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Abstract
Direct assessments of instructional practice (e.g., classroom observations) are 
necessary to identify and eliminate opportunity gaps in students’ learning of 
mathematics. This study examined 114 middle school mathematics classrooms 
in four instructionally focused urban districts. Results from the Instructional 
Quality Assessment identified high percentages of lessons featuring cognitively 
challenging tasks, but declines in cognitive challenge during implementation 
and discussions. Overall instructional quality exceeded results from studies 
with nationally representative samples and paralleled results of studies of 
instructionally focused urban middle schools. Significant differences existed 
between districts, favoring the district with veteran teachers, long-term use 
of Standards-based curricula, and professional development initiatives.
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In more than a decade of educational policy advocating standardized testing as 
the primary means of improving mathematics teaching and learning, students 
in U.S. classrooms continue to post substandard performance on mathematical 
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assessments at state, national, and international levels (National Research 
Council, 2011). As evidence, only 30% of U.S. eighth-grade students scored 
high or advanced in mathematics on the 2011 Trends in International 
Mathematics and Science Study (TIMSS), compared with a minimum of 61% 
of students at high or advanced levels in the five top-performing countries 
(Mullis, Martin, Foy, & Arora, 2012). In the 2011 National Assessment of 
Educational Progress (NAEP), only 35% of the national sample of eighth 
graders demonstrated mathematical proficiency (National Center for 
Education Statistics [NCES], 2011a), with only Massachusetts having more 
than half (51%) of eighth-grade students proficient in mathematics. 
Substandard performance on mathematical achievement tests is even more 
pronounced in urban and rural schools, schools serving large populations of 
students with limited English proficiency, and schools in areas with high pov-
erty (U.S. Department of Education, NCES, 2006). In the NAEP 2011 Trial 
Urban District Assessment, which analyzed data from a subset of 21 urban 
districts participating in the 2011 NAEP, an average of 26% of eighth-grade 
students demonstrated mathematical proficiency (NCES, 2011b).

Across this same time period, results from educational research consis-
tently indicate that the most significant factors associated with students’ 
mathematical achievement are pedagogical (Boaler & Staples, 2008; Hiebert 
et al., 2003; Stein & Lane, 1996). Differences in the implementation of cur-
ricula and other resources, between schools and between teachers within the 
same school, provide different opportunities for learning that subsequently 
generate differences in student achievement. Even when high-quality 
resources are present, student learning is mainly affected by how resources or 
curricula are implemented in the classroom. Understanding how to improve 
students’ opportunities to learn mathematics thus requires direct assessments, 
based on observations and artifacts of teaching, of what teachers and students 
are doing in classrooms in the process of teaching and learning mathematics. 
This is particularly important in urban districts, where a deep understanding 
of students’ opportunities to learn mathematics is essential for identifying 
strengths of the system (i.e., classroom practices that appear to be supporting 
students’ learning) and pathways for improvement (i.e., classroom practices 
that might be changed to enhance students’ learning).

Toward this purpose, mathematics education research consistently identi-
fies a set of instructional practices that appear to support students’ learning of 
mathematics with understanding, collectively called “ambitious mathematics 
instruction” (Franke, Kazemi, & Battey, 2007). Research connecting ambi-
tious mathematics instruction to student achievement has identified key 
instructional components, such as cognitively challenging tasks (i.e., tasks 
that engage students in making sense of mathematics; Hiebert et al., 2003; 
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Stein & Lane, 1996; Tarr, Reys, Reys, Chavez, Shih, & Osterlind, 2008) and 
mathematical discussions (Boaler & Staples, 2008), and has delineated spe-
cific ways teachers enact or implement these practices successfully (e.g., 
McClain, 2002; Stein, Engle, Smith, & Hughes, 2008). Nationally commis-
sioned reports (e.g., Kilpatrick, Swafford, & Findell, 2001) and standards 
from the National Council of Teachers of Mathematics (NCTM; 2000) and 
the Common Core State Standards in Mathematics (National Governors 
Association, 2010) advocate ambitious mathematics instruction. Mathematics 
curricula designed to support such instruction (see Kilpatrick, 2003) are now 
widely available by commercial publishers. Hence, current research, stan-
dards, and curricula can equip districts to implement ambitious instruction, 
and students’ opportunities to learn mathematics can be assessed by identify-
ing a set of well-defined instructional practices through direct observations of 
teaching.

In this investigation, we utilize classroom observations to examine middle 
school mathematics instruction in four large urban school districts. The dis-
tricts were participating in the Middle School Mathematics and the 
Institutional Setting of Teaching (MIST) project,1 which investigated how 
differences in school and district settings influence mathematics teachers’ 
instructional practices and students’ mathematics achievement over a 4-year 
period (Cobb & Smith, 2008). Each district was committed to significant 
educational reforms in middle school mathematics, driven by the goal of 
enhancing students’ learning and understanding of mathematics. Because of 
their intention to increase students’ scores on standardized tests by improving 
classroom instruction, rather than (and often antithetical to) concentrated 
efforts to “teach to the test” (Le, Lockwood, Stecher, Hamilton, & Martinez, 
2009), we refer to these districts as “instructionally focused.” They faced 
challenges typical of large urban districts (e.g., large percentages of families 
in poverty, high rates of student and teacher turnover), but were atypical in 
their approach to improving mathematics teaching and learning.

We explore the following research questions using data from the first year 
(2007-2008) of the project:

Research Question 1: What is the rigor of instructional tasks, task imple-
mentation, and mathematical discussions in urban middle school 
classrooms?
Research Question 2: What opportunities do students in urban middle 
school classrooms have to engage in mathematical discussions?
Research Question 3: Are there differences between districts in the study 
in students’ opportunities to learn mathematics in urban middle school 
classrooms?
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Research Question 4: How do the results of this study compare with the 
results of previous studies that also used classroom observations to assess 
ambitious mathematics instruction in urban schools?

In the next section, we describe how direct assessments of instruction are 
necessary for understanding students’ opportunities to learn mathematics, 
and we summarize previous studies that utilized classroom observations to 
identify ambitious mathematics instruction.

Background

The NCTM (2000) Equity Principle states, “. . . all students need access each 
year they are in school to a coherent, challenging mathematics curriculum 
that is taught by competent and well-supported mathematics teachers.” 
However, differences in instructional quality between school districts in the 
United States with different demographic and socioeconomic conditions are 
well documented, as “the opportunity gap in students’ access to qualified 
teachers between students of high and low socioeconomic status (SES) was 
among the largest in the world” (Akiba, LeTendre, & Scribner, 2007, p. 369): 
Students in low-SES categories (e.g., qualifying for free/reduced lunch) and 
ethnic minority groups (e.g., Black, Hispanic) are more likely than their high-
SES, non-minority peers to (a) have novice teachers; (b) have uncertified or 
out-of-field teachers, particularly in mathematics; and (c) attend schools with 
high teacher instability.

