EXAMINING THE ROLES OF PATTERNING KNOWLEDGE, SPATIAL ASSEMBLY, AND ANALOGIC REASONING IN EARLY MATHEMATICS DEVELOPMENT

SRCD BIENNIAL MEETING, APRIL, 2021, THU, APRIL 8, 10:00AM-11:30AM

CHAIR: ERICA ZIPPERT, EZIPPERT@PURDUE.EDU, PURDUE UNIVERSITY, WEST LAFAYETTE

EMPHASIZING THE NUMBERS IN PATTERNS DURING TRAINING: EFFECTS ON PATTERNING AND MATH SKILLS

SRCD BIENNIAL MEETING, APRIL 2021

ERICA ZIPPERT, ASHLI-ANN DOUGLAS, BETHANY RITTLE-JOHNSON VANDERBILT UNIVERSITY

ZIPPERT, DOUGLAS, TIAN, RITTLE-JOHNSON, 2021, JOURNAL OF EDUCATIONAL PSYCHOLOGY. DOI: 10.1037/EDU0000656

PREPRINT- <HTTPS://TINYURL.COM/PATTERNSTUDY>

BACKGROUND

Most early math research and theory has classically focused on the contributions of numeracy skills (Sarama & Clements, 2009)

Recent work focuses more broadly to include the contributions of early non-numeracy topics such as repeating patterning (e.g., Fyfe et al., 2019; Rittle-Johnson, Zippert, Boice, 2018; Wijns et al., 2019; Zippert et al., 2019; 2020)

BACKGROUND

Gaps

- Is the patterning and math link causal?
- What is the mechanism through which patterning \rightarrow mathematics knowledge?

■ Patterning → Numeracy → Math

- Evidence that patterning and numeracy are correlated (Fyfe et al., 2017; Mackay & De Smedt, 2019; Wijns et al., 2019; Zippert et al., 2019; 2020)
- Shared reliance on rules and regularities
 - Numeracy
 - Can rely on counting string to answer magnitude comparison problems (5 comes later in the count sequence than 3, so 5 is bigger)
 - The next number in the count sequence after 4 is 5, so 4+1=5 (successor principle; Gelman & Gallistel, 1978; Sarnecka & Carey, 2008)
 - Patterns
 - Reciting items in order in the pattern sequence helps to know what comes next
 - Knowing the unit repeats over and over in the count sequence helps you determine what comes next

- Can we improve repeating patterning skill in preschool through targeted instruction? Hypothesis I: Yes
- Can we improve successor principle knowledge through targeted tutoring?
 Hypothesis 2: Yes
- 3. Can improving patterning along with numeracy promote numeracy and mathematics knowledge more than numeracy training alone?

Hypothesis 3: Yes

- 212 preschool children (M = 4.7 years, SD = .37)
 - Recruited from 12 preschools (5 public, 7 private)
 - 56% male, 53% white, 10% bilingual
 - 35% received some form of financial assistance for school
 - 72 in patterning + numeracy, 70 in literacy + numeracy, 70 in control
 - Additional 21 students dropped due to persistent non-compliance issues or missing 2 training sessions

STUDY 2 DESIGN

- Participants randomly assigned to 3 conditions:
 - I. Repeating Patterning + Numeracy Instruction
 - a. Repeating patterning activities and Numeracy activity (successor principle) at end of each lesson

2. Literacy + Numeracy Instruction

- **a.** Literacy activities so spend same time with experimenter and Numeracy activity (successor principle) at end of each lesson
- 3. Passive control group
 - a. Regular classroom instruction only
- Most patterning and numeracy activities modified from Building Blocks Pre-K curriculum
- Literacy activities taken from Opening the World of Learning (OWL) Prek-K curriculum

MEASURES

Teacher Patterning Measure Example Items

Research Patterning Measure Example Items

Successor Principle: Fish Pond Task

 Assess children's knowledge of the successor principle using numbers ranging from 2 to 20 with 10 items (7 addition and 3 subtraction). Based on Cheung et al. (2017)

"Three fish are swimming under the lilypad. Now watch... another fish swims in! Now are there 4 or 5 fish?"

