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In this report, we investigated participants’ beliefs about how different 
agents represent action. In Experiment 1, participants divided actions into 
units for two hypothetical observers. Participants marked fewer units for a 
person than for either of two different machine agents, suggesting that mo-
tions were integrated into larger goal-based units for the human but not for 
the machines. An analysis of alignment between participant breakpoints 
and coded action features demonstrated that participants selected larger 
units aligned with changes in actors’ goals when segmenting for humans, 
and that they selected smaller units aligned with actors’ motions when seg-
menting for machines. In Experiment 2, one group of participants was pre-
sented a robot imbued with a minimal understanding of the object-directed 
and experience-dependent character of human action. Segmentation for 
this machine agent was similar to segmentation for a human, suggesting 
that human capacities can override a category-based distinction between 
humans’ and machines’ representations of action.

Human actions involve continuous intricate motions of limbs, digits, and objects. 
However, when observing actions or comprehending narratives, we do not simply 
perceive bodily motions or unconnected events, but rather extract plans of action 
purposely initiated to obtain desired goals (see e.g., Dik & Aarts, 2007; Hassin, 
Aarts, & Ferguson, 2005; Long & Golding, 1993; Poynor & Morris, 2003; Zacks, 
Tversky, & Iyer, 2001). Furthermore, we expect this intentional understanding of 
other adults (Levin et al., 2006) and these expectations influence cooperative and 
competitive interactions. For example, in competitive team sports, the outcome 
of a game depends not only on individual performance but also on individuals’ 
expectations of their teammates and of their opponents. 
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A key question about the aforementioned expectations of intentional under-
standing is how we generalize them to different living and artificial agents—if 
we expect that people understand the goals underlying human actions, do we 
generalize this expectation to intelligent artifacts such as computers and robots? 
Previous research has documented that people make different attributions about 
the cognitive capacities of humans, nonhuman animals, and machines (e.g., Brand, 
Baldwin, & Ashburn, 2002; Eddy, Gallup, & Povinelli, 1993; Gray, Gray, & Wegn-
er, 2007; Herberg, Saylor, Levin, Ratanaswasd, & Wilkes, 2008; Levin et al., 2006; 
Rasmussen, Rajecki, & Craft, 1993; Shechtman & Horowitz, 2003). However, it re-
mains unclear how these explicit beliefs influence on-line expectations about oth-
er agents’ action representations. In this report, we ask whether people’s beliefs 
about humans and machines will lead them to identify different action content 
they believe to be meaningful for each type of agent.

Perceiving Continuous Meaningful Actions 

Human action is comprised of complex continuous motions that must be segment-
ed into meaningful units to be comprehended. To isolate the content people extract 
from actions, researchers have employed a segmentation paradigm in which par-
ticipants are asked to insert breakpoints between what they believe to be mean-
ingful units of action (Newtson, 1973). A key finding from this research is that 
observers can focus both narrowly, conducting a fine-grained analysis in which 
they insert a large number of breakpoints dividing actions into a series of small 
movements, and more broadly, inserting few breakpoints that tend to correspond 
with actors’ completing a goal (Newtson, 1973; Zacks, 2004; Zacks & Tversky, 
2001). For example, a fine-grained segmentation of dish washing might contain 
breakpoints after the actor grasps a scrubber, after he grasps a dish, after he scrubs 
the dish, after he rinses the dish, and after he places it in the drying rack. In con-
trast, a coarse analysis might result in breakpoints only after the actor places each 
dish in the drying rack. Importantly, the breakpoints that participants identify at 
both grains are temporally correlated with increased activity in a network of brain 
regions during passive action observation (Zacks, Braver, et al., 2001), which sug-
gests that segmentation is a component of natural action perception (Reynolds, 
Zacks, & Braver, 2007).

Several studies show that action segmentation is influenced by bottom-up per-
ceptual cues that include basic movements and object-to-object interactions (Newt-
son, Engquist, & Bois, 1977; Zacks, 2004) and by top-down information, such as the 
cover story participants are told about observed motions (Zacks, 2004; Sitnikova, 
Kuperberg, & Holocomb, 2003). Of particular interest is a study by Zacks (2004), 
in which participants segmented randomly generated movements of two-dimen-
sional shapes after hearing one of two different cover stories. When participants 
were told that the movements of the shapes represented the motions of people 
in a room, they inserted fewer breakpoints, thus dividing the motions into larger 
units (Zacks, 2004). However, when participants were told that the movements 
were randomly generated, they inserted a larger number of breakpoints that were 
aligned with specific movement features (Zacks, 2004). Thus, interpreting the 
shapes’ motions as intentional actions affected how participants segmented. 
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Concepts about Agency 