Instructional quality can also vary greatly within a school, as different 
teachers create dramatically different learning environments for students. 
Disparities in students’ opportunities to learn are intensified by highly quali-
fied and experienced teachers often selecting or being assigned to teach 
advanced mathematics classes, resulting in unequal rates of academic growth 
for students depending on which teachers and level of mathematics classes 
they are assigned (McCaffrey, Lockwood, Koretz, & Hamilton, 2003; Rowan, 
Correnti, & Miller, 2002). Combining low-quality teaching in remedial math-
ematics classes with disproportionate numbers of children from minority, 
poor, or English-learning subgroups assigned to such classes, the cycle of 
substandard performance is reinforced and perpetuated. Underserved popula-
tions remain underserved, and children who need the most mathematical sup-
port and the best mathematics instruction do not receive it.

The prevalence of and reliance on product-oriented accountability (i.e., 
student achievement scores and/or gains in scores over time) have limited the 
development and use of a process-oriented system focused on students’ 
opportunities to learn and capable of characterizing the teaching and learning 
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that occurs in classrooms, schools, or districts. Comparisons of students’ 
achievement disaggregated across race, socioeconomic status, English profi-
ciency, or other demographic factors do not provide parallel comparisons of 
students’ opportunities to learn within the classroom or school settings 
(Lipman, 2004). In other words, what children are able to achieve is not 
benchmarked against what they have the opportunity to achieve. By elevating 
the importance of students’ opportunities to learn, differences among sub-
groups and schools may be easier to explain and eradicate by shifting the 
focus to “the conditions of learning as well as the outcomes” (Gutstein et al., 
2005, p. 93; emphasis in original). Milner (2010) suggested, “(a)s an explana-
tion of disparate outcomes, opportunity is multifaceted, complicated, pro-
cess-oriented, and much more nuanced than achievement” (p. 7, emphasis 
added). Hence, direct assessments of students’ opportunities to learn mathe-
matics, through observations or artifacts of teaching, capable of capturing the 
activities in which teachers and students engage during mathematics instruc-
tion, are needed to deeply examine and improve students’ outcomes in learn-
ing mathematics (Pianta & Hamre, 2009; Stein & Matsumura, 2008).

In this study, we utilized classroom observations to identify students’ 
opportunities to learn mathematics in large urban districts. Consistent with 
Perry (2013), we consider opportunity to learn specific to mathematics teach-
ing and learning, defined by (a) the nature of mathematics instructional tasks 
and (b) how tasks are implemented during instruction, including opportuni-
ties for mathematical discussions. We conceptualize opportunity gaps, spe-
cific to students’ learning of mathematics, as differences in opportunities to 
learn mathematics created or perpetuated by the choice of mathematics 
instructional tasks and nature of task implementation and discussion (i.e., 
differences due to the presence or absence of ambitious mathematics instruc-
tion). In the next section, we describe components of ambitious mathematics 
instruction and justify why this framework provides important indicators of 
students’ opportunities to learn mathematics.

Ambitious Mathematics Instruction

The conceptualization of students’ opportunities to learn mathematics by 
considering instructional tasks, task implementation, and discussion is 
informed by research originating with the Quantitative Understanding: 
Amplifying Student Achievement and Reasoning (QUASAR) project (Silver 
& Stein, 1996). Stein, Smith, Henningsen, and Silver (2009) defined a math-
ematical task as a mathematical problem or set of problems that address a 
related mathematical idea or context, and they distinguish between cogni-
tively challenging (“high-level”) tasks and rote, procedural (“low-level”) 
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tasks. Cognitively challenging tasks provide students opportunities to engage 
in problem solving, thinking and reasoning, and/or developing an under-
standing of mathematical ideas, procedures, and formulas (Stein, Grover, & 
Henningsen, 1996). Rote or procedural tasks engage students in reproducing 
or practicing facts, procedures, or computations without connection to mean-
ing or understanding. Figure 1 provides an example of a high-level and low-
level task to engage students in finding the solution to a system of linear 
equations, represented by the point of intersection on the graph of the equa-
tions. In Figure 1a, the task engages students in problem solving, mathemati-
cal modeling (of the parking garage costs), and decision making. The task 
does not suggest a solution strategy, and students could solve the task using 
tables, graphs, equations, or reasoning about the context. The task in Figure 
1b provides students only procedural practice in graphing linear equations 
and identifying the point of intersection. We are not suggesting that students 
do not need to memorize mathematical facts or practice mathematical proce-
dures. We assert, however, that students need greater opportunities to explore 
and understand mathematics by engaging in cognitively challenging mathe-
matical work and thinking, and that this type of work provides greater access, 
interest, and opportunity to learn.

Task implementation refers to ways in which tasks are enacted by teachers 
and students during mathematics lessons (i.e., how teachers support students’ 
work on mathematical tasks and how students actually engage with the math-
ematics). In the Mathematical Task Framework, Stein and colleagues (1996) 
described how task challenge can change from (a) the task as it appears in 
print, (b) the task as set up or introduced by the teacher, and (c) the task as 

Figure 1. Tasks with different levels of cognitive challenge.
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implemented by the teacher and students during the lesson. In ambitious 
mathematics instruction, teachers introduce (or “launch”) a cognitively chal-
lenging task and maintain the challenge during implementation by (a) sup-
porting students to engage with (or “explore”) the task and (b) orchestrating 
whole-group discussions where students share mathematical work and think-
ing, justify claims, make connections between mathematical ideas, and “sum-
marize” the mathematical goals of the lesson (McClain, 2002; NCTM, 2000; 
Stein et al., 2008).

Ambitious mathematics curricula containing cognitively challenging 
tasks, such as Connected Mathematics Project 2 (CMP2; Lappan, Fey, 
Fitzgerald, Friel, & Philips, 2006) middle school curriculum used in three of 
four districts in this study, have been shown to increase student performance 
on problem-solving assessments and minimize achievement gaps, while 
maintaining students’ performance on basic skills and computational assess-
ments (Post et al., 2008; Reys, Reys, Lapan, & Holliday, 2003; Ridgeway, 
Zawojewski, Hoover, & Lambdin, 2003; Riordan & Noyce, 2001; Schoenfeld, 
2002; Thompson & Senk, 2001). Among teachers using ambitious curricula, 
student achievement is highest in classrooms where students experience con-
sistent opportunities to engage in high-level thinking and reasoning during 
mathematics instruction. Higher performing students in the United States 
(e.g., Boaler & Staples, 2008; Stein & Lane, 1996; Tarr et al., 2008) and 
internationally (e.g., Hiebert et al., 2003) have teachers who sustain students’ 
engagement in cognitively challenging work. Schoenfeld (2002) identified 
significantly higher achievement among students having teachers rated as 
“high-implementers” of ambitious elementary and middle school mathemat-
ics curricula than students having teachers rated as “low-implementers” in a 
large urban school district with ambitious goals for mathematics instruction. 
Specific aspects of ambitious instruction (e.g., setting high expectations, 
valuing students’ efforts, maintaining cognitive challenge, and fostering 
mathematical inquiry and discussion) appear to affect student achievement 
and minimize achievement gaps regardless of the type of curriculum in place 
(Boaler & Staples, 2008; Tarr et al., 2008).

