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you should. Google him.   
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Useful Physical Constants*  

 

Universal gravitational constant:   
3

11
2

6.67408(31) 10
m

G
kg s

    

Speed of light (exact by definition)   82.99792458 10
m

c
s

    

Avogadro’s Constant (exact)†   NA = 6.02214076 × 1023 mol-1 

Boltzmann’s Constant  (exact)†   k = 1.380649 × 10−23 J/K 

Universal gas constant    8.3144598(48)
J

R
mol K

   

Acceleration due to gravity at Vanderbilt‡:  
2

9.7943(32)
m

g
s

   

Standard atmospheric pressure   51 1.01325 10atm Pa    

Absolute zero      0 K 273.15 C     

                                                      
* Values of fundamental constants are from NIST (physics.nist.gov/cuu). The number in parentheses is the standard 
uncertainty of the final digits of the main number. For example: 6.67408 ±  0.00031  =  6.67408 (31) 
 
† As of May 20, 2019, this exact value is adopted by the General Conference on Weights and Measures (GCWM) 
‡ Dr. Medford Webster, Vanderbilt University 
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Introduction 
 
The Sermon 

The speed of light is 2.99792458 × 108 m/s. This is not science. 

The Wikipedia entry on Newton’s 2nd law of motion is not science.  

Nor is the periodic table of the elements. 

Science is not a collection of facts. (Not even true facts!) Rather, science is a process for figuring out 
what is really going on. What is the underlying principle here? How does this relate to some other 
observation? If you are not involved in such a process, you are not doing science. A brilliant, dedicated, 
A+ student memorizing a list of equations is not doing science. A baby dropping peas on the floor to see 
what happens: now that’s science!! (Does oatmeal fall too? Let’s find out!!) 

This is a science lab. I expect you to do some science in it. 
 
“Yeah, yeah, Dr. Charnock, I’ve heard this sermon before.” 
 
Perhaps so, but I have seen too many brilliant and dedicated students who have learned to succeed in their 
other science classes by learning lots of stuff. So, they come into physics planning to memorize every 
equation they encounter and are completely overwhelmed. You cannot succeed in physics by learning 
lots of stuff. There are simply too many physics problems in the world; you cannot learn them all. 
 
Instead, you should learn as little as possible!* More than any other science, physics is about fundamental 
principles, and those few principles† must be the focus of your attention. Identify and learn those 
fundamental principles and how to use them. Then you can derive whatever solution that you need. And 
that process of derivation is the process of science. 
 
“OK, thanks for the advice for the class, but this is a lab!” 
 
It’s still about fundamental principles. Look, each week you will come to lab and do lots of stuff. By 
following the instructions and copying (. . . oh, I mean sharing . . .) a few answers from your lab partners, 
you can blunder through each lab just fine. The problem is that the following week you will have a quiz, 
and you will not remember everything you did in that lab the week before.  
 
When you are doing each lab, consciously relate your experiments to the underlying principles.  
 

How did I measure this? Which principle am I applying? Why are we doing this? 
 
On the subsequent quiz, instead of having to remember what you did, you can apply the principles to 
figure out what you did. Trust me. It really is easier this way. 
 

                                                      
* . . . but not less. 
† F = ma, conservation of energy and momentum, oscillations and waves, trigonometry. You will learn a 
few more in the second semester. 
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GOALS AND OBJECTIVES 

Physics is about the real world, not some idealized Platonic world that only exists in your head.* 
The purpose of this lab is to relate the theories and equations you are learning in the classroom to 
reality. Hopefully, we’ll convince you that all that physics stuff actually does work. Of course, 
reality can be messy, and along the way you will learn to deal with experimental uncertainty, loose 
cables, bad sensors, sticky wheels, temperamental software, temperamental lab partners, your own 
awful handwriting, and the typos in this lab book. 
 
Welcome to experimental physics! 
 

 
xkcd.com 
 
CORRELATION WITH LECTURE 
 
Most of the topics covered in the lab will also be covered in your lecture, although not necessarily 
in the same sequence or at the same time during the semester. Given the scheduling (and re-
scheduling) of the different lecture sections (some are MWF and some are TR), and the different 
lab sections (the first lab is Monday at 1 PM, the last is Thursday at 4 PM), perfect correlation of 
lecture and lab topics is not possible. The TA will provide a brief overview of the physics concept 
being explored in the lab during the first part of each lab section. 
 
Occasionally, to improve the correlation with the lecture, the order of the labs may be changed 
from the sequence in this lab book. If so, you will be informed by your TA. Check your email 
regularly. 

 
 
  

                                                      
* That’s the Mathematics Dept. Walk over to Bldg. 3. 
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PREPARATION 
 
Prior to coming to lab, you should read over each experiment. Furthermore, for each laboratory, 
you must complete a pre-lab activity printed at the beginning of each lab in this manual. The pre-
lab should be completed before the lab and turned in at the beginning of the lab. See the course 
syllabus for more details. In some labs, you may also be required to complete experimental 
predictions and enter them in your lab manual before you come to lab. Your TA will discuss this 
with you when necessary. Bring the following to each lab: 
 

 Your complete lab manual secured in a 3-ring binder, including your previous graded labs. 
 Your completed pre-lab. 
 A scientific calculator. Graphing calculators are nice but not necessary. For some 

calculations, you may find a spreadsheet (such as Excel), Matlab, or some other computer 
based tools more appropriate. You are welcomed and encouraged to use such tools, but you 
still need a calculator. 

 A pen, pencil and an eraser.  
 
Often, the pre-lab includes online media for you to watch. Direct URL links are printed in the text, 
but clickable links may be found here: 
 

https://my.vanderbilt.edu/physicslabs/videos/ 
 

 
xkcd.com 
 
PROCEDURE IN THE LABORATORY 
 
In the laboratory, you will need to be efficient in the use of your time. We encourage a free 
exchange of ideas between group members and among students in the section, and we expect you 
to share both in taking data and in operating the computer, but you should do your own work 
(using your own words) in answering questions in the lab manual and on the review questions 
handed out in lab.  
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HONOR CODE 
 
The Vanderbilt Honor Code applies to all work done in this course. Violations of the Honor Code 
include, but are not limited to: 

 Copying another student’s answers on a pre-lab, lab questions, review questions, or quiz; 
 Submitting data as your own when you were not involved in the acquisition of that data; 

and 
 Copying data or answers from a prior term’s lab (even from your own, in the event that 

you are repeating the course). 
 
 

GRADING 
 
Your lab reports will be graded each week and returned to you the following week. Grades 
(including lab and quiz grades) will be posted on Brightspace. 

 Mistakes happen! Check that the scores on Brightspace are correct. If you don’t do this, 
no one will. 

 Retain you lab reports so that any such errors can be verified and corrected. 
 Details of grading may be found on the online syllabus. 

 
MAKING UP MISSED LABS 
 
For details, I refer you to the syllabus (see below), but the main points are . . .  

 All labs must be completed. 
 If you know ahead of time that you will miss a lab, you must email both Dr. Charnock and 

your TA no later than the Friday before you will miss the lab.  
 

forrest.t.charnock@vanderbilt.edu 

In that email, include 

o Your lab (1601L, 1602L, 1501L, or 1502L) 
o Section number 
o TA name 
o A brief explanation of why you are missing lab. 

 If arranging a make-up ahead of time is not possible, email us as soon as possible. 
o If you are abducted by aliens, whip out your phone and compose an email 

describing your predicament while the tractor beam is lifting you into the air. Make 
sure to hit SEND before the iris door closes or the message won’t go out.* Update 
us on your situation as soon as you are returned to Devil’s Tower. 

 You must be pro-active in making up labs. 
o Do NOT passively wait for someone to tell you what to do. 
o If you do not receive a reply from Dr. Charnock within 24 hrs, email him again. 

Repeat as necessary.† 
                                                      
* Aliens rarely share their Wi-Fi passwords. 
† Luke 18:1-5 
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SYLLABUS: available online 
 

https://my.vanderbilt.edu/physicslabs/documents/ 
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How to Count Significant Figures* 
 
For all measured quantities (excepting counted quantities†), there will always be an associated 
uncertainty. For example, 
 

height of Mt. Everest‡ = 8844.43 m ± 0.21 m 
 

Understanding the uncertainty is crucial to understanding the quantity. However, it is usually not 
necessary to provide a precise uncertainty range as shown above. The simplest way to represent 
uncertainty is the method significant figures. Here, the ± is dropped and the uncertainty is 
implied by the figures that are shown. An individual digit is usually considered significant if its 
uncertainty is less than ±5. In the case of Mt. Everest, the uncertainty is greater than 0.05 m; thus 
making the "3" uncertain. Rounding to the nearest 0.1 meter, we can write 

height of Mt. Everest = 8844.4 m. 

This quantity has five significant figures. Notice that a digit does not need to be precisely known 
to be significant. Maybe the actual height is 8844.2 m. Maybe it is 8844.6 m. But the Chinese 
Academy of Sciences is confident that it is NOT 8844.7 m. Hence, that final “4” is worth 
recording. 

In general, the rules for interpreting a value written this way are . . . 

 All non-zero digits are significant 
 All zeros written between non-zero digits are significant 
 All zeros right of the decimal AND right of the number are significant 
 Unless otherwise indicated, all other zeros are implied to be mere place-holders and are not 

significant. 
 

Consider the following examples. The significant digits are underlined 

1023 

102300 

102300.00 

001023.450 

0.0010230 

                                                      
* Even if you think you understand significant figures, read this anyway. Some of what you think you know may be 
wrong. 
† For example: “There are exactly 12 eggs in that carton.” 
‡ 2005, Chinese Academy of Sciences, https://en.wikipedia.org/wiki/Mount_Everest    
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Occasionally, a zero that appears to be a mere place-holder is actually significant. For example, 
the length of a road may be measured as 15000 m ± 25 m. The second zero is significant. There 
are two common ways two write this. 

 Use scientific notation (preferable):     41.500 10 m 
 Use a bar to indicate the least significant figure:     1 50 0 0 m or 1 50 0 0 m 

 
Addition and Subtraction 

If several quantities are added or subtracted, the result will be limited by the number with the 
largest uncertain decimal position. Consider the sum below: 

 

123.4500

12.20

0.00023

135.65023

135.65

  

This sum is limited by 12.20; the result should be rounded down to the nearest hundredth. 
Again, consider another example: 

321000

12.30

333

320679.3

320680


 

In 321000, the last zero is not significant. The final answer is rounded up to the ten’s 
position. 

 
Multiplication and Division 

When multiplying or dividing quantities, the quantity with the fewest significant figures will 
determine the number of significant figures in the answer. 

 
123.45 0.0555

0.30834721 0.308
22.22


    

 
0.0555 has the fewest significant figures with three. Thus, the answer must have three 
significant figures. 

 
To ensure that round off errors do not accumulate, keep at least one digit more than is warranted 
by significant figures during intermediate calculations. Do the final round off at the end. 
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How Do I Round a Number Like 5.5? Do I round up or down? 
 
For a fraction of 0.5, I always round up* (for example, 5.5 → 6), but others have different 
opinions†. Counting significant figures is literally an order-of-magnitude approximation, so 
rounding up or down does not really matter that much. 
 
How Can This Break Down? 
Remember, counting significant figures is NOT a perfect way of accounting for uncertainty. It is 
only a first approximation that is easy to implement and is often sufficient.  
 
For transcendental functions (sines, cosines, exponentials, etc.) these rules simply don’t apply. 
When doing calculations with these, I usually keep one extra digit to avoid throwing away 
resolution. 
 
However, even with simple math, naively applying the above rules can cause you to needlessly 
loose resolution. 
 

Suppose you are given two measurements 10m and 9s. You are asked to calculate 
the speed.  

With 10m I will assume an uncertainty of about 0.5 out of 10 or about 5%.‡  
With 9s you have almost the same uncertainty (0.5 out of 9), but technically we 

only have one significant digit instead of two. 
If I naively apply the rules . . .  
 

10
1.1111 1

9

m m m

s s s
   

 
. . . my answer has an uncertainty of 0.5 out of 1!!!  50%!!! 