The work by Zacks (2004) has demonstrated that classifying motions as intentional 
affects how motions are segmented. This finding compliments several other stud-
ies that have explored how action perception in adults and infants is affected by 
agent concepts and by basic cues to agency (e.g., Bíro & Leslie, 2006; Dik & Aarts, 
2007; Dik & Aarts, 2008; Gao, Newman, & Scholl, 2009; Guajardo & Woodward, 
2004; Heider & Simmel, 1944; Johnson, Slaughter, & Carey, 1998; Meltzoff, 1995; 
Premack, 1990; Shimizu & Johnson, 2004; Tremoulet & Feldman, 2000; Woodward, 
1998). Much of this research explores children’s early emerging understanding 
about the ultimate causes of human behavior. This understanding is referred to as 
an intentional theory of mind (ToM) and it consists of a set of concepts and skills 
that help people explain behavior in terms of beliefs, desires, and goals (for review 
see Wellman, Cross, & Watson, 2001). In addition to extensive research document-
ing the emergence of ToM abilities in children, recent research has asked whether 
adults expect ToM abilities of nonhuman intentional agents. Some studies sug-
gest that adults do extend ToM by demonstrating that they extend social norms 
to computers they are interacting with (e.g., Nass and Moon, 2000). Moreover, 
people tend to anthropomorphize a range of artifacts, especially when they have a 
strong motivation for social interaction (for review, see Epley, Waytz, & Cacioppo, 
2007). However, other studies suggest that adults strongly distinguish humans 
and computers when making explicit predictions about typical goal-driven be-
havior (Levin et al., 2006), and even Nass and Moon (2000) argue that people hold 
explicit beliefs distinguishing people and computers. One possible explanation for 
the conflicting findings is that in social situations, people readily abandon beliefs 
differentiating agents because these beliefs are relatively shallow and nonspecific. 
On the other hand, it is possible that people have deeper beliefs differentiating 
agents, but that some automatized social behaviors do not access the full range of 
people’s understanding. 

Our goal in the present study was to leverage the aforementioned segmentation 
method to ask whether people’s concepts differentiating humans and intelligent 
mechanical agents lead to specific expectations about how these agents under-
stand action. Given that people may have difficulty verbalizing the details of their 
intuitions about the functioning of any complex system (including themselves), 
action segmentation allows us to examine these intuitions without explicit reports. 
The action segmentation method provides us with two implicit measures of par-
ticipants’ expectations about other agents’ action understanding. First, we can 
compare the grain of analysis at which participants segment actions for different 
types of agents by comparing breakpoint counts between agents. Second, we can 
compare the content that participants identify as meaningful for each agent by 
comparing how closely participant breakpoints are aligned with various types of 
coded action content. Another advantage of our method is that we can clarify rela-
tionships between individual’s segmentation data and their explicitly reported be-
liefs. Through collecting questionnaire responses about agents and subsequently 
using these as mediators in analyzing segmentation data, we can obtain not only 
a measure of differences in action content that they believe to be meaningful for 
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different agents, but also how these segmentation differences relate to differences 
in explicit beliefs.

Experiment 1

In this experiment, participants divided videotaped action sequences into seg-
ments by inserting breakpoints. Participants divided videos into units they be-
lieved would be meaningful for a person and, separately, into units they believed 
would be meaningful for a machine. By comparing segmentation for these two 
agents, we obtained a behavioral measure of difference in expectations about ac-
tion content meaningful for each agent type. 

In addition to investigating broad, agent-category-based differences in seg-
mentation distinctions, we presented two different machine agents to determine 
whether such distinctions can be altered by simple anthropomorphization. Pre-
vious work suggests that both featural cues (Johnson et al., 1998) and anthro-
pomorphic language (Levin & Beck, 2004) can lead people to treat a nonhuman 
agent more like a human. However, when asked explicit questions to probe their 
intuitions, people seem to believe both nonanthropomorphized computers, and 
robots described with anthropomorphic language are incapable of goal process-
ing (Levin et al., 2006). To test whether this form of anthropomorphization affects 
action segmentation in our experiment, the machine agent presented to one group 
of participants was an embodied robot agent that was given a human name, “OS-
CAR,” and referred to with the pronoun “him.” The other group was presented 
with an unnamed computer system that was not described with anthropomorphic 
language. 

To identify the action content corresponding to participants’ breakpoint loca-
tions, we used an alignment analysis (similar to that used in Zacks, Tverksy, & 
Iyer, 2001) that compared participants’ breakpoints to the locations of action fea-
tures identified by coders. For example, by looking at alignment between partici-
pant breakpoints and time points for actors’ goals, we could test the hypothesis 
that more goal-related segments were identified for a human than for a machine. 
Finally, participants completed a questionnaire that explicitly asked what criteria 
they used to segment the videotaped actions and what they believed about the 
agents’ cognitive capacities. 

Method

Participants. Twenty-three undergraduate students from Vanderbilt University 
participated in this study for class credit. Two participants were excluded for fail-
ing to follow instructions, and one was excluded because of experimenter error. 
This left 20 participants’ data for analysis (age range: 18-22, mean age: 19.6, 2 fe-
males).

Apparatus. All video stimuli were presented using Final Cut Pro 4 on an eMac 
computer (monitor vertical refresh: 89 Hz; monitor dimensions: 31.5 cm x 23.5 cm). 
Participants were seated approximately 60 cm from the display.
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Materials. For each of the experiments in this report, the stimuli were video-
taped sequences of continuous action previously used to study action perception 
in infants and adults (Baldwin, Baird, Saylor, & Clark, 2001). In each of the two 
videos, an actor cleans a room. In the Toy Room video (duration: 54.7 s), she places 
a plastic container on a shelf, hangs a shirt on a coat hook, and returns several 
Lego blocks to a tub before closing the tub. In the Kitchen video (duration: 49.5 s), 
a different woman washes a glass, hangs a towel on an oven handle, returns ice 
cream to a freezer, and places a bowl in a dishwasher. The actor in each video also 
produced a small number of social gestures (e.g., placing hands on hips and pat-
ting objects). The videos were presented in a rectangle measuring 9.2 cm x 7.4 cm 
(approximately 4.4 x 3.5 degrees of visual angle).