Hence, studies over the past decade relating mathematics teachers’ instruc-
tional practices to student achievement invariably determine that teaching 
matters. Although ambitious teaching has been associated with improved test 
scores, often the nature and depth of students’ learning cannot be captured on 
current standardized achievement tests. Scholars have identified the short-
comings of standardized tests as measures of students’ mathematical learning 
(Kilpatrick, 2003; National Mathematics Advisory Panel, 2008) and as mea-
sures of teaching quality (Le et al., 2009; McCaffrey et al., 2003). Standardized 
tests designed to assess a greater depth of mathematical understanding (i.e., 
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tests developed for the Common Core State Standards initiative), containing 
test items beyond memorization and procedures, will be more likely to cap-
ture students’ learning in ambitious instructional settings. Even so, test scores 
neither provide data about the aspects of instruction that supported or inhib-
ited students’ learning and subsequent test performance, nor can they identify 
pathways for instructional improvement or disparities in students’ opportuni-
ties to learn mathematics. Efforts to minimize achievement gaps should grow 
from efforts to minimize opportunity gaps (Flores, 2007), and identifying 
differences in students’ opportunities to engage in ambitious mathematics 
instruction is a promising step toward this goal.

We acknowledge that several factors beyond ambitious teaching affect 
students’ opportunities to learn mathematics in urban schools, including (a) 
the percentage of non-certified mathematics teachers in schools serving 
African American and low-income students (Jackson & Wilson, 2012); (b) 
teachers’ perceptions of students’ mathematical abilities, such as deficit, 
color-blind, or meritocratic mind-sets (Jackson & Wilson, 2012; Martin, 
2007; Milner, 2010); or (c) students’ mathematical identities, and how they 
see themselves (or have been positioned to see themselves) as learners and 
doers of mathematics (Boaler & Staples, 2008). Ambitious instructional prac-
tices can, however, provide a specific framework from which teachers can 
begin to hold students to higher expectations, provide mathematical work 
that is engaging and relevant, and develop students’ identities as capable 
mathematicians.

Classroom Observation Studies Identifying Ambitious 
Mathematics Instruction

Several studies have utilized observations of teaching to assess ambitious 
mathematics instruction in U.S. classrooms. The TIMSS 1999 Video Study 
(Hiebert et al., 2003) and the Inside the Classroom Study (Weiss, Pasley, 
Smith, Banilower, & Heck, 2003) examined nationally representative sam-
ples of school districts. Both studies identified a dearth of opportunities for 
U.S. students to engage in cognitively challenging work in mathematics 
classrooms. TIMSS observed 100 eighth-grade U.S. mathematics class-
rooms. Although 15% of instructional tasks could provide opportunities for 
conceptual understanding, less than 1% of tasks were implemented in ways 
that supported students’ development of mathematical concepts (Hiebert 
et al., 2003). Similarly, Inside the Classroom Study rated only 15% of 364 
observed lessons (in K-12 mathematics and science) as high quality based on 
the criteria of intellectual rigor, teacher questioning for conceptual under-
standing, and students’ opportunities for sense-making (Weiss et al., 2003).
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Recently, the Measures of Effective Teaching (MET) Project (Kane & 
Staiger, 2012) conducted a large-scale study exploring the use of classroom 
observations, student surveys, and student achievement data to produce a 
robust measure of teaching effectiveness. In 2009-2010, researchers analyzed 
1,000 mathematics lessons in Grades 4 to 8 from public schools across the 
country. According to the research report (Kane & Staiger, 2012), “scores are 
highest for competencies related to creating an orderly environment and low-
est for those associated with the most complex aspects of instruction” (p. 8). 
Observed lessons frequently demonstrated content alignment and mathemati-
cal accuracy, but infrequently demonstrated ambitious instructional practices, 
such as student participation in reasoning or investigation, problem-based 
approaches, and teachers’ questioning strategies.

Other studies specifically examined districts utilizing Standards-based 
middle school mathematics curricula (e.g., Connected Mathematics Project 
[CMP]) and/or engaging teachers in professional development. The QUASAR 
Project (Silver & Stein, 1996) provided professional development to middle 
school mathematics teachers from five urban districts with economically dis-
advantaged student populations. Many of these teachers were utilizing pilot 
versions of current Standards-based curricula. Based on a representative 
sample of 144 observations from 1990 through 1993, with teachers observed 
for three 3-day cycles yearly, (a) 74% of observed lessons featured cogni-
tively challenging tasks, (b) 31% of observed lessons provided evidence of 
students engaging in cognitively challenging mathematical work and think-
ing throughout the lesson, and (c) 50% of observations included discussions 
where students provided mathematical explanations and justifications (Stein 
et al., 1996).

The Middle School Mathematics Study observed 33 middle school math-
ematics teachers in 10 districts, with 2 districts classified as urban by the 
research team (e.g., serving a city with a population greater than 100,000 
people). Researchers compared instructional practices and student achieve-
ment between teachers using Standards-based curricula (and receiving pro-
fessional development specifically around using the curricula) and teachers 
using traditional curricula (and not receiving curriculum-specific profes-
sional development). Two observations per teacher indicated that 70% of 
teachers using Standards-based curricula maintained learning environments 
in which (a) lessons promoted conceptual understanding, (b) lessons sup-
ported the exploration of multiple perspectives and strategies, (c) students 
made mathematical conjectures, (d) students explained their responses or 
strategies, and (e) teachers used and built upon students’ contributions (Tarr 
et al., 2008). The study does not indicate whether results were consistent 
across districts or whether differences existed in the urban districts. Consistent 
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with QUASAR results, teachers with access to Standards-based curricula and 
professional development enacted far greater percentages of high-quality les-
sons than teachers in national and large-scale samples.

In 2005-2006, the Instructional Leadership Study (Quint, Akey, Rappaport, 
& Willner, 2007) conducted observations in 49 elementary schools in three 
urban districts with content-focused professional development ranging from 
1 to 5 years. Results from observations of 132 third-grade mathematics les-
sons identified 65.1% with low overall quality and 14.4% with moderate to 
high quality when considering instructional tasks, task implementation, and 
discussion. Results are not disaggregated by teachers’ years of professional 
development support or by the use of Standards-based curricula. Overall, 
these results appear more consistent with national samples than with 
QUASAR or the Middle School Mathematics Study.

Table 1 provides a summary of characteristics of the highlighted classroom 
observation studies and the current investigation, listed chronologically accord-
ing to year(s) of classroom observations. We draw on the results of these stud-
ies to situate our findings regarding students’ opportunities to learn mathematics, 
as evidenced by the presence of ambitious mathematics instruction, in urban 
districts. Next, we describe the methodology in this investigation.

