-solving procedures were 

inferred from children’s written work. Interrater agreement on whether a procedure was correct 

was high (kappa=.98). Children’s procedure reports and self-explanations during the intervention 

were audio recorded and coded by two trained raters (see Tables 2 and 3 for codes). Interrater 

reliability on children’s procedures (kappa=.72) and self-explanation types (kappa=.96) yielded 

substantial agreement. 

Data Analysis. We worked with children from 12 classrooms with an average of 10 

children per classroom (min = 3, max = 17). To examine the variability due to classroom, we 

calculated intraclass correlations on the outcome measures, controlling for predictor variables 

outlined below (see Table 4; Kenny, Kashy, & Cook, 2006). The intraclass correlations were low 

for all but one of the outcomes. We used ANCOVA models to analyze the effect of condition, 

but we checked whether classroom clustering affected the results since clustering in the data can 

lead to inflation of alpha values. Specifically, we ran all of the analyses reported below with a set 

of 11 dummy variables for the 12 classrooms in addition to the other predictors. Condition 

effects remained the same. Thus, we report results without the dummy variables for classroom. 

Results 

Pretest and Cognitive Factors 
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At pretest, conceptual knowledge was similar in the instruct-solve and solve-instruct 

conditions (M=30%, SD=21% vs. M=32%, SD=18%), F<1, as was procedural knowledge 

(M=18%, SD=15% vs. M=18%, SD=13%), F<1. Working memory span scores were also similar 

in the instruct-solve and solve-instruct conditions (M=3.8, SD=1.1 vs. M=3.9, SD=1.1), F<1, as 

were retrieval fluency scores (M=13.4, SD=3.5 vs. M=13.9, SD=3.4), F<1. Finally, there were no 

significant differences between conditions in terms of age, grade, gender, or ethnic minority 

status, ps>.20. Conditions were well matched at the onset of the study. 

Posttest and Retention Test 

 To analyze children’s performance, we examined procedural and conceptual knowledge 

using ANCOVAs. For procedural knowledge, the ANCOVA included time (posttest and 

retention test) and subscale (learning and transfer) as within-subject factors and condition 

(instruct-solve and solve-instruct) as the between-subject factor. For conceptual knowledge, the 

model was the same, except the two subscales were equal sign and equation structure. We also 

included pretest scores, age, working memory, and fluency as covariates. Table 5 presents the 

main effects in each model for the primary outcomes. 

 Procedural Knowledge. As shown in Figure 2, children’s procedural knowledge was 

similar across learning and transfer subscales and also stable across time. Further, children in the 

instruct-solve condition exhibited higher procedural knowledge than children in the solve-

instruct condition, and this was robust across subscale and time. Indeed, there was a main effect 

of condition (see Table 5), with children in the instruct-solve condition solving more procedural 

items correctly (M=62%, SE=4%) than children in the solve-instruct condition (M=49%, 

SE=4%). Further, there were no main effects of time or subscale, nor did they interact with 

condition or each other, Fs<2.3. 
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 Conceptual Knowledge. As shown in Figure 3, children’s conceptual knowledge was 

higher on the equal sign subscale than on the structure subscale and their scores were relatively 

stable across time. Further, children in the instruct-solve condition exhibited higher conceptual 

knowledge than children in the solve-instruct condition, but only on the structure subscale. 

Indeed, there was a main effect of subscale, but not of time or condition (see Table 5). However, 

there was a marginal interaction between condition and subscale, F(1, 115) = 3.53, p = .06, ηp
2 = 

.03, but not with time, F<1. To examine the condition by subscale interaction, we tested the 

effect of condition for each subscale. For the equal sign subscale, there was no effect of 

condition, F<1. For the structure subscale, there was a significant effect of condition, F(1, 115) = 

4.66, p = .03, ηp
2 = .04. Children in the instruct-solve condition (M=52%, SE=3%) exhibited 

higher knowledge of structure than children in the solve-instruct condition (M=43%, SE=3%). 

Intervention Activities 

 To better understand the superiority of the instruct-solve condition, we performed 

secondary analyses on intervention measures. We examined accuracy and explanations using a 

similar ANCOVA model as above, but without the time and subscale factors. 