Before participants were introduced to the segmentation task, a description of 
the agents was provided. The human was introduced as an 18-year-old American 
adult named John from Virginia, but no other detail was provided. For the ma-
chine agent, half of the participants read a description of a computer system and 
half read a description of an anthropomorphic robot. The computer program was 
described as having “ . . . action analysis and language recognition features . . . ” to 
convince participants that it was capable of processing action. The robot, OSCAR, 
was described as follows: “OSCAR can watch others perform actions and then use 
the information to repeat the actions. OSCAR has sophisticated voice-recognition 
and language comprehension abilities that allow him to understand and respond 
to spoken language.”

Procedure. Participants were first shown how to scroll through a movie and how 
to insert and delete units using a sample movie clip displaying the text “Demo.” 
They were then given a brief description of the task and of the first agent for which 
they would be segmenting videos. Participants were asked to divide videos into 
segments that would be most easily understood by a given agent. Participants 
segmented both the kitchen and toy room video for the first agent before being 
introduced to the second. The order of agent and video presentation was counter-
balanced. 

The segmentation procedure was as follows. Each video was shown three times. 
First, during a familiarization phase, participants watched the video to become 
familiar with it. Next, during the real-time phase, the participants used the tilde 
key to insert breakpoints as the movie played. During the manual adjust phase, 
participants were given the opportunity to add, delete, and move breakpoints using 
keyboard shortcuts and the Final Cut Pro movie controller (hidden in the preced-
ing phases). The controller displayed a timeline for the movie and showed mark-
ers at each point the participant had inserted a breakpoint during the real-time 
phase. Participants were allowed to play the movie and to use the mouse to move 
to specific times during the movie. A reference sheet was provided to participants 
during the manual adjust phase describing the keyboard commands to add, to 
delete, and to reposition breakpoints.

After segmenting videos, participants completed a questionnaire that includ-
ed (1) ability questions, (2) criteria questions, (3) experience questions, and (4) perfor-
mance evaluation questions. All questions were 7-point Likert scales labeled with 
“completely disagree” at option 1, “neither agree nor disagree” at option 4, and 
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“completely agree” at option 7. For ability, criteria, and performance evaluation 
questions, we collected ratings for both human and machine agents. Ability ques-
tions asked about participants’ agreement with the following statements: (1) “The 
[agent] would be able to recognize objects in the videos” (object recognition), (2) 
“The [agent] would be able to identify the intended results of the actions in the vid-
eos” (intention identification), and (3) “The [agent] would be able to identify social 
gestures made by a person in the videos” (social gesture identification). Criteria 
questions asked about agreement with these statements: (1) “A switch from an 
actor manipulating one object to manipulating another is likely to indicate a new 
segment for the [agent]” (object switch criterion), (2) “A change in the motion of 
an actor’s arms and hands is likely to indicate a new segment for the [agent]” (arm 
motion criterion), and (3) “A change in the position of the actor within the scene is 
likely to indicate a new segment for the [agent]” (actor body movement criterion). 
Experience questions asked about relevant experience with, for example, technol-
ogy and science fiction, but we do not use those questions for analyses in this 
report. Finally, performance evaluation questions asked participants to evaluate 
how much thought and effort they put into generating segments (“I put a lot of ef-
fort into thinking about how [agent] would segment the videos”) and to rate how 
confident they were that they had selected relevant segments for an agent (“I was 
certain of how [agent] would segment the videos”). 

Results

Number of Breakpoints. A repeated-measures ANOVA was conducted with agent 
type (human or machine) and adjustment condition (real time or manual adjust) 
as within-subjects factors and machine anthropomorphism (computer or robot) as 
a between-subjects factor.1 The analysis showed a significant main effect of agent 
type, F(1, 18) = 21.00, p < .001, and adjustment condition, F(1, 18) = 7.83, p < .05. 
Participants inserted more breakpoints for the machine agents (M = 9.01, SD = 
4.72) than for the person (M = 4.50, SD = 1.64). Additionally, participants inserted 
more breakpoints in the manual adjust condition (M = 7.10, SD = 3.17) than in the 
real-time condition (M = 6.41, SD = 2.50). 

The interaction between agent type and adjustment condition was also signifi-
cant, F(1, 18) = 4.86, p < .05. The difference in the number of breakpoints between 
the two adjustment conditions was greater when participants were segmenting 
for the machine than for the human. Simple effects comparisons confirmed that 
only for the machine agents were significantly more breakpoints generated in the 
manual adjust condition, F(1, 18) = 7.95, p < .05.

The interaction between agent type and machine anthropomorphism was not 
significant, F(1, 18) = .197, p = .66. Simple effects comparisons confirmed that par-
ticipants in the computer condition inserted more segments for the computer (M 
= 8.90, SD = 3.41) than for the human (M = 4.83, SD = 2.15), F(1, 18) = 8.56, p < .01, 
and participants in robot condition inserted more segments for the robot (M = 9.13, 
SD = 5.96) than for the human (M = 4.18, SD = .90), F(1, 18) = 12.63, p < .005. 

