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A Store Brand Spillover Example with Two Categories

In this section, we consider an alternative setting with two retail categories to provide additional

justification for the retailer’s objective function we study in the main body of the paper (equation 2).

In this alternative setting, the category we examine in the main body of the paper, hereafter referred

as category A, represents the focal category. Category B is the second category. For notational

parsimony, we assume that category B includes only one product – a store brand product.

We capture the store brand’s cross-category spillover as follows. Let λA and λB denote the

number of consumers who shop in categories A and B, respectively. Following the notation we use

in the main body of paper, zs and λAzs denote the SB’s market share and the number of customers

who purchase the SB in category A, respectively. Let δ ∈ [0, 1] denote the spillover parameter,

which captures the notion that a portion of SB shoppers in category A decide to visit category B.

Mathematically, δλAzs captures the additional traffic the SB offered in category A generates for

category B. That is, increasing the SB market share in category A creates additional demand for

category B. The retailer’s total profit (i.e., the sum of profits from categories A and B) can be

written as

ΓAR = λA
∑
i∈A

(pi − wi)zi −K |A|︸ ︷︷ ︸
profit from category A

+ (δλAzs + λB) (px − wx)zx −K︸ ︷︷ ︸
profit from category B

, (28)

where px, wx, and zx denote the SB’s retail price, wholesale price, and market share in category

B, respectively. Because we assume that category B has one product, the fixed cost for category B

equals K. Moreover, we assume that wx = 0 to be consistent with the assumption we make in the

main body of the paper that ws = 0.

Let θB ∼ U [0, 1] denote consumers’ quality preference parameter in category B. Furthermore,

let qx denote the SB product’s quality in category B. Then zx = Pr (θBqx − px ≥ 0) = 1 − px
qx

.

Accordingly, category B’s category manager solves maxpx≥0 (δλAzs + λB) px

(
1− px

qx

)
−K. Hence,
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the optimal retail price for the SB product in category B equals p∗x = qx
2 . Plugging this optimal

retail price into (28) and rearranging terms yield

ΓAR = λA

(∑
i∈A

(pi − wi)zi −K |A|+ δ
qx
4
zs

)
+ λB

qx
4
−K. (29)

Recall from Equation (2) that the retailer’s objective function in the main body of the paper is

ΠAR =
∑
i∈A

(pi − wi)zi −K |A|+ γzs. (30)

Setting γ = δ qx4 reveals that (29) can be written as

ΓAR = λAΠAR + λB
qx
4
−K. (31)

That is, (29), which we obtain from a two-category setting with SB spillover, is an affine function

of the retailer’s objective function we consider in the main body of the paper. Consequently, both

settings lead to the same equilibrium outcomes and insights. In the main body of the paper, we

analyze ΠAR (rather than ΓAR or another setting with multiple categories) for expositional clarity.

B Robustness Tests

In this section, we test the robustness of our managerial insights by relaxing some of our

modeling assumptions.

B.1 Production Costs and Quality Differentials

Our model described in Section 3 relies on two simplifying assumptions regarding production

costs and quality differentials. First, we assume that each product has zero production cost. Second,

we assume equal quality differentials, q1 − q2 = q2 − qs = α. In this section, we relax these two

assumptions to demonstrate the robustness of our managerial insights.

We start our analysis with general quality expressions (i.e., q1, q2, and qs). Furthermore, we

let c1(q1), c2(q2), and cs(qs) denote the production costs of the high-quality NB, the low-quality

NB, and the SB, respectively. Hereafter, we write ci instead of ci(qi) for notational parsimony.

Accordingly, manufacturer i’s profit function for a given assortmentA is πAi = (wi−ci)zi for i = 1, 2.

The retailer’s objective function for a given assortment A is ΠAR =
∑

i∈A(pi −wi)zi −K |A|+ γzs,

where ws = cs because the retailer sources the SB at the production cost.

We characterize the equilibrium wholesale and retail prices based on the sequence of events
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described in Section 3. The equilibrium wholesale price of the high-quality NB is

w∗1 =



c1+q1
2 if A∗ = {1},

q1[2(c1+q1−q2)+c2]
4q1−q2 if A∗ = {1, 2},

c1+cs+q1−qs−γ
2 if A∗ = {1, s},

(q1−qs)(2c1+c2)+(q1−q2)[2(q1−qs)+cs−γ]
4q1−q2−3qs

if A∗ = {1, 2, s}.