Accuracy. We examined children’s accuracy during the intervention problem-solving 

phase, focusing on the eight math equivalence problems. There was a main effect of condition 

(see Table 5). Children in the instruct-solve condition solved more intervention problems 

correctly (M=4.4, SE=0.3) than children in the solve-instruct condition (M=2.7, SE=0.3). 

Children were asked to describe how they solved four of the equivalence problems. As shown in 

Table 2, children reported correct procedures on close to half of those trials, which is consistent 

with their accuracy scores. The percent of children using at least one correct procedure was 

significantly higher in the instruct-solve condition (67%) than in the solve-instruct condition 
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(44%), χ2 (1, N = 121) = 6.14, p = .01. Thus, prior instruction facilitated the generation of correct 

procedures.  

 Explanations. Children were prompted to self-explain on the eight equivalence 

problems. We examined the percent of trials on which children used each explanation type in a 

MANCOVA and found a main effect of condition (see Table 5). Children in the instruct-solve 

condition provided more equality-concept explanations than children in the solve-instruct 

condition, F(1, 114) = 15.80, p < .001, ηp
2 = .13. In contrast, children in the solve-instruct 

condition provided more answer-focused explanations, F(1, 114) = 2.95, p = .09, ηp
2 = .03, or 

random explanations that did not fall into an easily identifiable category, F(1, 114) = 2.90, p = 

.09, ηp
2 = .03. Thus, prior instruction enhanced the quality of children’s explanations. 

 Midtest. Children received a brief midtest during the intervention that assessed their 

knowledge of structure. There was a main effect of condition, F(1, 115) = 11.83, p = .001, ηp
2 = 

.09. Children in the instruct-solve condition exhibited higher knowledge of equation structure 

(M=48%, SE=4%) than children in the solve-instruct condition (M=31%, SE=4%).  

Exploratory Mediation Analyses  

 Given that performance during the intervention differed by condition, we explored 

whether these differences helped explain learning outcomes. Specifically, we examined whether 

problem-solving accuracy and equality-concept explanations mediated the relationship between 

condition and learning outcomes. We used a bootstrapping technique recommended by Preacher 

and Hayes (2008), in which we obtained estimates for the indirect effect of condition. 

Bootstrapping involved the extraction of 5,000 samples from the data and an estimation of the 

indirect effect in each extracted dataset. This produced a 95% bias-corrected confidence interval 

for each indirect effect, which is significant if it excludes zero. In our models, we included 
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condition as the between-subject factor, intervention accuracy and frequency of equality-concept 

explanations as the mediators, and the covariates from the primary analyses (pretest scores, age, 

working memory, and fluency).  

For procedural knowledge at posttest, problem-solving accuracy (CI: 6.1, 25.6) and 

equality-concept explanations (CI: 0.8, 9.5) were significant mediators. Indeed, including both 

mediators rendered the direct effect of condition non-significant (p=.85). However, problem-

solving accuracy was a significantly stronger mediator than equality-concept explanations (CI: 

0.7, 18.6). At retention, including both mediators reduced the effect of condition (p=.08), but 

only problem-solving accuracy was a significant mediator (CI: 8.6, 27.4). A similar pattern 

emerged for conceptual knowledge of structure. At posttest, problem-solving accuracy (CI: 3.1, 

13.3) and equality-concept explanations (CI: 1.2, 8.8) were significant mediators, with no 

difference in the strength of these effects (CI: –3.1, 10.8). Indeed, including both mediators 

rendered the direct effect of condition non-significant (p=.72). At retention, including both 

mediators eliminated the effect of condition (p=.49), but only problem-solving accuracy was a 

significant mediator (CI: 4.6, 17.4). 

Discussion 

 Research in psychology and education indicates that the sequencing of learning material 

impacts the knowledge that learners construct (e.g., McNeil et al., 2012; Rohrer, 2012). We 

evaluated the sequencing of conceptual instruction and problem solving for children learning 

math equivalence. Children received instruction on the concept of equivalence before or after 

solving and explaining challenging mathematics problems with feedback. In contrast to previous 

research (DeCaro & Rittle-Johnson, 2012), providing conceptual instruction first resulted in 

better procedural knowledge and conceptual knowledge of structure than delaying instruction. 
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Children in the instruct-solve condition also solved more problems correctly and provided more 

conceptual explanations during the intervention. We discuss these key learning processes and 

then reflect on the results in light of previous findings. 