Breakpoint Alignment. Two research assistants marked time points in each of the 
videos for a number of action features. Time points in the videos were coded: (1) 

1. Initial ANOVAs with video as a within-subjects factor showed no significant effects of this factor 
so it was not included in any of the following analyses.
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when an arm movement was completed, (2) when a social gesture was completed, 
(3) when a body movement was completed, (4) when a goal was completed, and 
(5) when manipulation of a particular object was completed. To determine coder 
agreement, we computed the average distances between coders’ markers for each 
feature and compared these distances to an appropriate null model.2 One-sample 
t-tests indicated that across all features, agreement was significantly better than 
chance. Across movies, the means and standard deviations of temporal distance 
between coder markers for each feature were as follows: arm movements (M = 851 
ms, SD = 1040 ms), social gestures (M = 1277 ms, SD = 2102 ms), body movements 
(M = 423 ms, SD = 397 ms), goals (M = 358 ms, SD = 329 ms), and object manipula-
tion (M = 1315 ms, SD = 1689 ms). To further test the reliability of coder data, we 
computed correlations between the time codes for each coder’s markers for each 
coded feature across movies. Markers from each coder were matched with the 
nearest marker from the other coder. The correlations were all above r = .94 with 
significance values less than .0001. 

 Only the first coder’s data were used in the following alignment analyses, rath-
er than an average, because coders’ lists did not always contain the same number 
of points. If averages were used with unequal lists, then averaged points would 
not always correspond with any intended coded feature. For each coded feature, 
we measured the alignment between the coders’ markers and the time codes at 
which individual participants inserted breakpoints. For each feature type, we cal-
culated the average distance between each participant breakpoint and the nearest 
time code for a coded feature. Thus, larger average distances between participant 
breakpoint times and the coded feature time codes suggest that participants were 
less likely to use a feature to identify meaningful units for a given agent. A null 
model was not used in this analysis because we were concerned specifically with 
the difference between conditions in breakpoint alignment with coded feature 
time codes.

A repeated-measures MANOVA was conducted with each coded feature type as 
a separate measure. Agent type was included as within-subjects factor.3   Machine 
anthropomorphism was included as a between-subjects factor. The multivariate 
test, for the combined set of features, showed a main effect of agent type, F(5, 14) 

2. The null model, introduced by Zacks, Tversky, & Iyer (2001), is based on the time code for a 
participant’s last unit (represented as “pCount” below, where “Count” designates the index of the last 
unit). In the equation, the first term in the numerator is the special case distance estimate for the unit 
extending from the beginning of the video to the first breakpoint, p1. The summation gives the sum of 
chance distance estimates for each successive pair of breakpoints.

3. We excluded the adjustment factor from this and all subsequent analyses. In all cases, the results 
of including the factor suggest that participants make more adjustments to breakpoints for machines 
than for humans. Perspective taking research suggests that it is difficult to override an egocentric 
perspective (Barr & Keysar, 2005; Krauss & Fussell, 1991), especially under time pressure (Epley, 
Keysar, Van Boven, & Gilovich, 2004). Thus, participants may correct for an initial egocentric bias 
(toward a goal-based segmentation) in the manual adjust phase. Alternatively, given the motion-
based criteria for machine segments, participants may simply have been more likely to miss some of 
the greater number of potentially meaningful events in real time. More important than the adjustment 
effect is that the agent type difference is observed in both the real time and the manual adjust 
condition. Thus, differences in expectations for agents emerge online and seem to be elaborated by 
explicit deliberation. 

� 

Distance0 =

p1
2

2
+ pi+1− pi

2

 
  

 
  

i=1

i=Count−1

∑
2

pCount



ANALYZING ACTION	 63

= 5.36, p < .01, with average distances being significantly greater for the machine 
(M = 3181 ms, SD = 286 ms) than for the human agent (M = 3037 ms, SD = 337 
ms). Univariate tests showed significant effects of agent type for goals, F(1, 18) = 
19.02, p < .001, and for movements of the actor, F(1, 18) = 6.37, p < .05. The average 
distance of a breakpoint from a goal feature was greater for the machine (M = 3550 
ms, SD = 989 ms) than for the human (M = 2480 ms, SD = 658 ms). The average 
distance from an actor body movement feature was smaller for the machine (M = 
4752 ms, SD = 1065 ms) than for the human (M = 5318 ms, SD = 1112 ms). There 
were no significant interactions between machine anthropomorphism and agent 
type. However, there was a significant main effect of machine anthropomorphism 
on social gesture alignment, F(1, 18) = 5.43, p < .05. Overall, segments were more 
closely aligned with social gestures for the group of participants who segmented 
for the computer agent (M = 4381 ms, SD = 466 ms) than for the group who seg-
mented for the robot (M = 4947 ms, SD = 457 ms). Simple effects analyses revealed 
that the difference in alignment was only significant for the machine agents, F(1, 
18) = 5.21, p < .05, such that segments were placed closer to social gestures for the 
computer than for the robot agent.

Questionnaire Data. Questionnaire responses were analyzed using individual 
repeated measures ANOVAs that included agent type (human or machine) as a 
within-subjects factor and machine anthropomorphization condition (computer 
or robot) as a between-subjects factor. For all statistics, see Table 1. Participants 
gave higher ratings for the person than for the machines across all of the ability 
questions. Additionally, participants reported that arm motions were more likely 
to correspond with a meaningful segment for a machine than for a person. Finally, 
participants reported that they were more confident in their segmentation for the 
person than for the machine and that they put more thought and effort into think-
ing about segmentation for the machine than for the person. The main effect of 
machine anthropomorphism was not significant and neither was the interaction 
between agent type and machine anthropomorphism, again suggesting that par-
ticipants’ beliefs about the agents were not altered by the anthropomorphization 
manipulation. Following Experiment 2, we aggregated questionnaire data to test 
whether segmentation was mediated by participants’ beliefs. 