Method

Data for this investigation come from the initial year of a 4-year study inves-
tigating what it takes to improve middle-grades mathematics teaching at the 
scale of four large urban districts. Each year (2007-2011), the MIST project 
collected several types of data to test and refine hypotheses and conjectures 
about district and school organizational arrangements, social relations, and 
material resources that might support mathematics teachers’ development of 
ambitious instructional practices at scale (Cobb & Smith, 2008). This report 
describes the nature of mathematics instruction during the first year of the 
project (2007-2008): specifically, (a) the rigor of instructional tasks and task 
implementation, (b) students’ opportunities to engage in mathematical dis-
cussions, (c) differences in students’ opportunities to learn mathematics 
between districts, and (d) comparisons to previous classroom observation 
studies that assessed ambitious mathematics instruction.

Sample

Table 2 provides student demographic information for the four study dis-
tricts. All four districts serve a significant number of non-White students, and 
more than half of the students in each district receive free or reduced-price 
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lunches. Although typical of large urban districts in the challenges they face, 
including serving large numbers of traditionally low-performing students in 
mathematics, having limited resources, under-prepared teachers, and high 
teacher turnover (Darling-Hammond, 2000), these districts are atypical in 
their instructionally focused approach to increasing student achievement in 
middle school mathematics. All four districts share the vision of ambitious 
mathematics instruction and intend to improve student achievement in mid-
dle school mathematics by supporting teachers’ development of ambitious 
instructional practices (as opposed to teaching to the test).

The project team purposefully selected a sample of schools from each 
district with the goal of choosing schools representative of the district as a 
whole, while selecting approximately 30 teachers per district. Given the vari-
ation in school size, the sample of schools ranged from 6 in District C to 10 
in District A. Within each school, we created a randomly ordered list of main-
stream mathematics teachers. We then offered study participation in that 
order and recruited two to five middle school mathematics teachers per 
school. Given the voluntary nature of the study, we had some schools where 
the first set of randomly selected teachers agreed to participate and other 

Table 1. Summary of Characteristics of Classroom Observation Studies.

Study

Classroom 
observation 

year(s)

Urban 
school 

districts (n)
Number of 

observations

Middle-
grades 

students

Standards-
based 

curriculum
Professional 
development

QUASAR 1990 to 1993 Yes (5) 144 Yes (Grades 
6-8)

Yes Yes

TIMSS 1999 National 
sample

100 Yes  
(Grade 8)

NAa NA

Inside the 
Classroom 
Study

2000 to 2002 National 
sample

364 No (Grades 
K-12)

NA NA

Middle School 
Mathematics 
Study

2003 to 2004 Partially (2 
of 10)

66 Yes (Grades 
6-8)

Yes Yes

Instructional 
Leadership 
Study

2005 to 2006 Yes (3) 132 No  
(Grade 3)

NA Yes

MIST Year 1 2008 Yes (4) 114 Yes (Grades 
6-8)

Some  
(3 of 4)

Some  
(1 of 4)

MET Project 2009 to 2010 Yes (6) 1,000 Yes (Grades 
4-8)

NA NA

Note. QUASAR = Quantitative Understanding: Amplifying Student Achievement and Reasoning; TIMSS = 
Trends in International Mathematics and Science Study; MET = Measures of Effective Teaching.
aNA indicates that the portion of schools using Standards-based curricula or providing professional 
development cannot be determined from the description of the study.
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Table 3. Demographic Information for Participating Teachers.

District
Number of 
teachers

Mean years 
of experience 
teaching math % White % Black

% Fully 
certified

A 28 13.2 89.3 3.6 100
B 26a 8.9 69.2 19.2 80.8
C 28 9.2 24.0 62.1 93.1
D 32a 8.7 84.4 12.5 87.5

aThe number does not represent the full sample from the district. We do not have 
demographic information for three teachers (two in District B and one in District D) who 
participated in the study.

schools where we had to ask multiple teachers to find the desired number of 
willing participants. Because of our sampling approach, it is possible that the 
sample of teachers is not perfectly representative of the teaching population 
in each district, though it is also likely that our sample does not differ dra-
matically. Table 3 contains demographic information for participating teach-
ers, by district.

As shown in Table 3, teachers in District A are significantly more experi-
enced than teachers in the other three districts (p < .05). Another critical dif-
ference between districts (not reflected in Table 3) is the curriculum: District 
C is the only district in our study that had not adopted CMP2 as its primary 
curriculum. Instead, the primary curriculum was procedural in nature, and 
teachers were expected to supplement with CMP2. Furthermore, Districts B 
and D were in their first year of implementation of CMP2, whereas District A 
had a long-standing commitment to high-quality curriculum (including 
CMP2) and professional development initiatives.

Table 2. Student Demographic Information for Districts A, B, C, and D.

District
Number of 
students % White % Black % Hispanic % LEP

% Free/
reduced 

price lunch

A 35,000 30 40 15 10 65
B 80,000 15 25 60 30 70
C 160,000 15 30 65 35 85
D 95,000 55 35 5 5 55

Note. LEP = Limited English Proficient; To protect the anonymity of the districts, the number 
of students is rounded to the nearest 5,000 and percentages are rounded to the nearest 5%.
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Measuring Ambitious Mathematics Instruction

Data on teachers’ instructional practices and students’ opportunities to learn 
mathematics were collected using the Instructional Quality Assessment 
(IQA) Lesson Observation rubrics (Boston, 2012) for Academic Rigor (AR) 
and Accountable Talk (AT). The constructs measured by the IQA rubrics 
align with the ambitious curricular and instructional reform efforts under-
taken by districts in this study. Boston (2012) provided a thorough conceptual 
foundation for the IQA rubrics, described briefly here.

Academic Rigor (AR). Stein and colleagues’ (1996) Mathematical Tasks 
Framework and Levels of Cognitive Demand served as the main conceptual 
framework for the AR rubrics:

•• Task Potential assesses the level of cognitive demand of the main 
instructional task (i.e., the task that occupied the most instructional 
time in the lesson). This dimension is rated by considering the level of 
thinking required to produce a complete and thorough response that 
satisfies the stated demands of the task.

•• Implementation assesses teacher’s implementation of and students’ 
engagement with the instructional task. While Task Potential assesses 
the level of rigorous thinking that the task has the potential to elicit 
from students, Implementation assesses the level of rigorous thinking 
in which students actually engaged. The score for this dimension is 
holistic, reflecting the highest level of engagement of the majority of 
students during individual or small-group work on the task and during 
any discussion following students’ work on the task.

•• (Rigor of the) Discussion assesses the level of cognitive processes evi-
dent in the discussion following students’ work on the task (i.e., 
whether students show their work and/or explain their thinking about 
important mathematical content). This dimension provides an overall, 
holistic rating of the discussion on how the talk advances students’ 
understanding of the mathematical content. The discussion contrib-
utes to the Implementation score, and also receives a separate score for 
Discussion.