Similarly, the equilibrium wholesale price of the low-quality NB is

w∗2 =



c2+q2
2 if A∗ = {2},

q2(c1+q1−q2)+2c2q1
4q1−q2 if A∗ = {1, 2},

c2+cs+q2−qs−γ
2 if A∗ = {2, s},

c1(q2−qs)+2c2(q1−qs)+(q1−q2)[q2−qs+2(cs−γ)]
4q1−q2−3qs

if A∗ = {1, 2, s}.

Based on these wholesale prices, p∗1 =
q1+w∗

1
2 if the high-quality NB is in the assortment. Similarly,

p∗2 =
q2+w∗

2
2 if the low-quality NB is in the assortment. Lastly, p∗s = cs+qs−γ

2 if the SB is in the

assortment. These analyses reveal that increases in production costs lead to increases in the whole-

sale and retail prices. Based on these wholesale and retail prices, the retailer selects the assortment

that maximizes its payoff. The retailer’s equilibrium payoff is

Π∗R =



0 if A∗ = ∅,
(q1−w∗

1)
2

4q1
−K if A∗ = {1},

(q2−w∗
2)

2

4q2
−K if A∗ = {2},

(qs+γ−cs)2

4qs
−K if A∗ = {s},

q1−2w∗
1

4 +
q2w∗

1
2−2q2w∗

1w
∗
2+q1w∗

2
2

4(q1−q2)q2
− 2K if A∗ = {1, 2},

q1−2w∗
1

4 +
q1(cs−γ)2+qs(w∗

1
2+2w∗

1(γ−cs))
4(q1−qs)qs

− 2K if A∗ = {1, s},
q2−2w∗

2
4 +

q2(cs−γ)2+qs(w∗
2
2+2w∗

2(γ−cs))
4(q2−qs)qs

− 2K if A∗ = {2, s},
(q1−w∗

1)(q1−q2−w∗
1+w∗

2)
4(q1−q2) +

(−cs+qs+γ)(−csq2+qsw∗
2+q2γ)

4qs(q2−qs)

+
(q2−w∗

2)(cs(q1−q2)+qs(w∗
2−w∗

1)+q2(w∗
1+γ)−q1(w∗

2+γ))
4(q1−q2)(q2−qs) − 3K if A∗ = {1, 2, s}.

(32)

Although (32) shows the retailer’s optimal payoff in closed form, an analytical characterization

of the optimal assortment is difficult because Π∗R is a function of eight model parameters – q1, q2,

qs, c1, c2, cs, γ, and K. As such, we numerically examine the role of unequal quality differentials

(q1−q2 6= q2−qs) and positive production costs (ci > 0). In our numerical study, we set (q1, q2, qs) =

(1 + κα, 1 + α, 1) and ci(qi) = βq2
i for i ∈ {1, 2, s}, where κ > 1 and β ≥ 0. Our original model

is a special case of this formulation in which κ = 2 and β = 0. When κ > 2, the high-quality

NB has a larger quality advantage over the other products, whereas κ ∈ (1, 2) implies a smaller

3



quality advantage. Our formulation is equivalent to assuming general quality levels for the two NBs

because there is a one-to-one correspondence between the (q1, q2) pair and the (α, κ) pair.

We design our numerical experiment as follows: α ranges from 0 to 2 in increments of 0.1, γ

ranges from 0 to 1 in increments of 0.01, and K ranges from 0 to 0.4 in increments of 0.01. These

values are identical to the ones we used in our numerical analysis in Section 5.1. Additionally, we

set κ ∈ {1.5, 1, 2.5} and β ∈ {0, 0.01, 0.1}. We characterize the equilibrium outcomes for 782,649

scenarios obtained from the unique combinations of 21 values of α, 101 values of γ, 41 values of K,

3 values of κ, and 3 values of β.

Our first managerial insight is that overlooking SB spillover can result in suboptimal assortment

and pricing decisions, leading to financial losses for the retailer. In our main model (i.e., κ = 2 and

β = 0), we find that the retailer incurs the largest losses when it fails to adjust its assortment to take

SB spillover into account, whereas its losses are relatively small when it carries the right assortment

but fails to adjust its prices. Table 1 shows the robustness of this finding with respect to alternative

quality and cost parameters. Specifically, for each (κ, β) combination in our numerical analysis, the

retailer’s average loss is about 0.08 in instances in which it carries the optimal assortment but fails

to adjust its prices. However, its average loss is more than 0.26 in instances in which it carries a

suboptimal assortment.