TABLE 1. Descriptive Statistics for Ratings of Human and Machine Agents in Experiment 1

Human 
(Average) Computer Robot Fs 

Object Recognition 6.90 (.31) 4.40 (2.22) 4.90 (1.85) 24.46***

Intention Identification 6.55 (.61) 2.70 (1.49) 3.30 (2.16) 72.13***

Social Gesture Identification 6.40 (.75) 3.10 (1.79) 2.80 (1.62) 58.14***

Arm Motion is Meaningful 3.15 (1.79) 5.50 (1.90) 5.50 (1.43) 9.13*

Body Motion is Meaningful 4.35 (1.66) 4.90 (1.20) 4.60 (1.17) .189

Object Switch is Meaningful 5.75 (1.59) 4.40 (2.12) 4.70 (.95) .22

Confidence in Segmentation 4.85 (2.03) 4.20 (1.40) 3.30 (1.57) 6.54*

Thought and Effort 5.40 (1.35) 6.40 (.70) 5.60 (1.17) 5.45*

Means are provided with standard deviations in parenthesis for each agent type. F statistics for the difference between 
average ratings for humans and for machines are reported in the final column. *p < .05; ***p < .0005.
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Discussion

As predicted, participants inserted fewer breakpoints for a person than for a ma-
chine. Our alignment analysis showed that the smaller number of breakpoints gen-
erated for the human agent corresponded better with time codes for coded goal 
features. This is consistent with previous findings suggesting that when people 
divide human actions into a small number of large units these units tend to cor-
respond with actors’ goals (Zacks, Braver et al., 2001). Moreover, the breakpoints 
generated for the machines corresponded better with actor body movements than 
did breakpoints for the human. 

Breakpoint count and alignment results for the computer and robot machine 
types both differed from the human agent. Furthermore, explicit ratings of robot 
and computer capacities showed equivalent differences from ratings for a human 
agent. These findings corroborate the results of Levin et al. (2006), suggesting that 
by default, people believe that computers and robots both lack the human capacity 
to infer the goals of observed actions. Though the anthropomorphization used in 
this experiment did not lead people to differentiate between the machines, Bíro, 
Csibra, and Gergely (2007) have provided a basic taxonomy of cues to agency that 
may suggest other cues that could influence expectations about intentional under-
standing. The first kind of featural/biomechanical cue involves similarity between 
the surface features of an object (or object motion kinematics) and the surface fea-
tures (or kinematics) typical of human bodies (see, e.g., Guajardo & Woodward, 
2004; Johnson et al., 1998; Meltzoff, 1995; Woodward, 1998). The second cue in-
volves self-propelled movements—that is, without obvious physical causes and/
or with spontaneous changes direction (Bíro et al, 2007; Premack, 1990; Tremoulet 
& Feldman, 2000). The final “context-sensitive” cue introduced by Bíro and col-
leagues (2007) involves responses to the environment (e.g., Bíro & Leslie, 2006; 
Dik & Aarts, 2007; Dik & Aarts, 2008; Gao, Newman, & Scholl, 2009; Shimizu & 
Johnson, 2004). An especially effective context-sensitive cue seems to be equifinal 
variation, which involves agents pursuing varying approaches to the same goal. 
This cue may convey that an agent is involved in effortful goal pursuit (see Dik & 
Aarts, 2007). In the following experiment, we examine how context-sensitive cues 
may influence expectations about action understanding.

Experiment 2

In Experiment 1, participants differentiated action segments for machines from 
segments for a human. However, the anthropomorphic features of the robot did 
not lead participants to differentiate action segments for the robot from those for 
the computer. In the present experiment, we investigated how other cues may in-
fluence category-based distinctions between human and machine agents. Specifi-
cally, we presented participants visually identical robots, but one robot displayed 
context-sensitive behavioral cues suggesting basic ToM skills. Here, the behaviors 
suggested that the robot was capable of identifying the object toward which hu-
man actions were directed and that the robot understood that people’s knowledge 
depends upon what they have experienced. A second nonanthropomorphic ro-
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bot group saw evidence the robot was not capable of these behaviors. If partici-
pants segmented actions differently for these otherwise identical agents, it would 
suggest that when a machine demonstrates simple abilities to interact with other 
agents, this is sufficient to lead people to select similar meaningful units of action 
for both that robot and for a person. 

Method

Participants. Eighteen students from Vanderbilt University participated in this 
study for class credit. Two participants were excluded because they failed to fol-
low the instructions, leaving 16 participants’ data for analysis (age range: 19-22, 
mean age: 20.3, 10 females). 

Apparatus. The apparatus was the same as in Experiment 1. 

