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 Abstract - Although much research has focused on 
emerging understandings of representation and mind, very 
little research has explored the adult understanding of 
different representational systems.  The current 
experiments demonstrate that adults differentiate 
intentional and nonintentional representational systems 
when reasoning about them. In the first experiment, 
subjects were taught a novel feature of either a computer 
or a person, and asked whether the feature characterized 
other representational systems. Results indicate that when 
making inductions from a person to a computer, they do so 
more for nonintentional mental properties than intentional 
mental properties. In a second experiment we asked adults 
to make predictions about the behavior of a person, a 
computer, and a robot, and found that they assume that 
humans engage in more object/category related behaviors, 
and that computer systems engage in more spatial/featural 
behaviors. Combined, these data establish the existence of 
a distinct category of intentional mental entities, and give 
guidelines for its deployment in predicting a variety of 
representationally mediated behavior. 
 
 Index Terms – Intentions, Concepts, Theory of Mind 
 

I.  INTRODUCTION 

When people use computers, and interact with robots, 
they need some understanding of the internal processes 
inherent to each.  Consider, for example, what happens when 
one of these systems fails or crashes. The user must determine 
the degree to which the failure was caused by their own 
behavior, by an internal software problem, by a hardware 
failure, or even by faulty input information.  All of these 
decisions are, to a degree, predicated on an understanding of 
the internal workings of these systems. So, how do users think 
about these processes?  They might presume that the 
representational processes inherent to computers and robots 
are fundamentally the same as those inherent to people.  In 
such a case, individuals might suitably generalize the folk 
psychology they have learned for people to these systems. 
Indeed, drawing this kind of deep similarity between brains 

and computers as symbol processing representational systems 
would be consistent with many of the theories that underlie 
cognitive science. This commonality is also consistent with 
research demonstrating that people tend to treat computers as 
social agents [1].  

On the other hand, research in cognitive development has 
emphasized early-emerging distinctions between mechanical 
and psychological causality that would tend to different 
patterns of reasoning about computers and people. This 
research suggests that during the first year of life, infants 
begin to distinguish goal-directed intentional action from 
mechanical action [2][3] and have different expectations about 
the movement of people and the movement of inanimate 
objects [4][5].  Many researchers argue that this early contrast 
becomes elaborated into a domain theory that allows older 
children to understand the representations underlying others’ 
behavior.  As they develop this representational “theory of 
mind” (TOM), children learn that representations are not 
simply copies of the world, but rather are meaningful 
interpretations of the world that are intimately related to a 
person’s beliefs, desires, goals, and experiences.  

One interesting gap in the TOM research is that adults’ 
understanding of the mind is less well understood. While the 
assumption seems to be that children’s concepts lead to a well-
functioning TOM in adulthood, recent research has questioned 
the degree to which adults have an effective understanding of 
the representations involved in everyday visual tasks [6]. Thus 
it is possible that the kind of computer-directed social 
behaviors observed in previous research reflects either adults’ 
realization that early distinctions might need to be overridden 
(because they are sometimes inappropriate), or a vague 
understanding of differences in the representational abilities of 
people and computers. Alternatively, it is possible that adults 
retain distinctions between psychological and mechanical 
representational systems, but do not apply them when 
executing automatic social behaviors. The current experiments 
were designed to test concrete predictions about the concepts 
adults apply to representational systems, and to explore the 
developmental outcome (at least in the young adults we 
typically find in college) of early distinctions between 
representational kinds.  



The experiments in this paper investigate adults’ 
understanding of representational systems using two strategies 
common in the concept literature.  First, in Experiment 1, we 
used an induction paradigm to test the degree to which 
subjects would generalize newly-learned properties from one 
kind of representational system to another.  Experiment 2 
tested whether the distinctions observed in the first experiment 
would affect the concrete predictions people make about the 
behavior of mechanical and psychological agents.  In addition 
to understanding how people reason about the relatively pure 
cases of computers and people, we were interested in 
understanding how adults would respond to systems that share 
properties of both kinds, so we also asked subjects about 
anthropomorphized robots that combine properties of both 
kinds. 
 