 
This is what I call the odometer problem: When you move from numbers that are close to 
rolling over to the next digit (0.009, 8, 87, 9752953, etc.) to numbers that have just barely rolled 
over (0.001, 1.4, 105, 120258473, etc.), the estimate of the uncertainty changes by a factor of 
10.§ Here, we really need to keep a second digit in the answer. 
 

10
1.1111 1.1

9

m m m

s s s
   

 
Notice: In the problem above, if the numbers are flipped, the odometer problem goes away: 
 

9
0.9000 0.9

10

m m m

s s s
   

                                                      
* . . ., and for good mathematical reasons, mind you. But still, it does not really matter that much. 
† Google it, if you want to waste an hour of your life. 
‡ Of course, I don’t really know what the uncertainty is. It could be much larger, but bear with me anyway. 
§ . . . and, vice-versa. 



   13 

Vanderbilt University, Dept. of Physics & Astronomy       General Physics I Laboratory Manual 

 
Oh Great! I thought this was supposed to be easy. 
 
Well . . ., it is! But, you still have to use your head! 
 

 Apply the rules.  
 Look out for the “odometer problem”.  
 If warranted, keep an extra digit. 
 Simple! 

 
Remember: counting significant figures is literally an order-of-magnitude approximation. So, 
don’t get too uptight about it. If you need something better than an order-of-magnitude 
approximation, see Lab 1 and Appendix C. 
 
 
What you should never do is willy-nilly copy down every digit from your calculator. If you are 
in the habit of doing that, STOP IT. You are wasting your time and lying to yourself. If you ever 
claim that your cart was traveling at 1.35967494 m/s, expect me to slap you down. That is just 
wrong!  
 

What makes a result scientific is honesty, not precision. 
 
To say that the altitude of Mt. Everest is about 9000 m is perfectly true.  
To say that the altitude of Mt. Everest is 8844.4324 m is a lie. 
 
 
 

Forrest T. Charnock 
Director of the Undergraduate Laboratories 
Vanderbilt Physics   
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The Greek Alphabet 

The 26 letters of the Standard English alphabet do not supply enough variables for our algebraic 
needs. So, the sciences have adopted the Greek alphabet as well. You will have to learn it 
eventually, so go ahead and learn it now, particularly the lower case letters. 
 

Alpha   
Beta   
Gamma  
Delta   
Epsilon E  
Zeta    
Eta    

Theta   q 

Kappa   
Lambda  l 

Mu   
Nu  N  

Xi  X x 

Omicron   

Pi  P p 

Rho  R r 

Sigma   
Tau  T  

Upsilon U u 

Phi   f or  

Chi  C c 

Psi   y 

Omega  W w 

 
Important: is NOT w! Note how the Greek  is curvy, the Latin w is pointy. Please do not call 
 ‘double-u’; it is ‘omega’. 
 
And  is a Greek rho, NOT a Latin p! 
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 Name__________________________________  Section _______  Date_____________ 
  

Pre‐Lab Preparation Sheet for Lab 0: 
Problem Solving 

 (Due at the Beginning of Lab) 
 
 
Directions: 
Read the essay How to Count Significant Figures, then read over the following lab.  
Answer the following questions. 
 

1. Applying the rules of significant figures, calculate the following 
 
 
123.4 + 120 + 4.822 - 21 =  
 
 
 
 
 
185.643 0.0034

3022


   

 
 
 
 
 
 
(523400 0.0032) 253    
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xkcd.com  
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Name _____________________  Date __________    Partners_____________________ 

TA      ________________  Section __________              _____________________ 

  
Lab 0: Estimation and Problem Solving 

 

Measure what can be measured, and make measurable what cannot be measured. 

--Galileo Galilei 

 

Objective: To learn how to approach a problem by asking the right questions. 

Equipment: meter stick, 1 kg mass, ruler, caliper, your brain 

 

DISCUSSION 

Before you can really know anything, you have to measure something, be it distance, time, 
acidity, or social status. However, measurements cannot be exact. Rather, all measurements have 
some uncertainty associated with them.* Ideally, all measurements should consist of two 

numbers: the value of the measured quantity x and its uncertainty† x. The uncertainty reflects 
the reliability of the measurement. The range of measurement uncertainties varies widely. Some 

quantities, such as the mass of the electron me = (9.1093897 ± 0.0000054) ×10-31 kg, are known 
to better than one part per million. Other quantities are only loosely bounded: There are 100 to 
400 billion stars in the Milky Way. 

Note that we are not talking about “human error”! We are not talking about mistakes! 
Rather, uncertainty is inherent in the instruments and methods that we use even when perfectly 
applied. The goddess Athena cannot not read a digital scale any better than you. 

 

  

                                                      
* The only exceptions are counted quantities. “There are exactly 12 eggs in that carton.” 
† Sometimes this is called the error of the measurement, but uncertainty is the better term. Error implies a variance 
from the correct value: 

m ea su red co rrec te r ro r x x   

But, of course, we don’t know what the correct value is. If we did, we would not need to make the measurement in 
the first place. In fact, we cannot know the error in principle! But we can measure the uncertainty. 
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RECORDING UNCERTAINTY 

In general, uncertainties are usually quoted with no more precision than the measured result; and 
the last significant figure of a result should match that of the uncertainty. For example, a 
measurement of the acceleration due to gravity on the surface of the Earth might be given as  

g = 9.7 ± 1.2 m/s2  or  g = 9.9 ± 0.5 m/s2 

But you should never write 

g = 9.7 ± 1.25 m/s2  or  g = 9.92 ± 0.5 m/s2. 

In the last two cases, the precision of the result and uncertainty do not match. 

Uncertainty is an inherently fuzzy thing to measure; so, it makes little sense to present the 
uncertainty of your measurement with extraordinary precision. It would be silly to say that I am 
(1.823643 ± 0.124992)m tall. Therefore, the stated uncertainty will usually have only one 
significant digit. For example  

23.5 ± 0.4 or 13600 ± 700 

However, if the uncertainty is between 1.0 and 2.9 (or 10 and 29, or 0.0010 and 0.0029, etc.) it 
may be better to have two significant digits. For example,  

124.5 ± 1.2 

There is a big difference between saying ±1 and ±1.4. There is not a big difference between ±7 
and ±7.4. (This is related to the odometer problem. See the above essay How to Count 
Significant Figures.) 

 

VOCABULARY 

Here we define some useful terms (with examples) and discuss how uncertainties are reported in 
the lab. 

Absolute uncertainty: This is the magnitude of the uncertainty assigned to a measured physical 
quantity. It has the same units as the measured quantity. 

Example 1.  Again, consider the example above: 

L = (1.56 ± 0.03) cm 

Here, the uncertainty is given in units of length: 0.03 cm. When the uncertainty has the same 
dimension as the measurement, this is an absolute uncertainty. 
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Relative uncertainty: This is the ratio of the absolute uncertainty and the value of the measured 
quantity. It has no units, that is, it is dimensionless. It is also called the fractional uncertainty or, 
when appropriate, the percent uncertainty. 

Example 2.  In the example above the fractional uncertainty is 

 
0.03cm

0.019
1.56 cm

V

V


    

    
The percent uncertainty would be 1.9%.  

Exercise A 

1. Measure the height of one member of your group. 
2. Estimate the uncertainty of this measurement 
3. Now, have another group measure the height of the same student. 

 

Name          height        uncertainty 

 

____________________________________________________________________________ 

 

                                        ________________________________________________________ 

 

Since there are always measurement uncertainties, your numbers are probably different.* But these two 
measurements may still be consistent with each other. 

4. Are these different measurements consistent with each other? 
5. What do you mean when you say they are or are not consistent?  

  

                                                      
* If the numbers are the same, you could probably add another digit of precision to your measurement. 
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Exercise B 

Suppose we were to lie all of the students head to foot on the ground.  

6. What would be the length and corresponding uncertainty of this trail of bodies? 
 

 

 

7. When adding measurements together, is it better to think in terms of absolute or relative 
uncertainty? 

 

 

 

8. How many students, lying head to foot would be required to encircle a field in front of 
the library? Estimate your uncertainty of this number? 

 

 

 

 

Exercise C 

9. How many sheets of paper could you fit inside this room? 
 

 

 

10. What is the dominant source of error in this estimate? 
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 Name__________________________________  Section _______  Date_____________ 
  

Pre‐Lab Preparation Sheet for Lab 1: 
Measurement, Uncertainty, and Uncertainty Propagation 

 (Due at the Beginning of Lab) 
 
 

Read over the lab, then answer the following questions. 

Consider two quantities:   

A = (10 m ± 1 m)   B = (100 m ± 5 m) 

 

1. What are the relative uncertainties of A and B? 
 

 

 

 

2. What is the uncertainty of (A + B)? 
 

 

 

 

3. What is the uncertainty of (A – B)? 
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Name _____________________ Date __________    Partners_____________________ 

TA      ________________  Section __________              _____________________ 

  
Lab 1: Measurement, Uncertainty, and Uncertainty Propagation 

 

“The first principle is that you must not fool yourself – and you are the easiest person to fool.” 

--Richard Feynman 

 

Objective: To understand how to report both a measurement and its uncertainty. 

Learn how to propagate uncertainties through calculations 

Define mean, standard deviation, and standard deviation of the mean. 

Equipment: meter stick, 1 kg mass, ruler, caliper, short wooden plank, graduated cylinder 

 
Types of uncertainties 

Random uncertainties occur when the results of repeated measurements vary due to truly random 
processes. For example, random uncertainties may arise from small fluctuations in experimental 
conditions or due to variations in the stability of measurement equipment. These uncertainties can 
be estimated by repeating the measurement many times. 

A systematic uncertainty occurs when all of the individual measurements of a quantity are biased 
by the same amount. These uncertainties can arise from the calibration of instruments or by 
experimental conditions. For example, slow reflexes while operating a stopwatch would 
systematically yield longer measurements than the true time duration. 
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Mistakes can be made in any experiment, either in making the measurements or in calculating the 
results. However, by definition, mistakes can also be avoided. Such blunders and major 
systematic errors can only be avoided by a thoughtful and careful approach to the experiment. 

 

 Estimating uncertainty 

Repeated observation: Suppose you make repeated measurements of something: say with a 
stopwatch you time the fall of a ball. Due to random variations, each measurement will be a little 
different. From the spread of the measurements, you can calculate the uncertainty of your results.   

 

Shortly, we will describe the formal procedure to do this calculation. (Oddly enough, truly random 
uncertainties are the easiest to deal with.) 

By eye or reason: Sometimes, repeated measurements are not relevant to the problem. Suppose 
you measure the length of something with a meter stick. Meter sticks are typically ruled to the mm; 
however, we can often read them more precisely that that. 

 

Consider the figure above. Measuring from the left side of each mark and considering the position 
uncertainties of both ends of the bar, I can confidently say that the bar is (1.56 ± 0.03) cm. Perhaps 
your younger eyes could read it with more confidence, but when in doubt it is better to 
overestimate uncertainty. 

Could I do a better job by measuring several times? Not always. Sometimes with repeated 
measurements, it still comes down to “Looks like (1.56 ± 0.03) cm to me.” But that’s ok. Your 
reasoned judgment is sufficient. Science is defined by rigorous honesty, not rigorous precision! 
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Reducing random uncertainty by repeated observation 

By taking a large number of individual measurements, we can use statistics to reduce the random 
uncertainty of a quantity. For instance, suppose we want to determine the mass of a standard U.S. 
penny. We measure the mass of a single penny many times using a balance. The results of 17 
measurements on the same penny are summarized in Table 1. 

  

Table 1.  Data recorded measuring  the mass of a US penny. 

           

  mass (g)  deviation (g)      mass (g)  deviation (g) 

1  2.43 -0.088   10  2.46 -0.058 

2  2.49 -0.028   11  2.52 0.002 

3  2.49 -0.028   12  2.4 -0.118 

4  2.58 0.062   13  2.58 0.062 

5  2.52 0.002   14  2.61 0.092 

6  2.55 0.032   15  2.49 -0.028 

7  2.52 0.002   16  2.52 0.002 

8  2.64 0.122   17  2.46 -0.058 

9  2.55 0.032        

The mean value m̄ (that is, the average) of the measurements is defined to be 

  1 2 17
1

1 1
. . . 2.518

17

N

i
i

m m m m m g
N 

         (1) 

 
The deviation di of the ith measurement mi from the mean value m̄ is defined to be 

 i id m m    (2) 

Fig. 1 shows a histogram plot of the data on the mass of a US penny. Also on the graph is a plot 

of the smooth bell curve (that is a normal distribution) that represents what the distribution of 
measured values would look like if we took many, many measurements. The result of a large set 
of repeated measurements (when subject only to random uncertainties) will always approach a 
normal distribution which is symmetrical about m̄.   