Materials. The video stimuli were the same as those used in Experiment 1. Ro-
bots were introduced through a PDF document that participants paged through 
at their own pace. The document included a description of the agents and a set 
of slides showing robots engaged in three tasks. The anthropomorphic robot was 
described similarly to the robot in Experiment 1. The nonanthropomorphic robot 
was initially described as follows: “SOCAR receives information about actions 
through input devices. It then processes the information to guide its own motions. 
SOCAR is equipped with a voice recognition system that enables it to respond to 
verbal commands.” Because we were interested in the effects of machine behav-
ioral cues, independent of appearance, pictures of the same robotic system were 
used in both conditions. 

In the slideshows, photographs and text showed that the anthropomorphic 
robot performed similarly to a human (and the nonanthropomorphic robot per-
formed differently), in each of three tasks. The first task, adapted from Woodward 
(1998), showed a robot observing a human reach for one of a pair of objects and 
then being asked to imitate the action after the objects’ positions were switched. 
The anthropomorphic robot was shown reaching for the same object as the human 
had and the nonanthropomorphic robot was shown reaching to the same location. 
The second task was a version of the false belief task (Wimmer & Perner, 1983) 
in which an individual called Robert hides a ball beneath a cup (the middle cup 
of three) in the presence of an observer, Juan, and the robot. Juan then leaves the 
room and Robert moves the ball to another cup. When asked to guess where Juan 
will look for the ball, the anthropomorphic robot appropriately picks the middle 
cup—consistent with Juan’s knowledge. The nonanthropomorphic robot picks the 
cup where the ball has been moved to. The final task showed a person reaching for 
a single object and the robot was then asked to imitate the person’s action when a 
box was interposed between the robot and the object. The anthropomorphic robot 
was shown reaching over the box to the goal object (and the nonanthropomorphic 
robot reaches to the box itself). In the slides, images of human and robot behaviors 
were captioned with language that described the sequence of events without ex-
plicit reference to beliefs or other mental states. 

Procedure. The procedure was the same as in Experiment 1, but participants 
viewed the introductory slides before segmenting for the machine. Additionally, 
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because some pilot participants did not seem to understand the false belief task 
slide, the experimenter explained the slide to participants after they had finished 
reading it. The explanation stated, “The robot was asked to guess what the person 
who had left the room would believe about the location of the hidden object.” 

Results

Number of Breakpoints. An ANOVA was conducted with agent type as within-
subjects factor and machine anthropomorphism condition as a between-subjects 
factor. The main effect of agent type was significant, F(1, 14) = 10.47, p < .01, with 
participants inserting more breakpoints for the machines (M = 9.20, SD = 4.91) 
than for the human (M = 5.64, SD = 3.16) overall. 

Additionally, the interaction between agent type and machine anthropomor-
phism was significant, F(1, 14) = 5.29, p < .05. This interaction reflected that the 
number of breakpoints inserted for the person was more similar to the number 
inserted for the anthropomorphic robot than it was to the number for the nonan-
thropomorphic robot (see Fig. 1). Simple effects comparisons showed that only 
participants who segmented for the nonanthropomorphic robot inserted signifi-
cantly more breakpoints for the machine, F(1, 14) = 15.32, p < .01.

Breakpoint Alignment. The alignment analyses for this experiment supported the 
results of the breakpoint count analysis (as in Experiment 1).

Figure 1. Differences in agent type effect between anthropomorphism conditions in 
Experiment 2. Error bars represent SE of the agent type difference.
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Questionnaire Data. Differences in questionnaire responses were analyzed using 
individual repeated measures ANOVAs that included agent type as a within-sub-
jects factor and machine anthropomorphization condition as a between-subjects 
factor. See Table 2 for statistics. For intention and social gesture identification, par-
ticipants gave higher ratings for the person than for either robot. For ratings of ob-
ject recognition ability, participants gave higher ratings for the person overall, but 
there was also a main effect of machine anthropomorphization, F(1, 14) = 12.45, p 
< .005, showing higher ratings for the anthropomorphic robot than the nonanthro-
pomorphic robot and there was an interaction between agent type and machine 
anthropomorphization, F(1, 14) = 15.75, p < .005. The interaction was explained by 
a significant difference in ratings for the human (M = 6.63, SD = .74) and the ma-
chine (M = 3.13, SD = 2.03) in the nonanthropomorphic condition, F(1, 14) = 42.88, 
p < .0001, but not between the human (M = 6.75, SD = .46) and the machine (M = 
6.25, SD = .89) in the anthropomorphic condition, F(1, 14) = .88, p = .37. 

For the criteria questions, participants reported that actor position changes were 
more likely to correspond with a meaningful segment for a machine than for a 
person, but the differences for arm motion and object manipulation switch criteria 
were not significant. Finally, participants reported that they were more confident 
in their segmentation for the person than for the machine, and that they put more 
thought and effort into segmentation for the machine than for the person.