MEASURES CONTINUED

Broad Math & Numeracy Knowledge

The REMA Short-Form of Research-Based Early Mathematics Assessment

(Clements & Sarama, 2000; Weiland et al., 2012)

Numeracy example knowledge

Shape example

STUDY 2 DESIGN

Pretest

Randomized to Condition

Intervention

Children are pretested in one 25-minute session

- Math (REMA) .
- Pattern: Teacher-Based
- Successor Principle: Fish Pond

Children are first randomized to condition, and then assigned to a group of 2 based on varying pattern ability

Children in groups of 2 receive five 25-minute training sessions across 2-3 weeks

The day after session 5, children are assessed in one 20-minute session

Post test

Day 1

- Pattern:
 - Research-Based
- Successor Principle

Within a few days of post day 1, children are assessed in another 20-minute session

Post test

Day 2

- Math (REMA)
- Pattern: Teacher-Based

What's Next Pattern AB

"What comes next in the pattern? Use one of these." Experimenter gestures to response options.]

OVERVIEW OF PATTERNING + NUMERACY TRAINING SESSIONS

Session	Patterning Focus	Numeracy Focus (Successor Principle)
1	Duplicate and extend patterns	Add 1 (small numbers)
2	Duplicate and extend patterns	Add 1 (small numbers)
3	Identify core unit of patterns	Subtract 1 (small numbers)
4	Abstract patterns	Add 1 (large numbers and review small numbers)
5	Review core unit of patterns and abstract patterns	Add and subtract 1 (small and large numbers)

OVERVIEW OF LITERACY + NUMERACY TRAINING SESSIONS

Session	Literacy Focus (OWL Unit 1 Week 2)	Numeracy Focus (Successor Principle)
1	oral language, phonological awareness, alphabet knowledge, concepts of print, motivation to read, listening comprehension	Add 1 (small numbers)
2	oral language, phonological awareness, alphabet knowledge	Add 1 (small numbers)
3	oral language, phonological awareness, alphabet knowledge	Subtract 1 (small numbers)
4	oral language, phonological awareness,	Add 1 (large numbers and review small numbers)
5	oral language, concepts of print, motivation to read	Add and subtract 1 (small and large numbers)

PRETEST RESULTS

IRT Scores at Pretest by Training Condition

POSTTEST RESULTS

Study 1 Hypotheses:

Children's repeating patterning knowledge can be improved through targeted instruction. (yes but aligned measure only)

||4

RESULTS

Successor Principle Scores at Posttest by Training Condition

Study 2 Hypotheses:

Hypothesis 2: Children's knowledge of the successor principle, a core early numeracy skill, can be improved through targeted instruction.

POSTTEST RESULTS

REMA Numeracy 0.4 Estimates 0.2 0 -0.2 Ability | -0.4 Pre -0.6 Post -0.8 Mean -1 -1.2 Control Literacy Pattern **Training Condition**

Study 3 Hypotheses:

Hypothesis 3: Improving children's repeating patterning knowledge prepares them to learn more from numeracy instruction on the successor principle, both on that skill and math more broadly.

DISCUSSION

Summary

- Patterning instruction improved patterning knowledge, but only on measure aligned with training and more focused on unit of repeat
- Instruction did not differentially improve math or numeracy and did not improve successor principle knowledge at all.
- In line with other studies with young children that did not find effects of training numeracy and nonnumeracy skills together (Barnes et al., 2016; Kroesbergen et al., 2012; Kyttälä et al., 2015)
- Patterning + numeracy instruction may support other numeracy skills
 - Knowledge of count sequence (what's before/after, but not highest count; Zippert et al., 2020)
 - Ordinal knowledge (e.g., what number comes before 5)

THE PATTERNING TEAM!