Table 1. The Retailer’s Average Loss Due to Overlooking SB Spillover

Average loss when the retailer
carries the optimal assortment Average loss when the retailer

κ β but sets suboptimal prices carries a suboptimal assortment

1.5 0 0.0857 0.2805
1.5 0.01 0.0851 0.2824
1.5 0.1 0.0818 0.2793
2 0 0.0860 0.2796
2 0.01 0.0854 0.2822
2 0.1 0.0817 0.2739

2.5 0 0.0868 0.2770
2.5 0.01 0.0864 0.2808
2.5 0.1 0.0821 0.2695

Our second managerial insight is that taking SB spillover into account decreases the retailer’s

category profit when the degree of SB spillover is high. However, a low degree of SB spillover

may enable the retailer to simultaneously increase its category profit and SB market share. In

Table 2, we present an example suggesting that our insights continue to hold for unequal quality

differentials and positive production costs. In Table 2, we set (κ, β, α,K) = (2.5, 0.1, 1, 0.01) and

report the equilibrium outcomes for three γ values. When γ = 0, the equilibrium assortment is
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A∗ = {1, 2, s}, and the retailer’s category profit is π∗R = 0.2748. When γ = 0.1, A∗ = {1, 2, s}

and π∗R = 0.2768. Put differently, when γ = 0.1, SB spillover enables the retailer to simultaneously

increase its category profit (i.e., ∆πR = 0.2768−0.2748 = 0.002) and SB market share. In contrast,

when γ = 0.9, A∗ = {s}, which leads to a negative category profit, π∗R = −0.01. Indeed, a high γ

decreases the retailer’s category profit (i.e., ∆πR = −0.01− 0.2748 = −0.2848).

Table 2. An Example on the Impact of SB Spillover on the Retailer’s Category Profit

κ β α K γ A∗ p∗1 − w∗
1 p∗2 − w∗

2 p∗s − w∗
s z∗1 z∗2 z∗s π∗

R ∆πR

2.5 0.1 1 0.01 0 {1, 2, s} 0.9292 0.7208 0.4500 0.1389 0.1319 0.1792 0.2748 0.0000
2.5 0.1 1 0.01 0.1 {1, 2, s} 0.9375 0.7375 0.4000 0.1333 0.1042 0.2625 0.2768 0.0020
2.5 0.1 1 0.01 0.9 {s} 0.0000 0.9000 −0.0100 −0.2848

Our third managerial insight is that SB spillover is never beneficial for the low-quality NB, but

may increase the high-quality NB’s profit. Our third insight continues to hold for unequal quality

differentials and positive production costs. For example, when (κ, β, α, γ,K) = (2.5, 0.01, 2, 0, 0.17),

the equilibrium assortment is A∗ = {1, 2}, and the high-quality NB’s profit is π∗1 = 0.4191. If γ

increases from 0 to 0.42, the retailer switches its assortment from {1, 2} to {1, s} by replacing the

low-quality NB with its SB. When γ = 0.42, π∗1 = 0.4473, which is higher than its profit when

γ = 0. This example illustrates that the high-quality NB may benefit from SB spillover. On the

contrary, we do not find any parameter combinations in which SB spillover increases the low-quality

NB’s profit.

Based on these numerical results, we conclude that our managerial insights are not driven by

the equal quality differentials (i.e., q1 − q2 = q2 − qs = α) and/or the zero production costs (i.e.,

c1 = c2 = cs = 0) assumptions.

B.2 Number of National Brand Manufacturers

Our model described in Section 3 focuses on a category with two NB manufacturers and one

SB. In this section, we extend our analyses to models with three and four NB manufacturers. For

consistency with our original formulation, we assume zero production costs and set (q1, q2, q3, qs) =

(1 + 3α, 1 + 2α, 1 + α, 1) in the model with three NBs. Similarly, we set (q1, q2, q3, q4, qs) = (1 +

4α, 1+3α, 1+2α, 1+α, 1) in the model with four NBs. The demand structure we present in Section

4.1 extends to larger assortments. For example, when A = {1, 2, 3, 4, s}, z1 = 1− p1−p2
q1−q2 = 1− p1−p2

α ,

zi = pi−1−pi
qi−1−qi −

pi−pi+1

qi−qi+1
= pi−1+pi+1−2pi

α for i = 2, 3, 4, and zs = p4−ps
q4−qs −

ps
qs

= p4−(1+α)ps
α .