Potential Explanatory Mechanisms 

Children in the instruct-solve condition outperformed children in the solve-instruct 

condition on most outcome measures. Given reports to the contrary, it is necessary to identify the 

mechanisms underlying these findings. Our results point to the roles of conceptual explanations 

and the acquisition of correct problem-solving procedures.  

Self-explanation involves generating explanations for oneself in an attempt to make sense 

of new information (Chi, 2000). Though the act of explaining can aid learning, researchers 

suggest that the content of the explanations matters (Chi et al., 1994; Renkl, 1997). Importantly, 

instruction improved the quality of children’s explanations in the current study. Children in the 

instruct-solve condition provided more equality-concept explanations than children in the solve-

instruct condition. Consistent with prior research (Matthews & Rittle-Johnson, 2009), these 

conceptually-oriented explanations were associated with greater learning outcomes. 

Although the conceptual self-explanations played a positive role, our results highlight 

two caveats. First, self-explanation prompts that focus on why information is correct may be 

more effective after conceptual instruction. Here, the prompts allowed children to meaningfully 

integrate the instruction into the problem-solving task (e.g., Wittwer & Renkl, 2008). Without 

the prior instruction, however, children often provided shallow explanations. Second, the 

positive role of conceptual self-explanations may diminish over time. Equality-concept 

explanations no longer mediated the effect of condition after a two-week delay.  
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Acquiring correct problem-solving procedures is another key source of cognitive change 

and can be a strong predictor of subsequent performance (e.g., Rittle-Johnson, 2006; Siegler & 

Shipley, 1995). Here, children who received conceptual instruction first were more likely to 

generate and use correct procedures than children who solved the problems first. Indeed, prior 

instruction often facilitates the generation of other domain knowledge (e.g., Chen & Klahr, 1999; 

Perry, 1991). For example, in Perry (1991), instruction on the concept of equivalence facilitated 

the generation and transfer of correct procedures, and this was more effective than directly 

telling children a correct procedure. Thus, prior conceptual instruction may facilitate problem 

solving during learning and greater knowledge gains overall.  

Importantly, the mediating effect of problem-solving accuracy was not limited to post-

intervention measures of problem solving (i.e., procedural learning and transfer), but also 

generalized to measures of conceptual knowledge. Theoretically, this is consistent with the 

perspective that conceptual and procedural knowledge develop iteratively, with bi-directional 

relations between the two types of knowledge (e.g., Canobi, 2009; Cowan et al., 2011; Dowker, 

1998; Schneider, Rittle-Johnson, & Star, 2011). Here, we show that conceptual instruction 

facilitates the use of correct problem-solving procedures, and, in turn, these improvements in 

problem solving are related to subsequent improvements in conceptual knowledge of structure. 

These results support arguments that it is the processing and performance during learning 

that matters most (e.g., Klahr & Nigam, 2004; Rittle-Johnson, 2006). For example, in Klahr and 

Nigam (2004), children who mastered a scientific procedure during learning performed well on a 

transfer task, whether they generated the procedure or were told the procedure. Similarly, here, 

children who solved intervention problems correctly or explained them conceptually performed 

well on subsequent tests, regardless of condition. However, children in the instruct-solve 
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condition were more likely to engage in these activities than children in the solve-instruct 

condition. Thus, “what is learned is more important than how it is taught” (Klahr & Nigam, 

2004, p. 662), but how it is taught still matters because of the processes that are supported.  

There are likely additional processes at work that may help explain why children in the 

instruct-solve condition outperformed those in the solve-instruct condition in this study. For 

example, an instruct-solve approach may have been more consistent with the instructional 

practices used in their classrooms. 

The Timing of Instruction 

The current results contrast with a growing literature suggesting that instruction should be 

delayed. For example, researchers find that learners gain key experiences from problem solving 

that augments learning from subsequent instruction (e.g., DeCaro & Rittle-Johnson, 2012; 

Kapur, 2011; Schwartz et al., 2011). Importantly, our results do not contradict the conclusions 

from these studies, but suggest a need to identify boundary conditions. Based on comparisons 

across these studies, we propose three factors that may influence the timing of instruction. 