26      Lab 1: Measurement, Uncertainty, and Uncertainty Propagation 

 

Vanderbilt University, Dept. of Physics & Astronomy    General Physics I Laboratory Manual 

 

Figure 1.  The Gaussian or normal distribution  for the mass of a penny N=17,  m̄ =2.518 g, 

Δm=0.063 g. 

 

OK, now I have all of these measurements. How accurate is any one of these measurements?  

For this, we now define the standard deviation Δm as 

 
 
 

 2 2

1 1

0.063
1 16

N N
i i

i i

m m m m
m g

N 

 
   

    (3) 

 
For normal distributions, 68% of the time the result of an individual measurement would be 
within ± Δm of the mean value m̄.  Thus, Δm is the experimental uncertainty for an individual 
measurement of m.  

The mean m̄ should have less uncertainty than any individual measurement. What is that 
uncertainty?  

The uncertainty of the final average is called the standard deviation of the mean. It is given by 

 
m

M
N


    (4) 

 With a set of N=17 measurements, our result is 

 

 

mass of a penny

0.063
2.518

17

2.518 0.015

m
m M m

N
g

g

g


    

 

 

  (5) 
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Thus, if our experiment is only subject to random uncertainties in the individual measurements, 
we can improve the precision of that measurement by doing it repeatedly and finding the average. 

Note, however, that the precision improves only as 
1

N
. To reduce the uncertainty by a factor of 

10, we have to make 100 times as many measurements. We also have to be careful in trying to 
get better results by letting  N→ ∞, because the overall accuracy of our measurements will 
eventually be limited by systematic errors, which do not cancel out like random errors do.  

Exercise 1: 

a. With a caliper, measure the width and thickness of the plank. Make at least five 
measurements of each dimension and enter the result into Table 2.  

b. With a ruler, measure the length of the wooden plank on your table as precisely as 
possible. Estimate the uncertainty, and enter the result below. 

c. For both the width and thickness, calculate your final result (the mean) and the 
uncertainty (the standard deviation of the mean). Enter the final results below the table. 

 
Table 2 

width  deviation  thickness  deviation 
    

    

    

    

    

    

    

 
 
width = ________________________________________________________________ 
 
 
thickness = _____________________________________________________________ 
 
 
length = _______________________________________________________________ 
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Propagation of uncertainties 
 
Usually, to obtain a final result, we have to measure a variety of quantities (say, length and time) 
and mathematically combine them to obtain a final result (speed). How the uncertainties in 
individual quantities combine to produce the uncertainty in the final result is called the 
propagation of uncertainty. 

Here we summarize a number of common cases. For the most part these should take care of what 
you need to know about how to combine uncertainties.* 

Uncertainties in sums and differences:  

If several quantities 1 2 3., ,x x x  are measured with absolute uncertainties 1 2 3., ,x x x    then the 

absolute uncertainty in Q (where 1 2 3Q x x x   ) is 

 1 2 3Q x x x         (6) 

 

In other words, for sums and differences, add the absolute uncertainties.  

 

Uncertainties in products and quotients:  

 Several quantities x, y, z (with uncertainties Δx, Δy, Δz,) combine to form Q, where  

 x y
Q

z
  

(or any other combination of multiplication and division). Then the fractional uncertainty in Q will 
be 

 
Q x y z

Q x y z

   
      (7) 

 
In other words, for products and quotients, add the fractional uncertainties. 

 

  

                                                      
* These expressions for the propagation of uncertainty are an upper limit to the resulting uncertainty. In this case, 
you could actually do better. See Appendix C for details. 
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Exercise 2: 

d. Calculate the total volume of the block and the associated uncertainty. Show your math 
below. 
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Exercise 3: 

You can also find the volume of an object by measuring the volume of water displaced by the object 
when it is submerged. 

e. Measure the volume of water in the graduated cylinder and the associated uncertainty. 
f. Submerge the block (holding it under the surface with a pen or pencil), and find the 

resulting volume and the associated uncertainty. 
g. Calculate the volume of the plank and the associated uncertainty. Show your math below. 
h. Is this answer consistent with your result from Exercise 2? Explain. 
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Exercise 4: 

a. Calculate the total surface area of the block and the associated uncertainty. Show your 
math below. 
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Exercise 5 
 

a. Measure the volume of a single sheet of paper and the associated uncertainty.  
Which uncertainties are negligible? 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. Measure the surface area of a single sheet of paper. Which uncertainties are negligible? 
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 Name__________________________________  Section _______  Date_____________ 
  

Pre‐Lab Preparation Sheet for Lab 2: 
Position, Velocity, and Acceleration in one‐dimensional motion 

 (Due at the Beginning of Lab) 
 

 
Watch the video Introduction to Optimization and Curve Fitting found at the following site:  

my.vanderbilt.edu/physicslabs/videos/ 

Read over the lab and then answer the following questions 

1. Given the following position curve, sketch the corresponding velocity curve. 
 

 

 

 

 

 

xkcd.com   
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2. Imagine kicking a box across the floor: it suddenly starts moving then slides for a short 
distance before coming to a stop. Make a sketch of the position and velocity curves for 
such motion. 
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Name _____________________  Date __________    Partners_____________________ 

TA      ________________  Section __________              _____________________ 

  
Lab 2: Position, Velocity, and Acceleration in One‐Dimensional Motion 

 
"God does not care about our mathematical difficulties. He integrates empirically." 

--Albert Einstein 
 
Objectives:  

 To understand graphical descriptions of the motion of an object. 
 To understand the mathematical and graphical relationships among position, velocity and 

acceleration 
Equipment: 

 2.2-meter track w/ adjustable feet and end stop 
 A block to raise one end of the cart 
 Motion sensor 
 Torpedo level 
 PASCO dynamics cart and friction cart 

 
DISCUSSION 
Velocity is the rate of change or time derivative of position. 

 
dx

v
dt




   (1) 

On a Cartesian plot of position vs. time, the slope of the curve at any point will be the 
instantaneous velocity.  
Likewise, acceleration is the rate of change or time derivative of velocity (the 2nd derivative of 
position). 

 

2

2

dv d x
a

dt dt
 
 

  (2) 

On a Cartesian plot of velocity vs. time, the slope of the curve at any point will be the 
instantaneous acceleration. 

 
Thus, the shape of any one curve (position, velocity, or acceleration) can determine the shape of 
the other two. 
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Exercise 1: Back and Forth 
 

 
a. Place the friction cart on the track. (That is the one with the friction pad on the bottom.  

Without letting go of the cart, quickly push it toward the detector by about a foot, then 
stop it for 1 or 2 seconds. Then quickly but smoothly return the cart to the starting point.  
Note the distance it travels, and sketch the position vs. time curve for the block on the 
plot below.  

 

 
 
 
 

b. Now, open the Labfile directory found on your computer’s desktop. Navigate to  
A Labs/Lab2 

and select the program Position. The PASCO Capstone program should open and present 

you with a blank position vs. time graph. 

c. Click the Record   button (lower left side of the screen), and repeat the experiment 
above. Click Stop to cease recording data. Note how the PASCO plot compares to yours.  

Note: The cart may bounce or stutter in its motion. If you don’t get a smooth 
curve, delete the data* and repeat the run with more Zen†.  
 

d. By clicking the scaling icon  (top left corner of the Graph window) you can better fill 
the screen with the newly acquired data. 

e. Select the slope icon . A solid black line will appear on the screen. By dragging this 
line to points along the plot, you can measure the slope of the curve at those points. Using 
this tool, find the steepest part of the curve (that is, the largest velocity). Then, sketch the 
velocity curve for the block in the graph below. Add appropriate numbers to the x and y 
axes. 

                                                      
* To delete data: click the icon on the bottom of the screen. 
†  “This time, let go your conscious self and act on instinct.” Obi-Wan Kenobi 
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f. How does the shape of the position curve determine the sign of the velocity curve? 
 

 
 
 
 
 

g. Now, let’s see how well you drew it! Double-click on the new plot icon  (middle top 
of the screen) and select Velocity (m/s) for the y-axis. Note the shape and position of the 
curve and see how well it matches your sketch. Also note how it aligns with the position 
curve. 

h. Use the slope tool to find the changing slope along the velocity curve. With this 
information, sketch the acceleration curve for the block. Again, appropriately mark the 
axes. 
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i. Let’s see what PASCO says about the acceleration. Again, create a new plot  and 
select Acceleration (m/s2) for the y-axis. Compare it to your acceleration curve and 
PASCO’s velocity curve. 

j. How does the shape of the position curve determine the sign of the acceleration curve? 
 
 
 
 
 
 
 

k. Print out the three PASCO plots. Annotate these plots to show the times when the push 
began, when the push ended, when it was slowing, and when it stopped.  
 

Exercise 2: Skidding to a Stop 
Delete your previous runs. (Bottom bar, Experiment, Delete ALL Data Runs). With a left click 
of the mouse, you can remove the slope tools. 

a. Move the cart to end of the track opposite the detector. 
b. Start recording data, then give the cart a quick, firm push so that it slides a few feet 

before coming to rest. Then, stop the data acquisition. 
By clicking the scaling icon  , you can better fill the screen with 
the newly acquired data. You can also adjust the scale by clicking 
and dragging along the x or y axis, or zooming with the scroll 
wheel.  

c. Again, if the plotted data is not reasonably smooth, delete the data and repeat the 
experiment with more Zen. 

d. Print out the curves and annotate on the graphs with the times when the push began, 
when the push ended, and when the cart was sliding on its own. 
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You should notice that as the cart is slowing down, the acceleration curve is nearly a constant flat 
line.  

e. For the special case of constant acceleration, what mathematical expression describes the 
velocity? 

 
 
 
 

f. What mathematical expression describes the position? 
 
 
 
 
You can verify that these expressions work by numerically fitting the data.  
 

g. Find the average acceleration of this region. 
 
 
 
 
 
 
 
 
 
 

h. Click on the highlight tool  and a box for selecting data will appear on the screen. 
Adjust the size and position of the box to highlight the region of the velocity curve where 

the cart is slowing down. Then, select the fitting tool  and choose the appropriate 
expression to describe the data. Record the results of the fit below. (Note the uncertainty 
provided by the fit.) 
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i. Similarly, apply a numerical fit to the position data. Record the results below. Are the 
results consistent with the velocity and acceleration curves? (That is, do the uncertainties 
overlap?) 
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Exercise 3: Up and Down 
a. Place a block under one of the track stands to form a ramp. The detector must be on the 

raised end. 
b. Place a low friction cart on the track and give it a push so that it rolls a few feet up the 

incline and then rolls back. After a few practice runs, run the detector and acquire motion 
data.  

c. With a click and drag of the mouse, highlight that section of the data where the cart is 
freely rolling along the track. Then use the scaling tool to zoom-in on that section of 
the data. 

d. Print out these plots and annotate the graphs with the following information. 
When and where does the velocity of the cart go to zero?  
When is the velocity positive, and when is it negative? 
What is the acceleration when the velocity is zero? 
Does the acceleration of the cart go to zero? If so, where? 
 

e. Find the average acceleration going up the slope and the average acceleration going down 
the slope. Record the results below. 

 

 

 

 

 

f. How does the acceleration up the slope compare with the acceleration down the slope? 
What might account for the difference? 
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 Name__________________________________  Section _______  Date_____________ 
  

 

Pre‐Lab Preparation Sheet for Lab 3: 
Force, Mass, and Acceleration 

(Due at the Beginning of Lab) 
 
 

Directions: 
 Read over the lab and then answer the following questions. 
 
Consider the experimental configuration shown in Figure 1.  
 