We characterize the equilibrium wholesale and retail prices for each assortment based on the

sequence of events described in Section 3. In the last stage of the game, the retailer sets ps = qs−γ
2
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if the SB is in the assortment. Similarly, for given wholesale price, wi, the retailer sets pi = qi+wi

2

if NB i is in the assortment. In the second stage, NBs that are in the assortment jointly optimize

their wholesale prices. For example, when A = {1, 2, 3, 4, s}, the equilibrium wholesale prices are

(w1, w2, w3, w4) =
(

56α−γ
97 , 15α−2γ

97 , 4α−7γ
97 , α−26γ

97

)
. Consistent with our original model, the wholesale

prices increase in the degree of product differentiation, α, and decrease in the degree of SB spillover,

γ. In the first stage of the game, we use the wholesale and retail prices from the last two stages

of the game to calculate the retailer’s payoff for each assortment. We then find the assortment

that maximizes the retailer’s payoff. Although the number of feasible assortments increases in the

number of NBs in the category, the two-step approach described in Section 4.2 continues to be

useful in identifying suboptimal assortments. For example, when the category has four NBs, the

retailer prefers {1} over {2}, {3} and {4} due to its high quality. Consequently, as in our original

model, identifying the best assortment of size one requires a comparison between {1} and {s}.

Similar to the numerical analyses performed in Section 5.1, we characterize the equilibrium

outcomes for 86,961 scenarios obtained from the unique combinations of 21 values of α, 101 values

of γ, and 41 values of K. Table 3 validates the robustness of our first managerial insight that

overlooking SB spillover leads to the largest losses when the retailer fails to adjust its assortment,

whereas the retailer’s losses are relatively small when it carries the right assortment but fails to

adjust its prices. For example, when there are four NBs in the category, the retailer’s average loss

is 0.0835 when it carries the right assortment but sets suboptimal prices, while its average loss is

0.2002 when it does not carry the optimal assortment.

Table 3. The Retailer’s Average Loss Due to Overlooking SB Spillover

Average loss when the retailer
carries the optimal assortment Average loss when the retailer

Number of NBs but sets suboptimal prices carries a suboptimal assortment

2 0.0859 0.2796
3 0.0818 0.2276
4 0.0835 0.2002

Our insights regarding the retailer’s category profit continue to hold when there are three or

four NBs in the category. For example, when there are four NBs with (α, γ,K) = (0, 0.75, 0.25), if

the retailer overlooks SB spillover, it carries {1, 2} and its category profit is 0.4766. However, when

the retailer takes SB spillover into account, it carries {s} (i.e., it replaces two high-quality NBs with

the SB) and its category profit is −0.1406. Thus, when γ is high, taking SB spillover into account

decreases the retailer’s category profit. Indeed, the retailer’s category profit may be negative when
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the degree of SB spillover is high. In contrast, a low degree of SB spillover may enable the retailer

to simultaneously increase its category profit and SB market share. For example, when there are

four NBs with A∗(α, γ,K) = {1, 2, 3, s}, z∗s (α, γ,K) = 1
194 + 71γ

194α + γ
2 , which increases in γ, and

∆πR(α, γ,K) = γ
(

112
9409 + 4173γ

18818α −
γ
4

)
, which is positive when γ is small.

Last, we examine whether our insights regarding the impact of SB spillover on the NBs continue

to hold when the category has three or four NBs. We find that the lowest quality NB never benefits

from SB spillover. However, other NBs, which have medium or high quality, may benefit from SB

spillover when the retailer removes their lower-quality competitors from the assortment to take SB

spillover into account. Table 4 illustrates this with a numerical example in which there are three NBs

with α = 0.6 and K = 0. When γ = 0, the retailer carries A∗(α, γ,K) = {1, 2, 3, s}, and all three

NBs have positive profits. SB spillover is never beneficial for the low-quality NB manufacturer. That

is, ∆π3(α, γ,K) = π∗3(α, γ,K)− π∗3(α, 0,K) < 0 for all γ > 0. In contrast, the high- and medium-

quality NBs may benefit from SB spillover. When γ = 0.1, the retailer removes the lowest-quality

NB from its assortment and carries A∗(α, γ,K) = {1, 2, s}. This assortment change increases the

high- and medium-quality NBs’ profits. When γ = 0.13, SB spillover hurts the medium-quality

NB (∆π2(α, γ,K) = −0.0004), but benefits the high-quality NB (∆π1(α, γ,K) = 0.0138). Finally,

when γ = 0.75, SB spillover harms all three NBs. The same insights also hold when the category

has four NBs.