Each dimension of AR is rated on a scale of 0 to 4 (0 indicates the con-
struct was absent) that represents a continuum of low to high levels of rigor 
and reflects discrete categories of cognitive demand. As summarized in 
Figure 2, the descriptors for each score level are relatively consistent across 
dimensions, though the referent changes from mathematical tasks (Task 
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Figure 2. Summary of IQA score levels.

Potential), to the cognitive processes evident throughout the lesson 
(Implementation), to the cognitive processes evident in the discussion 
(Discussion). This rating scheme facilitates comparisons across dimensions 
and fosters a strong qualitative idea of what each score level “looks like” in 
an actual classroom situation.

Accountable Talk (AT). AT (Resnick & Hall, 2001) upholds the standards of 
the discipline of mathematics for accuracy, evidence for claims, and rea-
soning behind ideas and conjectures, while also responding to, developing, 
and advancing the knowledge, ideas, and claims of all students in the 
classroom (i.e., talk that is accountable to the discipline and the learning 
community).
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In the IQA rubrics, AT is measured through linking and press2:

•• “Linking” describes talk that is accountable to the learning commu-
nity: revoicing (O’Connor & Michaels, 1996); prompting students to 
extend, analyze, or critique the mathematical work and thinking of 
others (Cazden, 2001; Cobb, Boufi, McClain, & Whitenack, 1997; 
McClain, 2002); and students’ connections and comparisons to the 
work or ideas of others. Raters consider whether the teacher makes 
explicit talk moves to support students in connecting ideas and posi-
tions to build coherence in the discussion (Teacher’s Linking), and 
whether student’s contributions explicitly link to and build on each 
other (Students’ Linking).

•• “Press” describes talk moves accountable to the discipline: teachers’ 
prompting students to explain their thinking, validate the accuracy of 
their computations, and justify their claims (Boaler & Staples, 2008). 
Teacher’s Press and Students’ Providing assess teachers’ press for 
accurate knowledge, thorough explanations of ideas, and appropriate 
justification for claims in classroom talk, and students’ efforts to pro-
vide accurate knowledge and evidence to support their claims, present 
arguments, and draw conclusions.

The AT rubrics are rated solely on the whole-group discussion following 
students’ work on the task(s), and not on any talk that occurs during the intro-
duction of the task or as students work (individually or in small groups) on 
the task itself. The frequency and quality of talk moves for each score level 
are held consistent across the Linking and Press rubrics. A score of 0 indicates 
that no discussion occurred. Score levels 1 and 2 reflect low-quality AT: the 
absence of a talk move or type of student response, weak or minimal attempts 
to make the talk move by teachers, or weak or minimal attempts to link ideas 
together or justify their knowledge and claims by students. Score levels 3 and 
4 represent consistent, high-quality AT moves and student responses. The 
consistency of high-quality scores (3 or 4) versus low-quality scores (1 or 2) 
within the AT rubrics and between the AT and AR rubrics enhances the inter-
pretive value of the IQA rubric results.

Data Collection and Analysis

Throughout January to March 2008, videographers recorded 2 days of 
instruction (consecutively, when possible, to account for lessons that might 
extend beyond 1 day) for each participating teacher. Teachers were asked to 
include a problem-solving activity and a related whole-group discussion in 
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the observed lessons. To be clear, the goal of the video-recordings was not to 
capture the nature of teachers’ everyday practice, but rather to assess the 
extent to which a teacher might enact the particular kind of instruction articu-
lated by district leaders as the goal of the instructional reform. Given the 
directions to include a problem-solving lesson and whole-group discussion, it 
is consistent to consider what was video-recorded as teachers’ best shot at 
enacting ambitious instructional practices.

The video-recorded lessons were coded using the IQA Lesson Observations 
rubrics for AR and AT. The IQA rubrics were tested for reliability and validity 
by the project team (Matsumura, Garnier, Slater, & Boston, 2008)) and exter-
nal researchers (Quint et al., 2007). Coders were trained to use the IQA 
rubrics reliably. Before actual coding began, coders achieved 80% reliability 
on previously coded videos, chosen to represent the variety of anomalies that 
coders would encounter. Each coder was then randomly assigned a list of 
teachers. The set of two class-days for each teacher was coded chronologi-
cally, given that lessons from the first day might continue into the second day 
(resulting in one set of scores for the spanning lesson). Over the course of the 
coding period, one set of teacher scores for each coder was randomly checked 
for reliability once every 2 weeks to account for rater drift, which resulted in 
double-coding of approximately 15% of the lessons. When differences in 
scores occurred on the double-coded lessons, coders reached a consensus 
through discussion. The overall percent exact-point agreement in initial cod-
ing was 71.3% with an average kappa score3 of 0.49. Consensus scores were 
used in all analyses.

We analyzed one set of IQA rubric scores per teacher. For teachers with 
two complete sets of rubric scores (e.g., teachers who completed two entire 
lessons over the 2 days of videotaping), we consistently selected for analysis 
the highest set of scores over the 2 days of instruction. Recall that we per-
ceive the video-recorded lessons as teachers’ best shot at enacting ambitious 
instruction, because we did not record teachers frequently enough to capture 
typical classroom practice. Our decision for choosing the highest set of IQA 
rubric scores for each teacher is consistent with this perception. For example, 
in cases when teachers only had whole-class discussions on one of the two 
days of instruction, we selected the set of scores for the lesson involving a 
whole-class discussion. When teachers’ lessons spanned both days of video-
taping, we assumed this 2-day lesson was the teacher’s best effort (especially 
given the extended time to enact the lesson).

Consistent with our intent to characterize the nature of instruction across 
four large urban school districts striving for ambitious mathematics instruc-
tion, we present descriptive statistics for each district, analyze differences in 
students’ opportunities to learn mathematics between districts, and compare 
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our results with previous research. By providing information about distribu-
tions and standard deviations, we provide an indication of within-district 
variation. With our emphasis on district trends, however, we focus the analy-
ses on district means and distributions, comparisons between districts, and 
district-level comparisons to previous research. With score levels 0 to 4 rep-
resenting a scale of increasing quality and also distinct categories of perfor-
mance, mean scores are provided to support interpretations of rubric results 
within a district, and non-parametric tests provide comparisons between dis-
tricts. We describe particular tests used with corresponding results in the fol-
lowing section.

Results

Given our interest in the nature of middle-grades mathematics instruction at 
the scale of four large, urban school districts, we examined scores on the 
rubrics for approximately 30 teachers in each district for the 2007-2008 school 
year. Table 4 provides district means, standard deviations, and score frequen-
cies for each rubric. We draw on data in Table 4 to characterize and compare 
students’ opportunities to learn mathematics across the four districts.