 Type of Instruction. First, the type of instruction provided might matter. In most studies 

in which the sequencing of instruction was manipulated, the instruction focused on concepts and 

procedures. For example, Schwartz et al. (2011) taught students the concept of density and the 

formula for computing it. When procedural instruction is provided first, students often apply the 

step-by-step procedure rather than explore the problems more broadly (e.g., Schwartz et al., 

2011). But, procedural instruction may be beneficial after problem solving, as students often fail 

to generate correct procedures on their own (e.g., Kapur & Bielaczyc, 2012). In contrast, when 

instruction is solely conceptual in nature, it can be useful to provide the instruction first. Rather 

than transmitting ready-made solutions, conceptual instruction can guide the problem-solving 
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activity, thus enhancing its generative nature (e.g., Wittwer & Renkl, 2008). Solving subsequent 

problems can then “elicit an active processing of the [instructional] explanation,” resulting in the 

construction and integration of new knowledge (Berthold & Renkl, 2010, p. 36). 

 Self-Explanation Prompts. The type of instruction likely matters, but cannot fully 

explain the contrasting results. DeCaro and Rittle-Johnson (2012) also employed conceptual 

instruction, but found that delaying it was more effective. Another feature common to these two 

studies was the inclusion of self-explanation prompts during problem solving; however, the 

nature of the prompts varied. Thus, the type of self-explanation prompts may also influence the 

timing of instruction. The current prompts focused on knowing why a number sentence is true, 

which seemed to help children integrate the instruction with the problem-solving activity. This 

supports suggestions that conceptually-focused prompts are beneficial for knowledge integration 

(Berthold, Eysink, & Renkl, 2009). In DeCaro and Rittle-Johnson (2012), the prompts focused 

on correct and incorrect answers, and thus were less conceptual. As a result, they seemed less 

likely to support the integration of information. Indeed, in DeCaro and Rittle-Johnson (2012), 

children rarely provided conceptual explanations. Overall, providing conceptual instruction first 

may be particularly effective if learners are supported in using this information via the use of 

conceptual self-explanation prompts.  

Activation of Misconceptions. Finally, the activation of misconceptions during problem 

solving may impact the timing of instruction. Previous studies on the timing of instruction have 

not involved tasks with common misconceptions or have not activated relevant misconceptions. 

In the current study, we employed two knowledge-activation techniques: inclusion of familiar 

problem types in line with a common misconception and side-by-side contrast with a novel 

problem type (e.g., Vosniadou & Vamvakoussi, 2006). Standard arithmetic problems can 
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activate an “operational” perspective, in which children focus on adding the numbers together 

and finding the total (McNeil & Alibali, 2005). This operational understanding conflicts with a 

relational understanding needed to solve math equivalence problems (McNeil, 2008). 

If problem solving is difficult due to the activation of misconceptions, prior instruction is 

likely necessary to make children’s effort and struggle more productive. Because children in the 

instruct-solve condition were taught the concept of equivalence beforehand, the instruction may 

have helped them make sense of the cognitive conflict during problem solving. In contrast, 

children exploring problems first may have experienced a counterproductive level of struggle. 

The type of instruction, self-explanation prompts, and activation of misconceptions likely 

influence the timing of instruction. Certainly, other factors matter as well, including 

characteristics of the learner and of the domain. Future research should attempt to determine the 

optimal sequencing of tasks across a variety of settings and populations. 

Conclusion 

 The current results suggest that minor differences in the sequencing of learning materials 

can alter the knowledge that learners construct. By comparing the current findings on the 

sequencing of instruction with previous, contrasting findings, we can better understand when 

instruction should or should not be delayed. Despite arguments in favor of delaying instruction, 

the results suggest there is a time for providing conceptual instruction before problem solving. 

Providing only conceptual instruction, promoting conceptually-based explanations, and 

activating misconceptions during problem solving is one promising time.  
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Table 1 

Example items from the math equivalence assessment 
 

Item Type Example Items Scoring Criteria 
Procedural  Four Items per Subscale  
Learning 
Items  
(α = .87) 

Solve problem with operation on 
right side (8 = 6 + ☐) 

Use correct procedure (if ambiguous, 
must be ±1 of correct answer) 

 
Solve problem with operations on 
both sides, blank on right  
(7 + 6 + 4 = 7 + ☐) 

Same as above 

Transfer 
Items 
(α = .89) 

Solve problem with operations on 
both sides, blank on left  
(☐ + 6 = 8 + 6 + 5) 

Same as above 

 
Solve problem with operations on 
both sides, includes subtraction  
(5 – 2 + 4 = ☐ + 4) 