Discussion

For the nonanthropomorphic robot, the results of this experiment replicated the re-
sults of the previous experiments: fewer breakpoints were inserted for the human 
audience than for the machine audience. For the anthropomorphic robot, however, 
there were negligible differences between the robot and the human. These results 
suggest that when a robot appears to understand that certain human behavior is 
object-specific and that knowledge is experience-dependent, participants expect 
that the robot will best understand larger goal-based action segments. Previous 
findings on cues to agency (e.g., Bíro et al., 2007) suggest that many kinds of cues 
may be effective in leading people to treat inanimate objects as agents. In line 

TABLE 2. Descriptive Statistics For Ratings of Human and Machine Agents in Experiment 2

Human 
(Average)

Non-Anthro 
Robot Anthro Robot Fs

Object Recognition 6.69 (.60) 3.13 (2.03) 6.25 (.89) 28.00**

Intention Identification 6.31 (.70) 2.50 (1.41) 3.25 (1.58) 75.90***

Social Gesture Identification 6.00 (.73) 2.50 (1.41) 2.00 (1.20) 95.46***

Arm Motion is Meaningful 3.31 (1.58) 4.75 (1.91) 6.00 (1.60) 4.16

Body Motion is Meaningful 4.06 (1.73) 5.38 (1.85) 3.88 (1.96) 4.61*

Object Switch is Meaningful 6.31 (.79) 5.50 (.76) 4.88 (1.46) 3.83

Confidence in Segmentation 5.00 (1.27) 2.88 (1.13) 3.25 (.89) 25.20**

Thought and Effort 4.50 (1.32) 5.75 (1.04) 5.63 (.92) 7.28

Means are provided with standard deviations in parenthesis for each agent type. F statistics for the difference between 
average ratings for humans and for machines are reported in the final column. *p < .05, **p < .005, ***p < .0005



68	 KILLINGSWORTH ET AL.

with these findings about agency, we expect that numerous cues (not just those 
we chose) might influence expectations about an agent’s capacity for intentional 
understanding. 

Mediation and Moderation Analyses

To examine how differences in participants’ beliefs about agents may have guided 
their segmentation, we conducted mediation and moderation analyses (see Baron 
& Kenny, 1986) using an approach similar to that used by Dik and Aarts (2008). We 
combined the data from Experiment 1 and Experiment 2 for this analysis. 

Difference in Breakpoint Counts Across Agent Types

The first requirement for mediation was met by showing that our independent 
variable (agent type) affected our dependent variable (segment counts). Aggregate 
count data were analyzed using a repeated measures ANOVA with agent type as a 
within-subjects factor and machine agent group as a between-subjects factor. This 
analysis showed a main effect of agent type, F(1, 32) = 29.89, p < .0001.

Difference in Ratings Across Agent Types 

The second requirement for mediation was met for those questionnaire items that 
showed a significant difference between agent types. Individual repeated mea-
sures ANOVAs were conducted for each item with agent type as a within-subjects 
factor and machine agent group as a between-subjects factor. Participants rated 
the person as more able to identify intentions, to recognize objects, and to iden-
tify social gestures than the machine, all Fs(1, 32) > 48.24, ps < .0001. Addition-
ally, participants reported that arm motions were more likely to correspond with 
meaningful segments for a machine than for a person, F(1, 32) = 12.45, p < .005. 
Finally, participants reported that they were more confident in their segmentation 
for the person than for the machine and that they put more thought and effort 
into segmentation for the machine, Fs(1, 32) > 13.53, ps < .001. Object recognition 
ratings also showed a significant effect of machine agent group, F(3, 32) = 3.67, p 
< .05, and a significant interaction between agent type and machine agent group, 
F(1, 32) = 3.78, p < .05. Pairwise comparisons revealed that the group receiving the 
anthropomorphic robot from Experiment 2 received higher ratings for ability to 
identify objects than the nonanthropomorphic robot from Experiment 2, t(14) = 
3.13, p < .05. 

Breakpoint Analysis with Covariates

To determine if questionnaire items mediated or moderated agent type differences, 
difference scores for each relevant questionnaire item were used as covariates in a 
repeated-measures ANOVA with agent type was a within-subjects factor and ma-
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chine agent group was a between-subjects factor. First, the analysis showed that 
the effect of agent type was eliminated by including the covariates, F(1, 26) = .092, 
p = .76. Furthermore, there was a significant relationship between the difference 
in ratings of humans’ and machines’ object recognition abilities and differences in 
segmentation, F(1, 26) = 4.63, p < .05, such that greater differences in ratings were 
related to more segments being inserted for the machine, r(34) = .46, p < .005. This 
suggests that object recognition ratings mediated the breakpoint count effect (i.e., 
the difference in breakpoint counts between agent types can be explained by dif-
ferences in beliefs about humans’ and machines’ object recognition abilities). There 
was also a significant interaction between agent type and differences in ratings of 
intention identification ability, F(1, 26) = 4.42, p < .05. The number of segments 
produced for the human agent nonsignificantly decreased with greater differences 
in ratings of intentional understanding, r(34) = -.28, p = .10, and the number of 
segments produced for the machine nonsignificantly increased with greater dif-
ferences in ratings of intentional understanding between agent types, r(34) = .32, 
p = .05 (see Fig. 2). Thus, intention identification ratings appear to moderate the 
agent type effect (in this case, beliefs about agents’ intentional understanding had 
opposite effects on segmentation for the machine and human agents).

As the final step in this analysis we ensured that the segmentation difference did 
not mediate the agent type effect in the questionnaire items (reversing the above 
mediation model). Object recognition ratings and intention identification ratings 
were entered into separate repeated-measures ANOVAs with agent type serving 
as a within-subjects factor and machine agent group was as a between-subjects 
factor. A breakpoint count difference score was included as a covariate. Both anal-
yses showed a significant agent type effect Fs(1, 31) > 14.37, ps < .001. There was 
also an interaction between the agent type effect for each questionnaire item and 
differences in segmentation between agent types, Fs(1, 31) > 4.45, ps < .05, suggest-

Figure 2. Scatterplot illustrating the moderation effect of differences in ratings of agents’ 
intention identification ability on segment counts.
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ing that greater differences in segmentation were related to greater differences in 
questionnaire ratings between agents. 