AR: Instructional Tasks, Task Implementation, and Discussion

First, we highlight findings pertaining to Research Question 1 and the math-
ematical rigor of instructional tasks, task implementation, and whole-group 
discussions.

Tasks. In Districts A, B, and D, Task Potential means were 3.14, 3.17, and 
3.18, respectively. Task Potential means above 3 indicate the use of cogni-
tively challenging tasks during the majority of observed lessons, also evident 
in the percent of lessons scoring a 3 or 4 for Task Potential in Districts A, B, 
and D (85.7%, 82.1%, 72.8%).4 More than half of observed lessons in Dis-
trict C (62.1%) featured high-level instructional tasks, though District C 
posted the lowest task mean (2.66) and the lowest percent of lessons (3.5%) 
with instructional tasks scoring a 4 for Task Potential (i.e., cognitively chal-
lenging tasks that explicitly required students to provide, explain, or illustrate 
mathematical thinking and reasoning), with Districts A, B, and D at 28.6%, 
35.7%, and 45.5%, respectively.

Implementation. Implementation means in each district fell below a score of 3 
(2.67, 2.32, 2.03, 2.58). District A exhibited high-level instruction in the 
majority of observed lessons, with 53.6% of lessons scoring 3 or 4 in 
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Implementation. Districts B and D exhibited high-level Implementation in 
32.1% and 45.4% (respectively) of observed lessons, whereas high-level 
Implementation occurred in only 3.5% of observed lessons in District C. 
These data indicate that, with the exception of District A, more than half of 
observed lessons did not engage students in high-level thinking and reason-
ing. Instead, as suggested by the percentage of observed lessons scoring a 2 
in Implementation for all districts in the study, instruction typically focused 
on procedures without connections to meaning and understanding. Very few 
lessons received Implementation scores of 4: four lessons (14.3%) in District 
A, one (3.5%) in District C, and four (12.1%) in District D.

While Task Potential provides information about the potential rigor of the 
mathematical activity in the classroom, Implementation characterizes the 
actual rigor of mathematical activity during the lesson. A Wilcoxon Signed-
Rank test suggests that for all four districts, the mean for Implementation is 
significantly lower than the mean for Task Potential, indicating a decline in 
cognitive challenge between students’ opportunities for and actual engage-
ment in thinking and reasoning during the observed lessons overall (z = 7.67; 
p < .001) and within each district (z = 3.35, z = 4.19, z = 3.75, and z = 3.96, 
for Districts A, B, C, and D, respectively; p < .001).

Rigor of the discussion. The majority of observed lessons in all districts exhibit 
low-quality mathematical discussions. District A was the highest among the 
districts, with a mean of 2.21 and 42.8% of Discussion scores at 3 or 4. Districts 
B, C, and D posted mean scores below 2, with low percentages of high-level 
discussions (14.3%, 7.0%, 27.3%). Only three observed lessons scored 4 for 
Discussion, two in District A (7.1%) and one in District C (3.5%). At the low 
end of the scale, scores of 0 or 1 (indicating no discussion or discussion char-
acterized by one-word responses) occurred in more than half (58.6%) of les-
sons in District C, but less than one third of lessons in the other districts (21.4%, 
32.1%, 30.4%).

AT: Students’ Opportunities to Engage in Mathematical 
Discourse

Given the general low quality of whole-group discussions, it is not surprising 
that findings pertaining to Research Question 2 and opportunities for rich 
mathematical discussions are equally sparse. Across all districts, few 
instances occurred of the AT constructs Linking and Press. This suggests that 
even when teachers conduct whole-group discussions, students are rarely 
given opportunities to connect to each other’s mathematical work and think-
ing or to offer rich mathematical explanations and justifications.



Boston and Wilhelm 21

Teacher and student linking. Minimal occurrences of Linking occurred during 
the observed lessons. Means for Teacher Linking were at or below 2 in each 
district (2.04, 1.79, 1.48, 1.67) and means for Student Linking near or below 
1 (1.25, 1.04, 0.79, 0.97). District A again posts the highest scores, with high-
level (scores of 3 or 4) Teacher Linking and Student Linking occurring in 
17.9% and 7.2% of observed lessons, respectively. High-level Teacher Link-
ing was demonstrated infrequently in Districts B, C, and D (7.1%, 3.5%, 
9.0%). No lessons in Districts B, C, or D exhibited high-level Student Link-
ing. Lessons receiving a 4 were limited to two occurrences of Teacher Link-
ing (one [3.6%] in District A and one [3.0%] in District D) and one occurrence 
of Student Linking (District A, 3.6%).

Teacher press and student providing. Instances of teachers pressing for stu-
dents’ reasoning and justification and of students providing valid reasons and 
justifications also occurred infrequently during the observed lessons. Only 
District A posted a mean score for Teacher Press above 2 (2.32, 1.93, 1.55, 
1.73), whereas all districts’ mean scores for Student Providing fell below 2 
(1.93, 1.79, 1.52, 1.58). In District A, high-quality Teacher Press occurred in 
42.8% of observed lessons, approximately twice as often as other districts 
(21.5%, 20.7%, 18.2%). High-quality Student Providing occurred in 28.5% 
of observed lessons in District A, followed by 18.2% in District D, 10.3% in 
District C, and 7.1% in District B. Score level 4 was achieved for Teacher 
Press in eight lessons overall: three (10.7%) in District A, one (3.6%) in Dis-
trict B, and four (12.1%) in District D. Four lessons reached a 4 in Student 
Providing: two each in Districts A (7.1%) and B (7.2%).

Differences Between Districts

Table 4 provides district means and standard deviations. Statistically signifi-
cant differences between districts (p < .05; see Figure 3), identified using 
Wilcoxon Rank-Sum tests (also called the Mann-Whitney two-sample statis-
tic), occurred when (a) District A outscored District C on all rubrics except 
Student Providing and (b) District C fell significantly lower than Districts B 
and D on Task Potential, Discussion, and Implementation. No significant dif-
ferences existed between Districts A and B or between B and D, and Districts 
A and D differed significantly only on Teacher Press.

Across rubrics, no significant differences occurred between districts on 
Student Providing, and no significant differences were found between 
Districts B, C, and D on all AT rubrics. Significant differences occurred 
mainly on AR rubrics, with District C significantly lower than other districts 
on all AR rubrics.
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Comparisons With Previous Classroom Observation Studies

Table 1 enables comparisons between the results of this study (of four large, 
instructionally focused urban districts), and previous results from nationally 
representative or large-scale samples of districts (e.g., TIMSS, Inside the 
Classroom Study, MET Project) and from instructionally focused urban dis-
tricts (e.g., QUASAR, Middle School Mathematics Study, Instructional 
Leadership Study). First, lessons in this study generally exhibited higher lev-
els of instructional quality than nationally representative samples of districts 
in the TIMSS and Inside the Classroom studies, where no more than 15% of 
observed lessons demonstrated high-quality tasks and/or implementation. For 
districts in this study, percentages of lesson observations featuring cognitively 
challenging instructional tasks (rated 3 or 4) ranged from 62.1% to 85.8%. 
Only District C had fewer than 15% of Implementations considered high-
level, and Districts B and C had fewer than 15% of Discussions rated highly. 
While the MET study did not provide exact percentages of ambitious instruc-
tional practices, researchers “rarely found highly accomplished practice . . . 
associated with the intent to teach students higher-order thinking skills” (Kane 
& Staiger, 2012, p. 10). In the current study, though we rarely identified high-
quality discussions, notable percentages (32.1%-53.6%) of lesson implemen-
tation in three districts engaged students in higher order thinking skills.