Table 4. An Example on the Impact of SB Spillover on the NB Manufacturers

High-quality NB Medium-quality NB Low-quality NB
α γ K A∗(α, γ,K) π∗1 ∆π1 π∗2 ∆π2 π∗3 ∆π3

0.6 0 0 {1, 2, 3, s} 0.0999 0.0000 0.0142 0.0000 0.0009 0.0000
0.6 0.1 0 {1, 2, s} 0.1021 0.0022 0.0156 0.0014 0.0000 −0.0009
0.6 0.13 0 {1, 2, s} 0.1003 0.0005 0.0138 −0.0004 0.0000 −0.0009
0.6 0.75 0 {1, s} 0.0766 −0.0233 0.0000 −0.0142 0.0000 −0.0009

Based on these findings, we conclude that our managerial insights regarding the retailer’s losses

associated with overlooking SB spillover and the impact of SB spillover on the retailer’s category

profit continue to hold when the category has three or four NBs. Moreover, we find that the lowest

quality NB that is in direct competition with the SB never benefits from SB spillover. However,

medium- and high-quality NBs may benefit from the removal of their lower-quality competitors

from the assortment.
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B.3 Sequence of Events

Our model described in Section 3 is a three-stage game in which the retailer moves first by

selecting its assortment, A. The NB manufacturers that are in the assortment move next by setting

their wholesale prices, wi. Finally, the retailer sets the retail prices pi for all i ∈ A. In this section, we

analyze an alternative sequence of events to demonstrate the robustness of our managerial insights

with respect to the timing of the assortment and pricing decisions. In the alternative sequence,

the NB manufacturers move first by setting their wholesale prices. The retailer moves next by

selecting its assortment and setting the retail prices for the products in its assortment. All other

assumptions (e.g., (q1, q2, qs) = (1 + 2α, 1 + α, 1) and zero production costs) are identical to the

ones in our original model for consistency.

The retail price expressions we derived in Section 4.1 continue to hold because the last stage of

the new sequence is identical to the last stage of our original sequence. That is, p1 = q1+w1

2 when

the high-quality NB is in the assortment. Similarly, p2 = q2+w2

2 when the low-quality NB is in the

assortment. Lastly, ps = qs−γ
2 when the SB is in the assortment. Based on these retail prices, the

retailer’s payoff is

ΠR (w1, w2) =



0 if A = ∅,
(1+2α−w1)2

4(1+2α) −K if A = {1},
(1+α−w2)2

4(1+α) −K if A = {2},
(1+γ)2

4 −K if A = {s},
1
4 + α

2 + (w1−w2)2

4α − w1
2 +

w2
2

4(1+α) − 2K if A = {1, 2},
γ2+2α(2α+γ2+1)+w2

1+2w1(γ−2α)

8α − 2K if A = {1, s},
(α+1)γ2+α+(w2−α)2+2γw2

4α − 2K if A = {2, s},
γ2+α(2α+γ2+1)+w2

1−2w1(α+w2)+2w2
2+2γw2

4α − 3K if A = {1, 2, s},

(33)

Let Ã(w1, w2) denote the assortment that maximizes the retailer’s payoff, (33). Then, the high-

and low-quality NB manufacturer’s profits are respectively

π1 (w1|w2) =



w1(2α−w1+1)
4α+2 if Ã = {1},

w1(α−w1+w2)
2α if Ã = {1, 2},

w1(2α−γ−w1)
4α if Ã = {1, s},

w1(α−w1+w2)
2α if Ã = {1, 2, s},

0 otherwise,

and π2 (w2|w1) =



w2(1+α−w2)
2(1+α) if Ã = {2},

w2((1+α)w1−2αw2+w2)
2α(1+α) if Ã = {1, 2},

w2(α−γ−w2)
2α if Ã = {2, s},

w2(w1−2w2+γ)
2α if Ã = {1, 2, s}.

0 otherwise.
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The first two stages of the game are analytically intractable for two reasons. First, the retailer’s

optimal assortment, Ã(w1, w2), depends on five parameters, w1, w2, α, γ, and K. Consequently, the

boundaries at which the retailer switches from one assortment to another are difficult to character-

ize. Second, and more importantly, as shown in Figure 5, the NB manufacturers’ profit functions

have jump discontinuities due to the retailer’s assortment switches. As a result, the equilibrium

wholesale prices may be in one of the boundary points. Thus, having derived each player’s objec-

tive function, we numerically examine whether our managerial insights continue to hold under the

alternative sequence of events.