Same as above 

Conceptual Five Items per Subscale  
Equal Sign 
Items  
(α = .66) 

Define equal sign Provide relational definition (e.g., the 
same amount as) 

 Rate definitions of equal sign as 
good, not good, or don’t know 

Rate “two amounts are the same” as a 
good definition  

Structure 
Items 
(α = .73) 

Reproduce math equivalence 
problems from memory 

Reconstruct numerals, operators, equal 
sign, and blank in correct location  

 Indicate whether equations such as 
3 = 3 are true or false 

Correctly recognize nonstandard 
equations as true or false 

 
Note. Cronbach alphas are for retention test. Alphas were similar at posttest, but somewhat lower 
at pretest largely due to floor effects on some items. 
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Table 2 

Children’s procedures for solving math equivalence problems during the intervention 

Procedure Sample Report (5 + 3 + 9 = 5 + __) 
% Trials 

Instruct-
Solve 

Solve-
Instruct Total 

Correct  
Procedures     

    Equalize 9 plus 3 plus 5 is 17 and 5 plus 12 is 17 46* 24 35 

    Add-Subtract I added the first three then I took away 5. 2 3 2 

    Grouping There was already a 5, so you add 3 and 9. 1 1 1 

    Ambiguous I started at 5 and counted up. 6 7 7 
Incorrect 
Procedures     

    Add All I added all those numbers up and it made 22. 16 15 16 

    Add-to-Equal I added up the 5, the 3, and the 9. 8 13 11 

    Carry I copied the 5 from over there. 4 5 4 

    Add Two Because 5 plus 5 is 10 3 4 4 

    Guess I just guessed. 4 7 6 

    Ambiguous I put 15 in my head and counted on. 10* 19 14 
Note. *p < .05 
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Table 3 
 
Children’s explanations (e.g., “Why does x make this a true number sentence?”) 
 

Explanation Type Sample Explanation 
% Trials 

Instruct-
Solve 

Solve-
Instruct Total 

Equality Concept The two sides are supposed to be equal. 46* 26 36 

Correct 
Procedure 
 

Because adding 4 to 6 is the only one 
that makes 10, and 7 + 3 is 10 14 15 14 

Incorrect 
Procedure You add it to all of them. 12 15 13 

Answer Because it’s the right answer. 8τ 14 11 

Don’t Know I don’t know. 8 12 10 

Other/Random It’s just a fact. 13τ 18 16 

Note. *p < .05 τp < .10 
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Table 4 
 
Intraclass correlations for primary outcomes, controlling for predictor variables 
 
OUTCOME ICC 
Procedural Knowledge  
     Posttest .061 
     Retention Test .054 
Conceptual Knowledge  
     Posttest .066 
     Retention Test .174 
Intervention  
     Accuracy .029 
     Conceptual Explanation Frequency .043 
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Table 5 
 
ANCOVA main effects for primary outcomes 
 
 Procedural 

Knowledge 
Conceptual 
Knowledge 

Intervention 
Accuracy 

Explanation  
Frequency 

 F ηp
2 F ηp

2 F ηp
2 F ηp

2 
Pretest Procedural 2.21 .02 0.19 .00 3.25 .03 1.89 .08 
Pretest Conceptual  10.85** .09 69.31*** .38 6.13* .05 3.58** .14 
Age 2.04 .02 2.58 .02 4.95* .04 2.59* .11 
Working Memory  1.97 .02 2.83 .02 0.95 .01 1.14 .05 
Retrieval Fluency  8.57** .07 9.49** .08 2.73 .02 1.59 .07 
Condition 4.72* .04 1.75 .02 16.95*** .13 3.22** .13 
Time 0.68 .01 2.85 .02 -- -- -- -- 
Subscale 0.11 .00 16.59*** .13 -- -- -- -- 
Note. * p < .05.  ** p < .01.  *** p < .001 
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Figure 1 
 
Screen shot of a completed problem set from the intervention. 
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Figure 2 

Procedural learning and transfer by condition at posttest and retention test 

 

Note. Scores are estimated marginal means. Error bars represent standard errors. 
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Figure 3 

Conceptual knowledge of structure and equal sign by condition at posttest and retention test 

 

Note. Scores are estimated marginal means. Error bars represent standard errors. 

 