Figure 3. Comparisons of district mean scores in 2007-2008.
Note. Empty cells denote no statistically significant difference between districts. Cell contents 
give direction of significant difference with z scores in parenthesis (p < .05).
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Several aspects of observed instruction in this study were consistent with 
results from studies of instructionally focused urban middle schools with profes-
sional development and/or Standards-based mathematics curricula (e.g., 
QUASAR, Middle School Mathematics Study). The Middle School Mathematics 
Study identified 70% of lessons with overall high quality. QUASAR researchers 
identified 74% of lessons with high-level tasks, 31% of lessons with high-level 
implementation, and 50% of lessons with high-level discussions. All districts in 
our study posted comparable percentages (62.1%-85.7%) of high-level tasks in 
the observed lessons. Districts A, B, and D exceeded QUASAR in percentage of 
high-level implementations (53.6%, 32.1%, 45.4%). Percentages of high-level 
discussions in District A (42.8%) approached the percentage observed in 
QUASAR (50%), with other districts falling below 25%. District C, dissimilar 
to other districts in this study in the lack of a Standards-based curriculum, dif-
fered considerably from QUASAR and the Middle School Mathematics Study 
in high-level implementation (3.5%) and discussions (7%).

The Instructional Leadership Study (Quint et al., 2007) utilized the same 
rubrics as this investigation. Means on the AR rubrics across all observations 
were 2.26 for Task Potential, 2.10 for Implementation, and 1.76 for 
Discussion. In this investigation, observed lessons demonstrate the same pat-
tern in mean scores as the Instructional Leadership Study, with the highest 
mean occurring for Task Potential and consistently lower means in 
Implementation and Discussion. Districts A, B, and D posted higher means 
than districts in the Instructional Leadership Study on all AR rubrics (except 
Discussion in District B). Both studies identified similarly low means on the 
AT rubrics.

Although all districts in the current investigation were aiming for ambi-
tious mathematics instruction, the observed lessons indicate significant varia-
tion in teacher’s enactment of such instruction. In the discussion that follows, 
we describe what the results indicate about students’ opportunities to learn 
mathematics in urban middle school classrooms.

Discussion

Ambitious mathematics instruction provides opportunities for students to 
learn mathematics with understanding, and has been shown to decrease 
achievement gaps (Boaler & Staples, 2008; Schoenfeld, 2002). Hence, iden-
tifying components of ambitious mathematics instruction can provide a 
means for identifying differences, or opportunity gaps, in how mathematics 
is taught and learned in different districts, schools, and classrooms. Only by 
attending to these opportunity gaps can we begin to eradicate achievement 
gaps (Flores, 2007; Lipman, 2004).
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In this discussion, we use our results to characterize middle school math-
ematics instruction in four instructionally focused urban districts. Consistent 
with the larger goals of the project, we hypothesize how differences in 
instructional practices and students’ opportunities to learn mathematics con-
nect to aspects of the institutional setting (namely, availability of Standards-
based mathematics curricula and professional development opportunities), 
and we suggest pathways for improvement. We also situate our findings 
within prior research to assess the progress of ambitious mathematics instruc-
tion over time.

Characterizing Mathematics Instruction in Instructionally 
Focused Urban Districts

Potential of the task. The majority of observed lessons featured cognitively 
challenging instructional tasks, and with the exception of District C (3.5%), 
notable percentages of tasks in Districts A (28.6%), B (35.7%), and D (45.5%) 
explicitly required students to provide, explain, or illustrate their mathemati-
cal thinking and reasoning (i.e., Task Potential score of 4). By posing instruc-
tional tasks with high cognitive demands in the majority of observed lessons, 
teachers in each district provided students opportunities for mathematical 
learning and understanding. In the QUASAR study, the consistent presence 
of high-level instructional tasks, regardless of the level of implementation, 
resulted in moderate gains in student achievement (Stein & Lane, 1996).

Across several studies, including TIMSS (Hiebert et al., 2003), QUASAR 
(Stein & Lane, 1996), and studies using the IQA rubrics (Boston, 2012; 
Boston & Smith, 2009; Quint et al., 2007), tasks with low cognitive demands 
are rarely implemented in ways that result in high-level thinking and reason-
ing. In the majority of observed lessons, Task Potential sets the ceiling for 
Implementation, and in fact, for all discussion-based rubrics as well. Tasks 
with low cognitive demands simply do not provide fodder for teachers to 
engage students in thinking, reasoning, or mathematical discourse throughout 
the enactment of the lesson. If opportunities for high-level thinking and rea-
soning are not embedded in instructional tasks, these opportunities rarely 
materialize during mathematics lessons. This finding, robust in its consis-
tency across several studies, suggests that Standards-based curricula and/or 
high-level instructional tasks are a necessary condition for ambitious mathe-
matics instruction. Cognitively challenging tasks can support positive math-
ematical identities by positioning students as learners and doers of 
mathematics, setting high expectations, providing multiple access points, and 
encouraging multiple solution strategies—features of the instructional setting 
noted as particularly important for the success of African American and 
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low-income students in urban schools (Boaler & Staples, 2008). As part of a 
framework for considering students’ opportunity to learn mathematics, using 
cognitively challenging instructional tasks can provide a concrete first step 
for teachers to elicit and recognize students’ mathematical abilities and per-
haps begin to move beyond deficit, innate-ability, or meritocratic mind-sets.

Task implementation. In all districts, Implementation means were signifi-
cantly lower than Task Potential means, indicating that students’ actual 
engagement in thinking and reasoning during the observed lessons did not 
reflect the opportunities for high-level cognitive processes embedded in 
instructional tasks. This decline suggests that students are not fully benefit-
ting from opportunities for mathematical learning in Standards-based curri-
cula or high-level tasks. Empirical research from more than a decade indicates 
that the highest learning gains occur in classrooms where students consis-
tently engage in high-level thinking and reasoning (e.g., Schoenfeld, 2002; 
Stein & Lane, 1996; Tarr et al., 2008). Hence, opportunity gaps and achieve-
ment gaps could be affected to a greater extent if high-level cognitive 
demands were consistently maintained during implementation. High-level 
Implementation involves holding students accountable for the mathematical 
work and thinking in the task and providing students the right amount of sup-
port to maintain students’ engagement (without taking over the mathematical 
work and thinking; Henningsen & Stein, 1997). Hence, teachers’ instruc-
tional moves to maintain high-level demands during implementation can pro-
mote positive mathematical identities, establish trust, and communicate high 
expectations. These classroom practices are identified as particularly impor-
tant for fostering the success of African American and low-income students 
in urban schools (Boaler & Staples, 2008; Milner, 2010).