1. Draw and label the free body diagram. 
 

 

 

 

 

2. Starting from Newton’s 2nd law, show that the acceleration of the cart is given by: 
mg

a
m M




. 
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3. In the limit* where M << m, what is the acceleration? 
 

  

 

 

 

4. In the limit where M >> m, what is the acceleration? (Hint: the answer is not zero.) 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

xkcd.com   

                                                      
* Notation: >> means much greater than; << means much less than. 
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Name _____________________  Date __________    Partners_____________________ 

TA      ________________  Section __________              _____________________ 

  
Lab 3: Force, Mass, and Acceleration 

“Well, the Force is what gives a Jedi his power . . . . It surrounds us 
and penetrates us. It binds the galaxy together.” 

-- Obi-Wan Kenobi on Newton’s 2nd Law 

Equipment 

Motion sensor     Force sensor 

Low-friction cart    2.2 meter track 

Torpedo level     Low –friction pulley 

Foam crash pad     0.02, 0.05, 0.10, and 0.20 kg hooked masses 

 

Note: The acceleration due to gravity varies with location. Here at Vanderbilt, 

this acceleration has been measured as 

    2
9.7943 0.0032

m
g

s
    

Use this value throughout the semester. 

 

Introduction 

Newton’s 2nd Law is the most important concept you will learn in this class: 

netF ma
 

 

If you know the mass and net force on an object, you know the acceleration of the object. 

If you know the acceleration of an object and its initial velocity and its initial position, you know the 
complete trajectory of the object. 

Consider the problem illustrated below: a frictionless wheeled cart is pulled by string attached to a falling 
mass. 
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Fig. 1 

It can be shown that the acceleration a is given by 

 
mg

a
M m




  (1) 

 

Of course, that is the theory. In the real world, things can get messy. Welcome to experimental physics. 

 

Exercise 1: Data Acquisition 

1. Label the individual forces on the diagram above. 
2. Mass the combined cart and force sensor with the electronic scale 

 
M = _______________________________________ 

Note: Before each measurement with the scale, you should tare the 

scale. Empty the scale, then press the Z or TARE button found on the 

panel. This resets the zero point of the scale. 

You will be using a set of hooked weights for you falling masses. These have nominal values of 0.020 kg, 
0.050 kg, 0.100 kg, 0.200 kg. 

3. Measure their precise masses with the digital scale and record the results and associated 
uncertainties on Table 1 below. 

You will use the PASCO Force Sensor to measure the tension in the string. Note the sign convention for 
the direction of the force on the hook.  

Assemble the cart, force sensor, string, and falling mass. The falling mass will be one of four hooked 
weights: 0.020 kg, 0.050 kg, 0.100 kg, 0.200 kg. Verify that a crash pad is positioned underneath the 
falling mass. 

4. Run the Capstone program Velocity&Force. 

Note: Before each measurement with the force sensor, you must tare 

the force sensor. Remove any force from the hook, then press the TARE 

m 

M 

pulley 
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button found on the side of the sensor. This will ensure that when the 

force is zero, the device returns zero. 

5. Holding cart stationary, measure the static tension Tstatic on the string and the 
corresponding uncertainty. Record the result in Table 1 below. 

Note: Do not assume that every digit which Capstone reports is significant. 

6. Dedicate one of your members to catching the cart before it crashes into the pulley. 
Please, do not turn this into a projectile motion lab! 

7. Start recording, then release the cart. Record the dynamic tension on the string Tdynamic, 
the acceleration a, and the associated uncertainties. Justify your determination of each of 
these uncertainties below. 

 

Table 1: Measured values 

m Tstatic Tdynamic a 
    

    

    

    

 

8. Why are Tdynamic and Tstatic different? 
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Exercise 2: Data Analysis 

While you have measured the acceleration above, it can also be calculated from Equ. 1, or from 

the measured tension of the string and the cart mass. 

9. Fill in the table below. Include the associated uncertainties 

 

Table 2: Calculated accelerations 

 a from Equ. (1)  a from T/M 
  

  

  

  

 

10. Are the measured values of a (from Table 1) consistent with the accelerations calculated 
from Equ. (1) (from Table 2)? Explain. 
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11. Are the measured accelerations a (from Table 1) consistent with the accelerations from 
T/M in Table 2? Explain. 

 

 

 

 

 

 

 

 

12. Using Excel, plot all three a vs. m curves from Tables 1 and 2 on the same plot. Print out 
the plot. Annotate the plot to indicate where the behavior is linear for each curve. 
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13. Thus far, we have been blithely ignoring friction of the cart. Given that friction is present, 
how would that effect the acceleration of the cart?  

 

 

 

 

 

 

14.  Would the addition of a constant friction force resolve any discrepancy between the 

observed acceleration and mg

M m
? Draw the free body diagram and apply the 2nd Law. 
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Name__________________________________  Section _______  Date_____________ 
  

Pre‐Lab Preparation Sheet for Lab 4: 
Static and Kinetic Friction 
(Due at the Beginning of Lab) 

 
 

Directions: 
 Read over the lab and then answer the following questions. 
 

1. What are the units for the coefficients of kinetic and static friction? 
 

 

2. Write a detailed procedure to measure the coefficient of kinetic friction for a block 
of wood sliding along a track which would utilize the equipment you are familiar 
with from previous labs. How would you estimate the uncertainty? 
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3. Show that basic logic requires that s k  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

xkcd.com 
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 Lab 4: Static and Kinetic Friction 
 

Q: How does a physicist milk a cow? 

A: First, let’s assume a spherical cow . . . . 

--old physics joke (Physicists find this hilarious.*) 

Equipment 

2.2 meter track    Force sensor 

Motion sensor    Mass set 

Wooden block    Masonite board 

 

Introduction 

 Friction is incredibly complicated. A full science discipline (tribology) is devoted to it. Its 
microscopic origins remains a subject of high level research. Nevertheless, in many cases, a very simple 
model (a so-called spherical cow) describes the behavior of friction with surprising accuracy: 

 

If we have two solid materials in contact, we can define two types of friction: 

 

Static friction: the force that keeps two surfaces from slipping. The force of static friction is 
parallel to the surface. Its magnitude is whatever is required to prevent slippage. Its maximum 
magnitude is the coefficient of static friction s times the normal force n.  

   

 0 s sF n    (1) 

 

Kinetic friction: a constant force between two slipping surfaces. The force is parallel to the 
surface, and its direction is opposite the motion. The magnitude is 

 k kF n   (2) 

 

This model is purely empirical; there is no underlying explanation or principle. The coefficients (s and 

k) must be measured on a case by case basis. But this naive model happens to work well enough to be 
extremely useful. Note that this model makes several assumptions: 

 Friction is binary: static or kinetic, nothing else. 

 Kinetic friction is independent of both contact area and velocity. 

                                                      
* Sad, I know. 
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 While s k  , the coefficients are otherwise unrelated. 

Table 1 provides a short list of examples. 

Table 1: Friction coefficients 

Material 1 Material 2 s k 
glass  glass  0.9 – 1.0 0.4 
glass  nickel  0.78 0.56 
rubber  concrete  1.0 0.8 
Teflon™  Teflon™  0.04 0.04 

 

Experiments 

1. Along with your lab partners, develop a procedure to measure the coefficient of static 
friction and corresponding uncertainty for the wooden block and the Masonite* board. 
Clearly describe your procedure and present your results. 
 

2. Along with your lab partners, develop a procedure to measure the coefficient of kinetic 
friction and corresponding uncertainty for the wooden block and the Masonite board. 
 

3. Experimentally verify your answers to the following questions: 
a. Is fk independent of the velocity?  
b. Is fk independent of the surface area?  

Clearly describe your procedure and present your results. 

 

                                                      
* A type of glorified cardboard. 
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Name__________________________________  Section _______  Date_____________ 
  

Pre‐Lab Preparation Sheet for Lab 5: 

Scaling and the Properties of Elastic Materials 

  (Due at the Beginning of Lab) 
 

Directions:  

Read over the lab and then answer the following questions. You will need to search the web or 
other resources to answer some of these questions. 

1. Suppose you had two springs (A and B) identical in every way but that spring A was 3x 

longer than spring B. How would their spring constants compare? 

 

 

 

 

 

2. Suppose you had two flat rubber bands (A and B) identical in every way but band A was 

3x the width of band B. How would their spring constants compare? 

 

 

 

 

 

 

3. Suppose you had two rubber bands (A and B) identical in every way but band A was 3x 

the width and 3x the thickness of band B. How would their spring constants compare? 
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Name _____________________  Date __________    Partners_____________________ 

TA      ________________  Section __________              _____________________ 

  
Lab 5: Scaling and the Properties of Elastic Materials 

 

To see a world in a grain of sand 

And a heaven in a wild flower, 

Hold infinity in the palm of your hand, 

And eternity in an hour. 

      --William Blake 

GOALS AND OBJECTIVES 
To develop a general appreciation of the effects of scale on the properties of materials. 
To determine the domain of applicability of Hooke’s Law for particular objects. 
To recognize the difference between material elastic properties and object elastic properties. 
To predict the elastic properties of an object of arbitrary scale. 
  
EQUIPMENT  
2-meter measuring stick   Clamp, mount and 1.5-m long rod 
Rubber strips and bands   Clips 
SONAR reflector   Hanging masses 
Motion sensor    Force sensor 
Right-angle clamp and rod for  
       mounting the force sensor 
Safety goggles 
 
Galilean Scaling 
 
In his final book, Discourses and Mathematical Demonstrations Relating to Two New Sciences*, Galileo 
described the mathematics of scaling. Consider two dogs, Bruno and Pip. Bruno is exactly 3× the size (in 
every direction: height, depth, and width) as Pip, but is otherwise identical. Clearly, Bruno will be 
heavier. Since mass is proportional to volume, Bruno’s weight will be 33 or 27× the weight of Pip.  
 
Of course, Bruno will also be stronger, but how much stronger? The strength of a bone is proportional to 
the area of the bone’s cross section. Thus he will only be 32 or 9× stronger than Pip. Pound for pound, 
Pip is much stronger than Bruno! This is the problem of scaling: an apparently simple change in size can 

                                                      
* A remarkably boring title, but considering what he went through after publishing The Starry Messenger, that can 
be forgiven. 
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lead to surprising changes in an object’s other properties. 
 

 
An illustration from Galileo’s book. 

 
To make up for this scaling problem, the bones of large animals must be proportionally much thicker than 
the bones of small animals. King Kong could never exist. He would collapse under his own weight. 
Likewise, ants are famously strong for their size, able to lift objects many times heavier than themselves. 
This is no great mystery but a straightforward consequence of scaling.  
 

 
 
Rubber Bands 
 
Different systems scale in different ways. In this lab, you will study the scaling properties of rubber cords. 
(And, you will learn a few other things about rubber as well.) 
 
For a wide range of elastic materials, the relationship between force and deformation is well described by 
Hooke’s Law: 

  sF k L     (3) 

 

 
 
However, this is not a Law as much as Spherical Cow: an approximation that is acceptable over a limited 
range of deformation.* Within this limited range, one can characterize an object’s elastic properties by its 
spring constant k.  
 
Exercise 1: Inventory 
 
Use the calipers to carefully measure the thickness of each rubber band. Take care not to compress the 
bands as you measure them. You want the relaxed dimensions. 
  

                                                      
* Stretch it too much and Murphy’s Law takes over. 
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  Diameter (m)    cross‐sectional area (m2) 

Small    ________________________________________________________________________          

 

Large    ________________________________________________________________________ 

 
Exercise 2: Scaling the Spring Constant with length 
 
Use the large cord for the following. 
 

1. Place the two hose clamps on the cord separated by 1.00 m. 
2. Hang one clamp from the force sensor. Hang the sonar reflector from the other clamp. 
3. Start the program Spring Constant. Then, gently pull the cord ~2 cm.  

 
Stop acquiring data before releasing the cord. 

 
4. Repeat two more times. 
5. Find the average spring constant. 

 
 

measured k (1.00 m) = _________________________________________________ 
 

6. Given your pre-lab prediction for how the spring constant should scale with length, 
estimate the spring constants for 0.50 m and 0.25 m cords. 