Figure 5. The NB Manufacturer’s Profit Functions

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

w1

π 1
(w

1,
 w

2)

(a)

0.0 0.5 1.0 1.5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

w2

π 2
(w

2,
 w

1)

(b)

Notes. (α, γ,K) = (2, 0.25, 0.04) in both graphs. Figure 5(a) shows π1 as a function of w1 when the low-
quality NB sets w2 = q2

2 = 1.5. In this figure, the retailer’s optimal assortment, Ã(w1, 1.5), is {1} when
w1 ∈ [0, 0.5401), {1, s} when w1 ∈ [0.5401, 2.9530), and {s} when w1 ≥ 2.9530. Figure 5(b) shows π2
as a function of w2 when the high-quality NB sets w1 = q1

2 = 2.5. In this figure, the retailer’s optimal

assortment, Ã(2.5, w2), is {2} when w2 ∈ [0, 0.4925), {2, s} when w2 ∈ [0.4925, 0.7838), {1, 2, s} when
w2 ∈ [0.7838, 1.0511), and {1, s} when w2 ≥ 1.0511. The vertical dashed lines represent the assortment
switching points.

Let w̃1(w2) ≡ arg maxw1
π1(w1|w2) and w̃2(w1) ≡ arg maxw2

π2(w2|w1) denote the high- and

low-quality NB manufacturers’ best response functions, respectively. For a given (α, γ,K), we derive

w̃1(w2) for w2 ∈ [0, q2] and w̃2(w1) for w1 ∈ [0, q1]. An equilibrium exists when there exists a (w∗1, w
∗
2)

pair such that w̃1(w∗2) = w∗1 and w̃2(w∗1) = w∗2. An equilibrium does not exist for some parameter

combinations due to the discontinuities in the NB manufacturers’ profit functions. For example,

we cannot find an equilibrium in 271 out of 86,961 unique (α, γ,K) combinations we examined in
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Section 5.1. Nevertheless, our three managerial insights continue to hold under the new sequence

of events. First, using the 86, 961 − 271 = 86, 690 scenarios in which there is an equilibrium, we

find that the retailer’s average loss is 0.0346 in scenarios in which the retailer carries the right

assortment but sets suboptimal prices due to overlooking SB spillover. The retailer’s average loss

is 0.2804 in instances in which it carries a suboptimal assortment due to overlooking SB spillover.

These findings show the robustness of our first managerial insight that the retailer incurs the largest

losses when it fails to adjust its assortment to take SB spillover into account, whereas its losses are

relatively small when it carries the right assortment but fails to adjust its prices.

Second, there are cases in which SB spillover enables the retailer to simultaneously increase its

category profit and SB market share. For example, when (α, γ,K) = (1, 0, 0), the retailer carries

A∗ = {1, 2, s}, and its equilibrium profit and SB market share are 0.5153 and 0.0714, respectively.

When (α, γ,K) = (1, 0.1, 0), the retailer continues to carry A∗ = {1, 2, s}, but its equilibrium profit

and SB market share are higher (0.5187 and 0.1571, respectively). Nonetheless, there are also cases

in which SB spillover leads to a decrease in the retailer’s category profit. For example, π∗R = 0.1257

when (α, γ,K) = (0.5, 0, 0.25), and π∗R = −0.16 when (α, γ,K) = (0.5, 0.8, 0.25). In this example,

a high γ not only decreases the retailer’s category profit but also forces the retailer to incur a loss

in the focal category.

Last, we find that SB spillover may increase the high-quality NB’s profit. For example, when

(α, γ,K) = (3, 0, 0.003), A∗ = {1, 2}, and the high-quality manufacturer’s profit is π∗1 = 0.4714. If

γ increases from 0 to 0.1, the retailer switches its assortment from {1, 2} to {1, 2, s} by introducing

its SB. When γ = 0.1, the high-quality NB’s equilibrium profit is π∗1 = 0.4817, which is higher than

its profit when γ = 0. This example illustrates that the high-quality NB manufacturer may benefit

from SB spillover. Conversely, we do not find any parameter combinations in which SB spillover

increases the low-quality NB manufacturer’s profit.

Based on these numerical results, we conclude that whether the NB manufacturers set their

wholesale prices before or after the retailer selects its assortment does not change our managerial

insights.
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