Significant differences in Implementation also existed between districts. 
At the extremes, more than half of observed lessons in District A (15/28; 
53.6%) received high-level Implementation scores compared with only one 
lesson in District C (1/29; 3.5%), providing students in each district with 
distinctly different opportunities to learn mathematics. What aspects of the 
institutional setting may have affected differences in implementation between 
districts? Research has identified many challenges in maintaining high-level 
demands in mathematics classrooms where students and teachers are accus-
tomed to rote procedures and memorization (rather than exploration, think-
ing, and reasoning; Henningsen & Stein, 1997). More experienced teachers, 
long-term use of CMP, and professional development initiatives may have 
affected implementation in District A. Studies of Standards-based curricula 
identify improvements in teachers’ implementation and in student achieve-
ment over time, with significant increases typically occurring in and beyond 
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the second year of use (Bray, 2005; Post et al., 2008; Reys et al., 2003), and 
generally associate “a longer implementation in the school . . . with a greater 
score advantage for students” (Riordan & Noyce, 2001, p. 383). These find-
ings suggest the importance of persevering with Standards-based curricula 
and maintaining an instructional focus at the administrative level, as districts 
frequently discard or replace initiatives that do not yield immediate results.

Research also indicates the necessity and value of professional develop-
ment initiatives in implementing Standards-based mathematics curricula 
(Senk & Thompson, 2003). Teachers may have neither experienced ambitious 
instruction as learners of mathematics, nor explored or practiced this type of 
pedagogy during preservice teacher training or field-based experiences 
(Franke et al., 2007). Professional development specifically aimed at enhanc-
ing teachers’ ability to enact ambitious instruction and maintain the demands 
of cognitively challenging instructional tasks has proven effective and endur-
ing (Boston & Smith, 2009; 2011), and is readily accessible in professional 
development materials (e.g., Smith, Silver, & Stein, 2005; Stein et al., 2009).

Mathematical discussions. The majority of discussions in all districts consisted 
of students demonstrating procedures or providing brief responses to teach-
ers’ questions (i.e., Discussion scores of 1 or 2), with few occurrences of the 
AT constructs of Linking and Press and extremes occurring again between 
Districts A and C. Notably, almost half (12/28; 42.8%) of discussions in Dis-
trict A were characterized by explanations of students thinking and reasoning 
(i.e., Discussion scores of 3 or 4) and high-level Teacher Press. Similar ele-
ments of the school setting hypothesized for differences in districts’ perfor-
mance on the Implementation rubric can be posited for differences on the 
rubrics assessing classroom discourse. Teachers in District A had more expe-
rience and training in implementing CMP2 and the components of ambitious 
instruction it entails, including orchestrating whole-group discussions. 
Hence, similar arguments can also be waged for the value of ongoing profes-
sional development opportunities, even within District A, to support teachers 
to engage students in mathematical discourse.

Comparisons With Prior Research

As shown in Table 1, studies utilizing national samples exhibit a low occur-
rence of ambitious mathematics instruction, even with the passing of a decade 
between TIMSS in 1999 and MET in 2009-2010. In contrast, when comparing 
districts with ambitious mathematics curricula and professional development 
initiatives over a similar span of time, QUASAR (1990-1993) and the Middle 
School Mathematics Study (2003-2004) identified far greater percentages of 
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lessons exhibiting ambitious instructional practices. This finding was not rep-
licated in the Instructional Leadership Study, though the longevity of profes-
sional development in each district was unclear. In our study, similar 
distinctions in ambitious mathematics instruction appear between District A, 
Districts B and D, and District C. Similar results across District A, QUASAR, 
and the Middle School Mathematics Study suggest that Standards-based cur-
riculum and professional development opportunities are necessary conditions 
for enacting ambitious mathematics instruction.

Given our sample of four large urban districts with ambitious goals for 
mathematics instruction, atypical of many urban districts in their instruc-
tional focus, it is reasonable to assume that the instructional patterns in our 
results are the same or more rigorous than what might be found in other large 
urban districts across the United States. This suggests that the majority of 
students in urban districts have few opportunities to engage in high-level 
thinking and reasoning in mathematics, and indicates the need for additional 
work in providing richer opportunities to learn mathematics for students in 
urban schools.

Conclusion: Implications for Minimizing 
Opportunity Gaps

In this investigation, we assessed middle school mathematics instruction in 
four large urban districts participating in a long-term project seeking to iden-
tify how school and district settings affect mathematics teachers’ instruc-
tional practices and students’ learning. We proposed, consistent with recent 
work by Perry (2013), that cognitively challenging tasks and high-level task 
implementation provide a useful framework for considering students’ oppor-
tunities to learn mathematics.

Several hypotheses follow from our work. First, Standards-based curri-
cula and/or cognitively challenging instructional tasks appear to be necessary 
conditions for supporting higher levels of AR. Task levels set the ceiling for 
the level of implementation and for all discussion-based rubrics. Hence, dis-
tricts and classrooms lacking high-level instructional tasks in mathematics 
offer students far different opportunities to learn mathematics than class-
rooms and districts utilizing such tasks. Second, teachers need support to (a) 
maintain students’ opportunities for thinking, reasoning, and problem solving 
throughout lesson implementation, and (b) orchestrate high-quality whole-
class discussions that include AT moves. Results from District A and results 
of other studies of instructionally focused urban middle schools suggest that 
professional development experiences may equip teachers to achieve high 
levels of implementation and discussion. Third, although transience of reform 
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initiatives and teachers frequently plague urban districts, longevity of use of 
Standards-based curricula and teachers’ experience with such curricula 
appear to support the successful enactment of ambitious mathematics instruc-
tion. Hence, urban districts need to remain instructionally focused, even in 
the absence of immediate gains in achievement test scores.

More broadly, our work indicates how direct assessments of instructional 
quality, based on observations and artifacts of teaching, might equip urban dis-
tricts to (a) monitor reform efforts, including curricular implementation or pro-
fessional development; (b) identify differences in students’ opportunities to learn 
mathematics; and (c) suggest pathways for providing rich mathematical learning 
experiences capable of reducing opportunity gaps and achievement gaps.
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Notes
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2. The IQA also contains an Accountable Talk rubric for Participation not discussed 
in this article.

3. Kappa (Cohen, 1960) is an adjusted percent agreement measure, based on the 
proportion of codes in each category. There are no standards for evaluating kappa 
scores but Hartmann and colleagues (2004) suggest that kappa scores between 
0.6 and 0.75 are good.

4. Multiple scores in parentheses represent districts in alphabetical order.
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