7. Now, measure these spring constants as you did for the 1.00 m cord. 
 

    estimated      measured      % diff 
 
 
 k (0.50 m)    ____________________________________________________________ 
 
 
 
 k (0.25 m)  ____________________________________________________________ 
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Strictly speaking, a spring constant only conveys information about a particular spring or cord. A 
parameter that was independent of length would be more generally applicable. 
 

8. Rewrite the spring constant as a function of the length of the cord. (I’m looking for an 
expression with numbers.) 

 
 k(L) =  
 
 
Exercise 3: Scaling in all dimensions 
 
Now, suppose you had a double cord (two cords side by side) 

9. Estimate the spring constant for two parallel cords 0.50 m long. Then measure it. 
 
    estimate      measured      % diff 
 
 
 kdouble (0.50 m) __________________________________________________________ 
 
 
Now, consider changing the diameter of a single cord.  

10. How will the spring constant scale with the diameter? For example, will it scale 
proportionally? Or with the square? Or with the cube? 
 
 
 
 
 
 
 
 

11. Write an expression for the spring constant as a function of the diameter of the cord, 
k(D). (I’m looking for a number here.) 
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12. Write an expression for the spring constant of a cord with arbitrary diameter and length. 
 
 
 
 
 
 
 
 
 

13. Estimate the spring constants for the small cord with lengths of 0.50 m and 0.25 m.  
 
    estimate      measured      % diff 
 
 
 ksmall (0.50 m) __________________________________________________________ 
 
 
 
 ksmall (0.25 m) __________________________________________________________ 
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Exercise 4: Wild extrapolation 
 

14. How should the spring constant of a cord scale with uniform changes in its over-all size 
(length, and diameter)? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Lab 5: Scaling and Elastic Materials  63 

Vanderbilt University, Dept. of Physics & Astronomy       General Physics I Laboratory Manual 

Exercise 5: Professor, I Shrank My Lab Partner!  

Imagine your lab partner is playing with a paddle ball.* Out of nowhere, Rick Moranis† zaps her with his 
shrink ray making her and the toy 100 times smaller (in all three dimensions). Setting aside her 
psychological trauma, how does this change of scale affect her game-play? Discuss this with your 
partners, and then your TA. (Focus on toy; don’t worry about the girl’s strength.) 

                                                      
* For those of you unfamiliar with toys from the mid-20th century, it consists of a rubber ball attached to a paddle by 
a thin rubber band. You then whack the ball repeatedly with the paddle, sort of like playing Ping-Pong with yourself. 
In the pre-iPhone era, this was regarded as fun. 
† You know, the nerdy father from Honey, I Shrunk the Kids. (Yeah, I’m old.) 
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Name__________________________________  Section _______  Date_____________ 
  

Pre‐Lab Preparation Sheet for Lab 6: 

Energy, Work, and Power 

  (Due at the Beginning of Lab) 
 
 

1. Power is defined as the time derivative of work. 

 
dW

P
dt

   

 
Given this and the definition of Work, derive an expression for Power as a function of velocity. 
Show your algebra. 

 

 

 

 

 

 

 

 

 

 

xkcd.com   
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2.  A constant friction force f is applied to a moving block of mass m causing it to slow down. 

 a. Write an expression for the Work of friction as a function of time: ( )fW t  . 

 

 

 

 

 

 

 

 

 

 b. Write an expression for the Power provided by friction as a function of time. 
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Lab 6: Energy, Work, and Power 
 

“Capital isn’t this pile of money sitting somewhere, it’s an accounting construct.” 

--Bethany McLean (The same can be said of energy.) 

 

Equipment 

2.2 meter track    Force sensor 

Motion sensor    Friction cart 

Frictionless cart 

0.1 kg hooked mass 

 

Introduction 

 

Energy is like money. An energy problem is essentially an accounting problem 

 A system starts with some initial energy. 

 Energy can then be added to the system. (That is, a force can do positive work on the system.) 

 Energy can be removed from a system. (That is, a force can do negative work on the system.) 

 Energy can be transformed from one form into another. (Such as kinetic into potential energy.) 

 

Your job in this lab is to do the accounting: verify that your assets, earnings, and losses add up. Let’s say that the 
total energy of a system is its mechanical energy ME.* 

 ME kinetic energy  +  potential energy

K U


 

  (1) 

Then, the accounting equation is simply 

    f iME ME  positive work on the system negative work on the system     (2) 

 

Work is the change in energy on an object due to an applied force. For a tiny step ds


, 

 
x y z

dW F ds

F dx F dy F dz


  

    (3) 

 

                                                      
* We could also include the thermal energy, chemical energy, electro-magnetic energy, magical energy, or monolith 
energy, but let’s keep it simple for now. 
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Integrating over the path of motion, we have 

 

f

i

f f f

i i i

s

s

x y z

x y z

x y z

W F ds

F dx F dy F dz



  



  





 
  (4) 

The sign of the work is determined by relative directions of the applied force and the motion.  

Note: the sign conventions of your several measuring devices have no respect for each other 

or Equation (4). Do not naively accept what the computer is telling you. Instead, figure out the 

sign of the work yourself. 

Exercise 1 

Note the design of the friction cart. Here, the normal force on the frictive pad is from a spring force and not the 
weight of the cart. 

Combine the friction cart and force sensor. 

1. Level the track. 
2. Measure the friction force on the cart: 

 
f = _____________________________________ 

3. Level the track and tare the force meter.  
4. Select the Velocity and Force tab on the Capstone program. 
5. Gently pull the cart about a meter away from the motion detector. Slowly vary the applied force so that the 

force vs. position curve is a little wavy. Then, gently bring the cart to a stop 

Fig. 1  

6. Using the integration tool , measure the work of your hand pulling the cart. 
 

Wh = _____________________________________ 
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7. Calculate the work of friction on the cart. (Show your calculation.) 
 

 

 

 

Wf = _____________________________________ 

8. Calculate the percent difference between the work of friction and the work of your hand. 
 
 
 
 
 
 
 
 
 
 
 
 

9. Now, define the final condition as the point of maximum velocity. Verify Equation (2) for this point by 
calculating the percent difference between the left and right hand sides of the equation. 
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Power is the time derivative of work: 

 

dW
P

dt

F dx
F v

dt



 
   

  (5) 

Using the calculator function in Capstone, calculate the power supplied by your hand. 

a. Select the Calculator icon  from the left side toolbar. 
b. Enter the expression for power you found in the pre-lab. Use the right mouse button to select 

you parameters (Force, etc.) from the data. 

c. Create a new plot  and plot the resulting power vs. position curve. 
d. Print out the resulting velocity, force and power plots. Annotate these plots to indicate 

 The beginning and end of the motion. 
 The maximum velocity. 
 The maximum force of your hand. 
 The maximum power of your hand.  
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Exercise 2 

1. Tilt the ramp to about 15˚. Measure the actual angle as accurately as possible. 
2. Using the frictionless cart and a 0.100 kg hanging mass, assemble the system shown below. 

NOTE: For this apparatus, accurately measuring the angle of the ramp and the friction 

is relatively difficult. However, measuring acceleration is relatively easy. 

Fig. 4  

 

3. Write an algebraic expression describing the initial energy of the system in terms of M, m, x, and . 
 
 
 
 
 
 
 
 

4. Write an algebraic expression describing the total mechanical energy of the system in terms of M, m, x, , 
and v. 

 

 

 

 

 

 

 
5. Open the program Work & Energy.cap. 

You will find that several parameters have been created using the Calculator function in Capstone. However, there 
are several mistakes. Correct these mistakes so that Capstone accurately displays the Kinetic (K), Potential (U), 
and Mechanical Energies (ME) of the system. 

6. While acquiring data, release the cart from rest and let it roll down the ramp. Print out the resulting plot. 
Are the results consistent with a nearly frictionless system? Explain. 
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7. Replace the frictionless cart with the fricative cart and repeat the experiment. Print out 
the resulting plot. 

 

8. What aspect of this plot relates to the power consumed by friction? 
 

 

 

 

 

 

 

 

 

9. From this plot, find the maximum power consumed by friction. Explain your procedure. 
 

 

 

 

 

 

 

10. From this plot, find the force of friction. Explain your procedure. 
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11.  Does this match the friction you measured earlier?
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Pre‐Lab Preparation Sheet for Lab 7: 
Momentum 

 (Due at the Beginning of Lab) 
  
 
Directions: 
Read over the following lab, then answer the following questions. 
 

1. Wile E. Coyote steps off a cliff edge. He reasons that 
a. his vertical momentum is zero, 
b. momentum is conserved, 

        therefore . . .  
c. he cannot fall. 

 
    Correct his reasoning. How is momentum conserved in this case? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Define closed system. 
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3. Algebraically show that if two carts of identical mass collide and stick, kinetic energy cannot be 

conserved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
xkcd.com  (If you don’t get this, Google “resonant cavity thruster”.) 
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Lab 7: Momentum 

 

When he was within six miles of the place, 
There Number Four stared him straight in the face. 
He turned to his fireman, said Jim you'd better jump, 
For there're two locomotives that are going to bump. 

--The Ballad of Casey Jones, variant by 
Eddie Newton and T. Lawrence Seibert 

 

Objective: To observe conservation of momentum and conservation of kinetic energy (or not). 

Equipment: 2m track, magnetic cart, plunger cart, two motion sensors, 2 (½ kg) cart masses 

 

The 3rd Law and Momentum 

Two locomotives of masses m1 and m2 collide. During the collision, each locomotive exerts an 

equal but opposite force on the other. 1F


 is the force on m1 from m2. 2F


 is the force on m2 from 

m1. 

 

Newton’s 3rd Law: For every action there is an equal and opposite reaction. 
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 

1 2

1 1 2 2

1 1 2 2

1 2
1 2

1 1 2 2

0

0

0

F F

m a m a

m a m a

dv dv
m m

dt dt
d

m v m v
dt

 
 

 

 

 

 

 
 

 

 

  (6) 

Hence, the quantity  1 1 2 2mv m v
 

 does not change with time. If we define momentum to be* 

 p mv
   , (7) 

we have the following principle: 

The total momentum of a closed system is constant. 

    1 2p t p t p 
  

 (8) 

Important things to note: 

 The total momentum of a closed system is always conserved. No exceptions. If the momentum of 
your system is changing, your system is not closed; something else is meddling with it. 

 Momentum is a vector. The direction matters.  
 There is no such thing as kinetic momentum or potential momentum or internal momentum. There 

is only momentum. † 
 

Types of collisions 

We can define three basic types of collisions: 

 Totally elastic collision: Two or more objects collide. Afterward, the total kinetic energy is 
conserved. 

 2 2 2 21 1 1 1
1 1 2 2 1 1 2 22 2 2 2... ...

i f

i i f f

K K

mv m v mv m v



    
   

 Totally inelastic collision: Two or more objects collide and stick together after the collision. This 
implies that kinetic energy is not conserved. 

 i fK K    

                                                      
* Because representing momentum with p


 makes perfect sense. 

† Angular momentum (which you will study later) never transforms into momentum, and momentum never 
transforms into angular momentum. 
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 Partially elastic collision: The objects do not stick together after the collision, but kinetic energy 
is not conserved. 

 i fK K   

 

Exercise 1: fully inelastic collisions 

1. Attach the hook to one force sensor. Attach the clay to the 
other. 

2. Level the track. 
3. Run the program Collisions.cap. Note that this program 

defaults to measuring position and force as functions of time, 
but you are welcome to change these axes as you see fit. 

4. Print out the Collisions plot. Then annotate the plot noting the 
duration of the collision, and the change of velocity of each 
cart. 

 

5. Conceive and execute a procedure to verify conservation of momentum. Briefly describe 
your procedure and present your results and your percent uncertainties. Are your 
measurements of the initial and final momenta consistent with conservation of momentum? 

 

 

Exercise 2: Elastic Collisions 

6. Replace the clay and hook with a spring and plate. 
7. Print out the Collisions plot. Then annotate the plot noting the duration 

of the collision, and the change of velocity of each cart. 
 

8. Conceive and execute a procedure to verify conservation of momentum and conservation of 
kinetic energy. Briefly describe your procedure and present your results and your deviations.  

a. Are your measurements of the initial and final momenta consistent with 
conservation of momentum? 

b. Are your measurements of the initial and final kinetic energies consistent with 
conservation of kinetic energy? 