Discussion

The mediation analyses reported above suggest that people’s beliefs about an 
agent’s abilities to understand intentions and to recognize objects influence expec-
tations about how actions should be segmented for the agent.4 However, rather 
than assume that individual questionnaire responses reflected particular firmly 
held beliefs about the specific capacities of agents, we expect that these explicit re-
ports were judgments informed by wider concepts about other agents’ intentional 
theory of mind and that these concepts may influence judgments about a range of 
related capacities. Supporting this point, a recent study by Gray et al. (2007) exam-
ined a large number of questions assessing participants’ beliefs about the cognitive 
and emotional capacities of several agents and found that most of the variance in 
responses can be explained by two factors: one related to agency and one related to 
experience. We expect that beliefs about object recognition and intention identifi-
cation may inform a more general concept about an agent’s capacity to understand 
goal-directed actions. 

General Discussion

In these experiments, we asked what expectations people have about humans’ 
and machines’ abilities to understand human action. Two experiments provided 
converging evidence that people believe different action content is meaningful 
for these agents. Specifically, for humans, participants inserted a small number 
of breakpoints more closely aligned with completed goals. For machines, par-
ticipants inserted a large number of segments more closely aligned with actors’ 
body motions. Furthermore, we find that differences in participants’ beliefs about 
agents’ object recognition abilities mediated, and intention identification abilities 
moderated, differences in segmentation. As both these capacities are critical to a 
proficient adult-level of understanding of goal-directed actions, we propose that 
these may reflect some more general concept of an agent that is capable of under-
standing others’ goals. 

In Experiment 1, we found that within the category of machine agents, partici-
pants did not differentiate between the action content they indicated would be 

4. A separate mediation analysis for breakpoint alignment (using a MANOVA similar to that in 
Experiment 1) showed that agent type differences in segment alignment with goal features were 
mediated by object recognition rating differences (i.e., relatively greater differences in human as 
compared to machine object recognition ratings led to relatively closer alignment between segments 
and goal features for a human as compared to a machine). Furthermore, agent type differences for 
goal feature alignment and for object switch alignment were moderated by intention identification 
rating differences. For each feature, segments for the machine became nonsignificantly more closely 
aligned when ratings were more similar for humans and machines. Segments for the human became 
nonsignificantly less closely aligned with more similarity in ratings.
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meaningful for computers and for robots. This result corroborates pervious find-
ings (e.g., Levin et al., 2006), which suggest that people differentiate the goal-
processing abilities of machines from those of humans regardless of whether the 
machine is a computer or an anthropomorphically described robot. However, in 
Experiment 2, we showed that when a robot repeatedly demonstrates behaviors 
suggesting it possesses a theory of mind, segmentation for a robot is similar to 
segmentation for a human. Specifically, depicting a robot as able to identify the 
object of a person’s reach and as able to predict what a person should know based 
on what that person had observed led participants to segment actions into larger, 
goal-based units for the robot. This result parallels findings suggesting that con-
text-sensitive behavioral cues lead infants and adults to treat nonhuman agents as 
if they were intentional agents (Bíro & Leslie, 2006; Csibra, Gergely, Bíro, Koós, & 
Brockbank, 1999; Shimizu & Johnson, 2004).

Based on these findings we propose that people’s classifications of agents are 
elaborate enough to afford specific expectations about content that different agents 
find meaningful in real-world actions. This is particularly informative with re-
gard to the contrast between findings by those such as Nass and Moon (2002) sug-
gesting that people equate humans and mechanical agents when interacting with 
them, and those suggesting that people do differentiate these agents when making 
explicit predictions about their behavior (e.g., Levin et al, 2006). As reviewed in the 
introduction, it is possible that differentiation is shallow and unspecific—allowing 
it to be easily disrupted. However, in demonstrating that people have specific be-
liefs about the action content that is meaningful to different agents, our data reveal 
a richer set of intuitions about agents that includes not only general predictions 
stemming from theory of mind, but also expectations that large goal-directed units 
of action are more meaningful for people than for machines. 

These experiments have employed action segmentation to examine people’s 
intuitions about humans’ and machines’ action understanding. Our paradigm 
allowed us to use a well-established and validated measure of event perception 
to measure expectations that may influence various real-world interactions with 
biological and mechanical agents. One possibility is that not only agent categories, 
but even stable agent characteristics may influence how we extract meaningful 
content from observed actions. For example, when observing an event or watch-
ing a film with another adult, our knowledge of the individual’s preferences or 
expertise could influence the grain of analysis we adopt or may lead one to high-
light particular action content familiar to the fellow observer. Finally, expectations 
about other agents’ action understanding are particularly important to consider 
for those researchers who are interested in developing truly collaborative robotic 
systems (e.g., Breazeal, Berlin, Brooks, Gray, & Thomaz, 2006; Goetz, Kiesler, & 
Powers, 2003). Collaboration relies upon reciprocal expectations among collabora-
tors. Thus, detailing people’s expectations about humans’ and machines’ action 
understanding and how these expectations can be engaged and altered is critical 
in developing a robotic system that minimizes human collaborators’ need to con-
tinuously revise their expectations.
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