 
 

Discussion 

9. The position sensors work by assuming that the speed of sound is 344 m/s and measuring the 
time for the echo to bounce off the target. Doubtless, this speed is off by a bit. How would 
the uncertainty in the speed of sound affect your determination of the conservation of 
momentum or kinetic energy? Explain. 
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Pre‐Lab Preparation Sheet for Lab 8: 

Torque and Rotational Inertia 
 (Due at the Beginning of Lab) 

 

Read over the lab and Appendix B, and then answer the following questions. 

1. What is Newton’s 2nd law in terms of rotational motion? 

 

 

 

 

 

 

 

 

2.  To account for friction, you must solve for two unknown parameters. What are they? 

 

 

 

 

 

 

 

 

  



82         Lab 8: Torque and Rotational Inertia 

Vanderbilt University, Dept. of Physics & Astronomy    General Physics I Laboratory Manual 

3. A car is traveling North. In which direction are the wheels turning? 

 

 

 

 

 

 

 

 

 

4. How is the z-axis of a Right Handed coordinate system related to the z-axis of a Left 

Handed coordinate system? 

 

 

 

 

 

 

 

 

 

 

 

xkcd.com   
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Lab 8: Torque and Rotational Inertia 
 

“You make the rocking world go round” 
--B. May et al., Jazz, 2 (1978). 

 
 
Objectives  

 To relate an objects rotational inertia to its geometry 
 To understand Newton’s laws in terms of rotational motion 
 To observe the conservation of energy in terms of rotational kinetic energy 

 
Equipment 
 PASCO Rotational Motion Sensor with aluminum holder 
 Calipers 
 thread 
 electronic balance 
 Flat aluminum disk 
 10 g mass 
 Table clamp, 2 rods, and right angle clamp 
 Gyroscope, gimbal, and motor 

 
 

DISCUSSION: 
 

Angular velocity  and angular momentum L I
   are vectors. The direction of these 

vectors is given by the right hand rule. The equations describing Newton’s 2nd law for rotational 
motion are fully analogous to the equations for linear motion. A net torque on an object will 
change its angular velocity  : 

 d
I I

dt

  
    (1) 

 

where I is the rotational inertia*, and the angular acceleration d

dt

 


. We may also write the 

2nd Law to relate the net torque to change angular momentum L

. 

 
dL

dt
 




  (2) 

  
                                                      
* Also known as the moment of inertia 
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Thus, the direction of the applied torque is always in the same direction as the resulting angular 
acceleration and the change in the angular momentum.  
 
If multiple objects are attached together, the total rotational inertia is the sum of the individual 
moments of inertia. 

 
 
 
 Consider Fig. 2.  An arbitrary object (in this case, the lump sketched above is attached to 
a pulley. A torque is applied to the object by a hanging weight from the pulley.  The net torque 
on the system is 

    
 2

object weight

object

I

r mg I I

rmg I mr

 







  

 



 
  (3) 

 
Note that the hanging weight must be included in the sum even though it is moving in a straight 
line! 
 
There is another complication. Since OSHA does not permit us to perform undergraduate 
laboratories in frictionless vacuums, we should also include the torque of friction in the 
calculation as well.  
  2

f objectrmg I mr      (4) 

 
Exercise 1: Rotational inertia of the flat disk 
 

From theory, we know that the rotational inertia of a flat disk is  

 21

2diskI MR   (5) 

  
Measure the radius and mass of the disk and calculate its rotational inertia. 
 
 



Lab 8: Torque and Rotational Inertia  85 

Vanderbilt University, Dept. of Physics & Astronomy       General Physics I Laboratory Manual 

 
Idisk = __________________________ 
 
 

 
 
Exercise 2: Rotational inertia of the PASCO rotational motion sensor 
 
First, we will measure the rotational inertia of the motion device.  

a. Open the file Rotational Motion.cap 
 

b. Measure the radius of the largest pulley on the PASCO rotational motion device. 
 

c. Wind the string attached to the 10g mass around that pulley until the mass is suspended 
about 1m above the floor, but make sure the string falls freely from the pulley before the 
mass hits the floor. 

 
d. Start data acquisition and let the mass drop. 

 
e. On the angular velocity plot, you should notice two distinct slopes. These correspond to 

the angular accelerations of the device before and after the weight fell away. Using the 
slope tool measure these angular accelerations. Note the sign. 

 
α1= _________________________________                                α2 = __________________________ 
 

f. Place the disk on the device and repeat the above experiment to measure the angular 
accelerations before and after the weight falls free. 

 
α3= _________________________________                                 α4 = __________________________ 
 
 
Print out these plots. Annotate this plot to indicate the start of the fall and the release of the 
weight. Also include the acceleration during each segment of the plot. 
For a moment, let’s ignore friction. Using equation (3), calculate the following moments of 
inertia. 
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 The PASCO device by itself, IPASCO = _______________________________ 
 
 
 
 
 
 
 
 
 
The combination of the PASCO device and the disk, Itotal = _______________________ 
 
 
Taking the difference, find the rotational inertia of just the disk, and the percent difference 
between this value and the value found in Exercise 1. 
 
 
Idisk = _____________________________   % diff = _____________________________ 
 
 
 
Exercise 3: Accounting for friction 
 

Now, let’s face reality and deal with friction. As the mass is accelerating the pulley 
system, the physics is described by the expression using friction 
  2

1frmg I mr      (6) 

   
After the mass falls free, this simplifies to 

 2f I    (7) 

 

With these two equation, we have two unknowns: I and f . Do the algebra (on a separate sheet) 

to find expressions for I and f in terms of known values. Write them below. 

 
Now, again calculate the following moments of inertia while accounting for friction: 
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The PASCO device by itself, IPASCO = _______________________________ 
 
 
The combination of the PASCO device and the disk, Itotal = _______________________ 
 
 
Taking the difference, find the rotational inertia of just the disk, and the percent difference 
between this value and the value found in Exercise 1. 
 
 
Idisk = _____________________________   % diff = _____________________________ 
 
 
Exercise 4:   Changing the axis of rotation 
 
The rotational inertia of a thin disk rotating about its edge is 

 21

4edgeI MR   (8) 

g. From your measurements of the mass and radius, calculate the rotational inertia for the 
disk when rotating on its edge. 
 
 
 
 
 
 
 
 
 
 
 
 
 

h. Using the same method of Exercise 3, measure the rotational inertia in this orientation. 
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i. Find the percent difference between these values. Record them below. 
 
 
 
 
 
 
 
 
 
 
 
 
Review 
 

j. Throughout this lab, what specific assumptions did you make about the apparatus (such 
as about the mass, friction, etc.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

k. In accounting for the torque of friction, you assumed that the torque is constant. How can 
you show that this is a valid assumption? 
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l. Suppose the mass of the string were not negligible. How would that affect the data? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercise 5: Gyroscopes 
 
In the previous exercises, you applied the torque in the same direction as the angular momentum 
of the system 𝐿଴ሬሬሬሬ⃑ . In this exercise, we’re going to explore what happens when you apply an 
additional torque in a different direction from the angular momentum 𝐿଴ሬሬሬሬ⃑ .  
 
Take a moment to examine the gimbaled gyroscope you will be using. The spin of the brass disk 
defines the angular momentum 𝐿଴ሬሬሬሬ⃑  of the gyroscope along its axis, or what we will refer to as the 
axial direction â. (Note the red dot on the gyroscope.)  However, the gimbals permit the system 
to also rotate along the white direction ŵ  (note the white dot on the gimbal), and the up 
direction û.  
 

 
 

 
By spinning the brass disk, we give the gyroscope its angular momentum 𝐿଴ሬሬሬሬ⃑ . To change this 
angular momentum, we must apply a torque. From Equation (2), the angular momentum changes 
in the same direction as the applied torque.  
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Suppose the gyroscope was spinning in the â direction. You then apply a force F


 to the gimbal 
as shown on the image below. Draw and label the vectors for the initial angular momentum 𝐿଴ሬሬሬሬ⃑  and 
the applied torque  on the picture below. Describe how the gyroscope will then move. 
 
 

 
 
As we speed up the disk, we apply even more torque to the system, increasing the angular 
momentum as well. On the picture above, draw the vectors 𝜏ଶሬሬሬ⃑  and 𝐿ଶሬሬሬሬ⃑  representing the direction of 
the torque and angular momentum that result from increasing the speed of the disk even more.  
 
Now, let’s actually speed up the disk and apply different torques to the system. Attach the motor 
and speed up the brass disk. You’ll know that the disk is spinning fast enough when the pitch that 
you hear stays relatively constant. When answering the questions in this exercise, think about the 
right hand rule and how to apply it. If you need a refresher, consult Appendix B 
 

a. Make an hypothesis: If you apply a torque in the upward direction, in which direction 
would the angular momentum change?  

 
 
 
 
 
 
 

b. In which direction should the gyroscope move for an upward change of the angular 
momentum? 

 
 
 
 
 
 

c. At what point and in which direction should you apply a force to produce an upward 
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torque?  
 
 
 
 
 

d. Apply the upward torque and describe the effect on the system.  
 
 
 
 
 
 
 
 
 

e. At what point and in which direction should you apply a force to produce a  
downward torque?  

 
 
 
 

f. Apply the downward torque and describe the effect on the system.  
 
 
 
 
 
 
 

g. Let’s say that we took a hanging weight and hung it beside the counterweight. In what 
direction would that apply a torque? In the picture below, draw the vectors for the force  
F


, torque 𝜏, and angular momentum L


 that are now acting on the system.  
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h. Hang the weight on the gyroscope and describe what happens to the system.  
 
 
 
 
 
 
 
 
 
 
 
 

i. At what point and in what direction could you apply a force to make the system spin in the 
opposite direction? 
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Name__________________________________  Section _______  Date_____________ 
  

Pre‐Lab Preparation Sheet for Lab 9: 
Harmonic Motion 

(Due at the Beginning of Lab) 
 

Directions:  Read over the lab and then answer the following questions. 

1. What type of force F(x) will produce oscillation? 
 

 

 

 

 

2. An oscillator swings with a frequency of 60 Hz (or cycles per second). What is the angular 
frequency? 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        See other side 
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3. An OK mechanical watch may vary from true time by up to 1 minute a day. What is the 
percent uncertainty of its period? 

 

 

 

 

 

 

 

4. The Martin Burgess Clock B (the world’s most accurate pendulum clock) lost 0.625s in 100 
days. What is its percent error?  

 

 

 

 

 

xkcd.com 
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Name _____________________  Date __________    Partners_____________________ 

TA      ________________  Section __________              _____________________ 

 Lab 9:  Harmonic Motion 
 

“It appears to me that those who rely simply on the weight of authority to 
prove any assertion, without searching out the arguments to support it, 
act absurdly.” 

--Galileo Galilei 

 

500 g hooked mass 

Rotational motion sensor 

Objective 

 To test principles to the limit of experimental resolution. 
 To understand the relationship between simple harmonic oscillators and time-keeping. 

 

An object is in equilibrium when there is no net force on it. We define three basic types of equilibrium. 
Consider a ball on a track. 

If the track is flat, there is no net force on the ball. If the ball received a bump it would roll in the direction 
of the bump at a constant speed. This is neutral equilibrium. 

                   

If the ball is on the peak of a hill, again there is no net force on it. But, if it receives a bump to the left (or 
right) it experiences a repelling force which further accelerates the ball to the left (or right) away from its 
equilibrium position. This is unstable equilibrium.  
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If the ball is at the bottom of a trough, again there is no net force on it. However, if it receives a bump to 
the left, it experiences a restoring force to the right returning the ball to its equilibrium position. The ball 
will then oscillate back and forth about its equilibrium position.* This is stable equilibrium. 

                          

 

Simple Harmonic Oscillators and Springs 

The simplest type of oscillator is called a Simple Harmonic Oscillator (SHO)†. Here, the restoring force is 
linearly proportional to the displacement.  

 F displacement    (1) 

I can be shown (see your textbook) that with such a force, the motion will be sinusoidal.  

 

For a pendulum moving in an arc, we can measure the displacement with an angle . Hence, the motion 
should be given by 

  ( ) sint A t      (2) 

Here, 

 A is the amplitude of the oscillation 

   is the angular frequency (in radians/sec) 

  is the phase shift 
 

  

                                                      
* . . . unless there is excessive damping. 
† Physicists like to keep our naming conventions as obvious as possible. 
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We can relate  to the frequency f and period T by 

 
2

2 f
T

     (3) 

     
Clocks 

All clocks are oscillators. Something in the clock (a balance wheel, a quartz crystal, or an electron in a 
cesium 133 atom) moves back and forth in a very regular pattern. The clock measures time by counting 
each oscillation. 

While Galileo was still a student in Piza, he once observed a lamp swinging back and forth. Apparently 
uninterested in the sermon, he timed the swing of the pendulum against his pulse and discovered 
something quite extraordinary:  

The period of a pendulum is independent of the amplitude of its motion. 

He first wrote about this isochronism in 1602, but did not consider controlling a clock with a pendulum 
until the last year of his life 1642. 100 years later, John Harrison had built a pendulum clock accurate to 
within 1 second per month.* 

Why would isochronism be valuable to a clockmaker? Why not build a pendulum clock that runs with a 
constant amplitude? 

  

                                                      
* John Harrison’s pendulum is illustrated on the cover of this lab manual. 
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Task 1 

Galileo determined that the frequency of a pendulum is inversely proportional to the square root of its 
length.  

 

2
1

L

   
 

  (4) 

   
Empirically verify this relationship. 

1. Create a pendulum of known length. 
2. Let it oscillate for many cycles with an amplitude of about 0.2 radians. 
3. Fit the resulting motion with the Capstone software to determine . Make note of the 

corresponding uncertainty in .  
 

NOTE: Capstone will often not display coefficients with a precision 

matching the uncertainty of the coefficient. You will have to increase the 

number of digits displayed by hand. 

 Right click on the fit results 
 Select curvefit properties 
 Select numerical format 
 Select coefficients 
 Increase the number of significant figures 

 

4. In Excel, plot
2

1


 
 
 

 vs. L. Properly label your axes. Was Galileo right? Explain your 

reasoning. 
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Task 2 

5. With a long pendulum, measure  for several different amplitudes ranging from about 
0.03 to 0.5 radians. Plot the results in Excel. Include the error bars. Properly label your 
axes. 
 

NOTE: An example Excel file using error bars can be found alongside the 

Capstone file. By editing this file, you can easily produce the require plot. 

6. Does  vary significantly as a function of amplitude, or is  effectively constant given 
the uncertainties in your measurements? Explain. 
 
 
 
 
 
 
 
 
 

7. How does the uncertainty in amplitude affect the uncertainty in the period? 
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8. With your results in mind, explain why grandfather clocks use long pendulums. 
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Name__________________________________  Section _______  Date_____________ 
  

Pre‐Lab Preparation Sheet for Lab 10: 
Damped Driven Harmonic Motion 

(Due at the Beginning of Lab) 
 

 

Directions: Read Appendix A and watch the following video.  

 https://www.youtube.com/watch?v=Oc27GxSD_bI  

Then, read over the lab and then answer the following questions. 

1. How can you determine the resonant frequency of a wine glass (or a diving board, or a 
playground swing, or . . .  whatever). 

 

 

 

 

 

 

2. How does the time constant   scale with the damping constant b. 
 

 

 

 

 

 

 

3. For the damped driven oscillator (Equ. (7)), what value of d would produce the largest 
steady state amplitude? 
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TA      ________________  Section __________              _____________________ 

 

Lab 10: Damped Driven Harmonic Motion 
 

“If you want to find the secrets of the universe, think in terms of energy, frequency and vibration.” 

--Nikola Telsa 

 

Objectives  

 To understand damped-driven motion  
 Understand what factors change the damping constant 
 Discover how the damping constant affects the frequency of oscillation 

 

Equipment 

Force sensor, Oscillating mass and springs, vibration generator, signal generator 

 

Damped Harmonic Motion 

With Simple Harmonic Motion, the force on a mass is given by 

 

 

2

2

F x kx

ma kx

d x
m kx

dt

 

 

 

  (1) 

The solution to this differential equation is  

    0 sinx t A t     (2) 

where 0

k

m
  . 

In this idealized situation, he mass would oscillate back and forth forever. However, in the real world, 
oscillations fade. We can model this by adding a damping force to the motion. In particular, we will add a 
drag force that scales with the velocity of the mass: 
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 
2

2

F x kx bv

d x dx
m kx b

dt dt

  

  
  (3) 

 

Here, b is the damping constant and is a measure of how much drag we are adding to the system. (An 
oscillator suspended in water would have a smaller b than an oscillator suspended in honey.) 

The solution* to this differential equation happens to be . . .  

    0
/ sintx t Ae t      (4) 

 

Here, A is the amplitude, 𝜑 is the phase shift,  𝜏 ൌ
ଶ௠

௕
.  We call  the time constant of the oscillator. It 

describes how quickly the motion fades away. After a period of time , the amplitude of the motion has 
fallen by a factor of e-1 (or about 0.37). 

 

 

 

  

                                                      
* This assumes that the damping force is small compared to the driving force. In the lingo, this is an “underdamped 
system”. For all of the ugly details, see your textbook. 
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Exercise 1: Finding the natural frequency 𝝎𝟎 

For this exercise, we are going to exclude the driving force so that we can find the natural angular 

frequency 0 of the system.  

1. Begin taking data on the computer. Pull the mass down by a few centimeters and then 
release. Because there is no driving force, this graph should look similar to what you saw 
in the last lab.  

2. Fit the graph that you see with eq.(4) to determine 0. 
3. Calculate the natural frequency in Hertz (cycles per second) f0. 

 

 

0 = _____________________ rad/s  f0 = _____________________ Hz 

 

Exercise 2: Dampening and the Magnet Spacing 

In this exercise, we are going to see how the distance of the magnet effects the damping of the system.  

4. First, place the magnet about 2 mm from mass, pull the mass down by a few cm, and 
release.  

 

5. Now, move the magnet about 4 mm away and do the same thing. Observe what happens 
to the system with the magnet at various distances from the mass. Empirically describe 
the damping of the system. 
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Damped Driven Harmonic Motion 

If one wishes for the motion to continue despite the damping, one can add an extra driving force 

  cosmax dD t . 

 

   

 
2

2

cos

cos

max d

max d

dx
F x kx b D t

dt

d x dx
m kx b D t

dt dt





   

   
  (5) 

 

The solution to this differential equation happens to be . . .  

      /
0 sin cost

transient steady dx t A e t A t        (6) 

  

Here 𝜑 is still the phase shift, 0 is the natural, undamped frequency of the system 
k

m
 .  The first part of 

the equation we shall call the transient state. This motion can be somewhat chaotic, but this state fades 

away with a time constant of  𝜏 ൌ
ଶ௠

௕
 . The second part is the steady state solution which is simple 

sinusoidal motion, and it continues for as long at the driving force is applied. The graph of a damped-
driven oscillation looks something like this: 

 

This time constant  is a measure of the duration of the transient segment of the oscillations. After a 

period of about three time constants (t = 3 ), the transient part of the equation becomes small enough that 
we can ignore it. In this lab, we are going to focus on the steady state solution. We can solve for the 
amplitude of the steady state with the equation:  
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 
max

2
22 2

0 2

steady

d
d

D
A

m
 



    
 

  (7) 

 

Note: We usually think of the amplitude of the oscillation as being a distance, but it can 

be measured in other ways as well. For a spring oscillator, the force of the spring is 

proportional to the displacement, hence for this lab, we will measure the amplitude in 

terms of force.  

4. Draw a free body diagram of the damped driven oscillator. 
 

 

 

 

 

 

 

 

 

5. How does the time constant   scale with the damping constant b. 
 

 

 

 

6. For the damped driven oscillator, what value of d would produce the largest steady state 
amplitude? 
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Exercise 4: Damped Driven Harmonic Motion 

Now, we will rigorously examine the damping effect of the magnet. 

6.  Position the magnet about 1 mm away from the mass. 
 

7. Begin taking data, then pull the mass down, release it, and allow it to oscillate. Fit your 
data with the equation that looks similar to Eq. (4) and find the time constant a  for the 
decaying oscillation: 
 
a  = ________________________ 

 
Now, we are going to turn on the driving force and map out the response of the oscillator to different 
driving frequencies. 

8. Open the program Damped Driven Harmonic Oscillator.cap. Turn on the oscillator. 
9. Set the driving frequency fd to the natural frequency f0, and acquire data. Fit the steady 

state portion of your oscillation to a sine wave and measure the amplitude. Record the 
result on an Excel spreadsheet. 
 

10. Increase the driving frequency by about 0.1 Hz and repeat the measurement.  
 

11. Continue until the amplitude levels off. 
 

Note: The point here is to produce a smooth plot of driving frequency 

vs. Amplitude. If A is changing rapidly with fd, then you will need a high 

density of data points. If is changes slowly, you can use fewer data 

points. Adjust the frequency interval of your measurements as 

necessary. 

 

12. Repeat for the driving frequencies lower than f0. 
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13. Using Excel, plot A vs fd. Print out the resulting curve. At what driving frequency do you 
find the maximum amplitude? 

 

  

14. We are now going to repeat what we just did with the magnet at 5 mm from the mass. 
Find the time constant for the system with the magnet at this distance. 

 

b=__________________ 

 

15. Again, produce a plot of driving frequency vs. amplitude. How does this plot compare to 
the previous plot? What is the effect of increasing the damping force? 

 

 

 

 

Exercise 6: Q-Factor 

We will define the bandwidth of the resonance  1
2 max

f  as the width of the frequency response at ½ the 

maximum amplitude. 

 

The Q-factor measures the quality of the resonance. We will define it as the ratio of the natural frequency 
to the bandwidth of the resonance.* 

 
1
2

0

max

f
Q

f



  (8) 

                                                      
* There are several definitions. This is the simplest. 
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A high Q value is an indication of a lower rate of energy loss and a long time constant 𝜏. A low Q value is 
an indication of a higher rate of energy loss and a shorter time constant 𝜏. 

16. Using our data from exercise 4, calculate the Q factor for two damping cases you studied 
above. 
 

 

Qa = _______________________   Qb = _______________________ 

 

17. What relationship do you see between the damping force and the Q factor? 
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Pre‐Lab Preparation Sheet for Lab 11: 
Standing Waves and Resonance 

(Due at the Beginning of Lab) 
Watch the following videos: 

  www.youtube.com/watch?v=Y9pYHDSxc7g 

 www.youtube.com/watch?v=ZRZIz81nXo4 

 

1.  What are the x and y axes of the plot of a Fourier transform? 

 

 

 

 

 

 

 

 

2. On a standard 88 key piano, Middle C has a frequency of 261.626 Hz. What is the wave 

length in air? 

 

 

 

 What are the wavelengths (in air) of the highest (4186 Hz) and lowest (27.50 Hz) keys? 
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3. The notes A4 (440.000 Hz) and D4 (293.665 Hz) constitute a fifth: a frequency ratio of 

(almost) 3:2. Find three harmonic frequencies which these notes share? (Or very nearly 

share.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xkcd.com 
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Lab 12: Standing Waves and Resonance 
 

There is geometry in the humming of the strings; there is music in the spacing of the spheres. 

--Pythagoras 

Objectives 

 Understand the relationship between harmonic oscillators and waves 
 Understand how boundary conditions lead to resonance 

 

Equipment 

 Function generator with mason string. 100 g for tension 
 Oscillator 
 Precision mass set 
 Large slotted mass, 4 kg total 
 Steel wire 
 Microphone 
 Spectrum Lab 
 Super pulley + small pulley 
 3 table clamps 
 Risers for sound board / equipment box 
 Bridge 
 Tuning fork 

 

Introduction: The harmonic oscillator vs. the unbounded wave 

The equation for a simple harmonic oscillator describes the motion of a single rigid object. 

 

  ( ) cosy t A t     (1) 
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Here,  is determined by the mass and spring constant of the oscillator: 

 
k

m
     (2) 

A wave (for example, waves on a string) can be regarded as a collection of coupled simple harmonic 
oscillators, where each oscillator is a tiny segment of the string. However, each segment of the string is 

slightly out of phase with its neighbor. Thus, the phase shift f of each oscillator is a function of x. 

 

 

 

( , ) cos( )

2
cos 2

2 2
cos

2
cos

y x t A kx t

A x ft

v
A x t

A x vt


 

 
 



 

   
 
   
 
   
 

   (3) 

Simulation 1: http://physics.bu.edu/~duffy/HTML5/wave.html 

The speed of the wave v is determined by the tension T and the linear mass density  of the string. 

 
T

v


   (4) 

The speed is related to (but not determined by) the wavelength  and frequency f: 

 v f   (5) 

In other words, if you increase the wavelength you will lower the frequency, but the speed remains 
unchanged. 
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Interference and standing waves 

If two waves of the same frequency are simultaneously traveling in opposite directions, they well interfere 
with each other to create a standing wave. 

Simulation 2: http://physics.bu.edu/~duffy/HTML5/transverse_standing_wave.html 

Note how the wave shape remains, but the wave does not appear to be going anywhere. Instead, a pattern 
of nodes (where the string does not move) and antinodes (where the string exhibits maximum motion) 
appear. 

 

Exercise 1: Real strings and boundaries 

Equation (3) nicely describes a wave traveling along an infinitely long string which is magically 
suspended in space. Any frequency/wavelength may be produced on the string 

However, real strings have ends and are held in place by clamps, bridges, nuts, and whatnot. These create 
boundary conditions: points where we constrain the position of the string to a particular value. Consider 
a string of length L clamped at opposite ends of its length.  

a. Since waves reflect off the clamps, waves will be traveling in both directions on the string. This 
will create a standing wave.  

b. Since the ends cannot move, only standing waves with nodes separated by a distance L can exist 
on the string. 

Hence, the allowed wavelengths are quantized*: only those waves which match the boundary conditions 
can exist on the string. The first two solutions are illustrated below, but other solutions also exist. Each 
solution is called a resonance. 

                                                      
* No, this is not quantum mechanics. But it is very analogous to the quantization of energy levels in quantum 
mechanical systems. 
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1. In the blank space below, sketch the next two solutions, and record each wavelengthn in terms 
of L. 

2. Then, write down an expression for the wavelength  for all possible solutions.  
The longest possible wavelength 1 is called the fundamental or the first harmonic. 

Half of this wavelength 1/2 is the second harmonic. 

One third of the fundamental wavelength 1/3 is called the third harmonic. 

Et cetera.* 

3. Label your sketches with the corresponding harmonic. 

                                                      
* For some systems (such as certain organ pipes) not all harmonics are allowed.  
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Exercise 2: Driven waves on a string 

 

4. Measure the linear mass density (mass / length) of the of the mason’s twine. 
 

 = __________________________________________ 

 

5. Apply 100 g to tension the string. Calculate the velocity of waves on the string. 
 

 

v = __________________________________________ 

 

6. Turn on the oscillator and adjust the frequency of the function generator to about 5 Hz. Then, 
steadily increase the frequency until the string resonates with a maximum amplitude in its 
fundamental mode. Adjust the amplitude knob as needed. 

 

 

f1 = __________________________________________ 
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7. Describe the boundary conditions for the wave on this string. How is the string constrained at 
each end. (Note: this string is not clamped at one end.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Noting the positions of the nodes, measure the wavelength of the fundamental 1. 
 

 

9. Knowing the frequency and wavelength, calculate the speed of waves on the string. Then, 
calculate the percent difference between this value and the wave-speed calculated earlier. 

 

 

v = _________________________________________ 

 

 

% diff = _____________________________________ 
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10. Estimate the frequencies of the next three harmonics and enter the values in the table below. Then 
with the function generator, experimentally measure the frequency of each harmonic. 

  
Estimated frequency 

 
Measured frequency 

 
f1 

 
XXXXXXXXXXXXXXXXXXXXX 

 

 
f2 

  

 
f3 

  

 
f4 

  

 

Exercise 3: The Tennessee music box.* 

In the previous exercise, you actively drove the string at particular frequencies to see which frequencies 
would resonate. In this exercise, you will randomly dump energy into the wire (i.e., pluck the wire) and 
see what frequencies naturally appear. 

 

11. Study the steel wires and how tension is applied to each.  Describe the boundary conditions of 
their vibrating segments (that is the segment between the 1st and 2nd bridges). 

 

 

 

 

 

                                                      
* Minus the frets. 
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Tension the fine wire with 2 kg and the heavier wire with 3 kg. Set the length L of a fine wire to 60 cm 
and one of a heavy wire to 60 cm. 

A contact microphone detects vibrations of the sound board. Verify that it is plugged into the mic input of 
the computer. 

Run the program Spectrum Lab (found on the desktop).  

This program performs a Fourier transform to separate the sound into its 

component frequencies. Your cochlea (the snail‐shell like structure behind 

your eardrum) performs the same task for your brain.  

 

12. Pluck the fine wire and measure the frequencies of the first five harmonics. (You can use 
the mouse to identify the frequency components on the screen.)  Fill in the table below 
and verify the higher harmonics are indeed multiples of the fundamental. 
 

n 1 2 3 4 5 
 

fn 

     

 
fn / f1 

 
 

    

 

 

13. Reduce the tension of the fine wire by removing 1kg. Measure the resulting fundamental 
frequency. Verify that this frequency is consistent with equations (4) and (5). Show your work. 

 

 

 

 

 

 

 

14. From frequency measurements, calculate the mass density  of the fine and heavy strings. 
 

 fine = __________________________________ 
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 heavy  = ______________________________________ 

 

Consonance 

Consonance (or a pleasing harmony) is perceived when two different notes share many of the same 
frequencies in their harmonic sequences. 

Tension the fine wire with 2 kg. Set the vibrating lengths on the fine wire to 60 cm and 40 cm.  

15. Measure the fundamental frequencies, and the frequency ratio. 

 

f60 = ___________________________                       f40 = ___________________________ 

 

frequency ratio   _________________________________ 

 

16. Which harmonics do these notes share? 

 

 

 

 

17. Adjust the length of the shorter string to find two different consonances. The strings should make 
a pleasing sound; if you are tone deaf, ask for help from a more musically inclined student.. 
Calculate the frequency ratio for each of these new consonances. 

String lengths: 

 

 

 

Frequency ratio:  
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Exercise 5: Selecting harmonics 

18. Locate the middle of a string. 
19. Pluck the string; then gently touch the string in the middle. You should notice a distinct increase 

in the pitch. 
20. Which harmonics are suppressed? Explain why. 

 

 

 

 

 

 

 

 

21. Where should you place your finger to dampen the first two harmonics, but retain the third? Try 
it. 
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Exercise 6: Harmonic patterns 

 
22. Select a tuning fork within your vocal range. Gently strike the fork with the 

rubber mallet and place the bottom of the fork against the sound board. 
23. With the computer, note the pattern of harmonics displayed on the screen. 

 
24. Replace the contact mic with a regular microphone. 

 
25. From your group, select the best opera singer. Holding the 

microphone, with a steady clear voice sing “Ahhhhhhhhhhh”. 
Try to match the tone of the tuning fork. Note the pattern of 
harmonics displayed on the screen. 

26. Using the same pitch as before, sing “Eeeeeeeeeeeeeeeee”. 
27. Briefly describe how the harmonic patterns of these three sounds 

differ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

28. Hiss into the microphone: “Ssssssssssssss”. How does this frequency pattern compare the vowel 

sounds above? Try some other non-vowel sounds. Why is it only possible to sing with vowels? 
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Appendix A: The Small Angle Approximation 
 

Often, you will find yourself dealing with small angles. In such cases, the following 
approximations can make your calculations a lot easier.  

______________________________________________ 

If an angle   is measured in radians, the arc length of the corresponding circle segment s is 
given by 

 s r  . 
 
By definition 

 
sin( )

tan( )
cos( )




  . 

 
Inspecting the diagram, it is obvious that for small angles 

 

sin( )

sin( )

r r 

 




 . 

 
 
It is also obvious that for small angles 
 

 

cos( )

cos( ) 1

r r






  

 

Thus, 

sin( )
tan( )

cos( )

tan( ) sin( )




 






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So, for what angles does this approximation work? Well, it depends on how accurate you need to 

be. The graph below is a useful guide. The closer sin( )


is to 1, the better the approximation. 

Note: The angles on the x-axis are in degrees. The angles on the y-
axis are calculated in radians. 
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Appendix B: The Right Hand Rule and Right Handed Coordinates 
 

Many of the equations used in this lab and the associated class require that you use a Right 
Handed Coordinate System, particularly those equations involving cross products. Using the 
wrong coordinates can lead to considerable confusion and grief; so, get in the habit of drawing 
your coordinate axes correctly! 

Consider the illustration of a Right Handed Coordinate axes below. The unit vectors ˆ ˆ ˆ, , andx y z  

correspond to the index finger, middle finger, and thumb respectively. Here 

 ˆ ˆ ˆx y z    

 

Below is an example of a Left Handed Coordinate system where ˆ ˆ ˆx y z    , and that’s wrong!! 
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Appendix C: Advanced Propagation of Uncertainties  
 

Suppose you had measured three different rods: 

x = (2.34 ± 0.03) m  y = (5.43 ± 0.05) m  z = (8.31 ± 0.02) m 

What would be the length of these three rods placed end to end? 

In Lab 1, you were instructed to combine the uncertainties by simply adding the absolute 
uncertainties. 

    
 

 2.34 5.43 8.31    0.03 0.05 0.02m m 

 m16.08 0.10  

L x y z  
     
 

  

In fact, this is an upper limit of the uncertainty. In this particular case, we can actually do a bit 
better. The logic goes like this:  

If you make several independent measurements subject to random uncertainties, we expect 
some measurements will be a little bit high and some to be a little bit low. These 
variations should partially cancel out.  

I’ll spare you the ugly details of the math, but it boils down to this: 

When adding several independent measurements 

1 2 ... nQ q q q     

the corresponding absolute uncertainties are added in quadrature. (That is, add 
them like the Pythagorean theorem.) 

2 2 2
1 2 ... nQ q q q         

Thus, in the example above we have 

    
 

2 2 2 2.34 5.43 8.31    0.03 0.05 0.02  m m

 16.08  m0.06

L x y z  

     

 
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Note that for this to apply, we must be adding independent measurements. Consider for a 
moment a different problem: 

You are given a rod of length r = (1.54 ± 0.04)m, What would be the length of 3 
similar rods placed end to end? 

Here, we only have a measurement for a single rod; so, there is no longer a partial canceling 
out of uncertainties.  In this case, the best we can do is to simply add the uncertainties: 

 

   
 

 

3 1.54 1.54 1.54 m 0.04 0.04 0.04 m

3 1.54 0.04 m

4.62 0.12 m

r      

 

 

  

 

What about when multiplying (or dividing) measurements? The method is similar: 

When multiplying (or dividing) several independent measurements 

1 2 ... nQ q q q     

the corresponding relative uncertainties are added in quadrature. 

22 2

1 2

1 2

... n

n

qq qQ

q q q q

      
        

     
 

So, if I were to take the measurements in the first example and multiply them together (say, to 
find a volume), the result would be  

 

 

2 2 2
3

3

3

0.03 0.05 0.02
 2.34 5.43 8.31  m    100%

2.34 5.43 8.31

 16.08 m 0.016 100%

16.08 m 1.6%

V x y z  

               
     

 

 

 

 
 
 
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But, suppose I had a measured only one rod and imagined constructing a cube 3 rods long by 2 rods tall 
and 1 rod deep. What would be the volume of this structure?  

Now with only one actual measurement 

  r = (1.54 ± 0.04)m 

the relative uncertainties are simply added: 

 
 

3 3

3

3

3 0.04 2 0.04 0.04
3 2 6 1.54 m 100%

3 1.54 2 1.54 1.54

= 21.91 m 0.08 100%

21.91 m 8%

r r r
            

 

 

 

 

Moral of the story: 

Independent measurements: add uncertainties in quadrature. 

Non‐independent measurements: simply add the uncertainties. 

 