II.  EXPERIMENT 1 

In our first experiment, we used an induction paradigm to 
test the degree to which adults would functionally differentiate 
intentional and nonintentional entites. Subjects responded to a 
series of scenarios in which novel properties were ascribed to 
either a personal computer, or a human. These included 
physical properties, biological/homeostatic properties, 
intentional mental properties, and nonintentional mental 
properties. For example, for one of the intentional mental 
properties, subjects were asked to “Imagine that John’s brain 
attempts to predict what a person is going to do next using an 
‘M-rule’ that takes their specific preferences into account 
using an algorithm built around a set of Gaussian kernels.” 
The key to this kind of property is that it reflects the need to 
understand the representational states of people (see Appendix 
for the complete set of mental properties). That is, these 
properties reflect understandings of beliefs, desires, and goals. 
We chose to create scenarios describing novel mental 
properties such as the one above to test the hypothesis that 
subjects have expectations about the general kind of process 
they represent, not the degree to which any specific process or 
algorithm characterizes human or machine thought.  

The nonintentional mental properties generally referred to 
information processing capacity limits and basic memorial 
processes that did not involve interacting with others or 
inferring beliefs. For example, one nonintentional mental 
scenario asked subjects to “Imagine that John's brain can keep 
a large amount of information for a long time, and sometimes 
organizes it by grouping things temporally (e.g. by putting 
things together that occurred at about the same time) using a 
regression-based principle.” Then, subjects were asked 
whether another adult, a mouse, a thermostat, a robot, and a 
computer would also use the same process or have the same 
property. If subjects differentiate representational systems, 
they should be less likely to attribute these properties across 
category boundaries.  More interesting, if these functional 
categories are specifically organized around intentional mental 
properties, then this effect should be specific to these 
properties. In this report we focus our analysis on the mental 
properties and the humans, robots, and computers.  

 We also manipulated how the robot was described across 
subjects. For half of the subjects, the robot was given an 
anthropomorphic name (“OSCAR”), and for the other half it 
was given a nonanthropomorphic name (“SOCAR”).  This 
contrast produced few consistent results, so it is not 
considered further in this report.  
 
III.  EXPERIMENT 1 METHOD 

A.  Subjects 
A total of 23 (19 female) General Psychology students at 

Vanderbilt University and Nashville Community College 
participated in this experiment. Their mean age was 25.9 
(SD=8.4). 
 
B.  Stimuli and Procedure 

A total of 20 induction scenarios were created, with four 
examples in each of five domains. Each scenario asked 
subjects to imagine that a novel process or property was 
characteristic of either a person (named John) or a computer (a 
Dell personal computer), then to indicate whether the property 
was characteristic of six other things. When the property was 
taught about the person, the targets were another person 
(“Popol”, a villager from the Amazon), a mouse, a thermostat, 
a robot, a Dell personal computer, and an Apple Macintosh 
personal computer.  When the property was taught about the 
Dell, John replaced the Dell as an induction target. Both 
robots were briefly described as general-purpose devices. The 
nonanthropomorphic robot, “SOCAR”, was described as an 
industrial robot, designed to “handle a wide variety of 
industrial materials”, and to “meet as many task objectives as 
possible with a minimum of waste”. The anthropomorphic 
robot, “OSCAR”, was also described as a general purpose 
robot, but also as having the “goal” of interacting productively 
with people: “In interacting with people his primary goal is to 
be as productive as possible and to meet as many possible 
needs of the person he is interacting with.”   

The five domains included scenarios testing homeostatic 
process properties (for example, a specific pattern of 
circulation of fluids throughout the system), physical 
properties (for example, the fact that the material the object is 
made of makes it turn blue when submerged in water), 
“external impact” properties (for example, an object’s 
response to gravitational forces), intentional mental properties 
(for example, for one of the intentional mental properties, 
subjects were asked to “Imagine that John’s brain attempts to 
predict what a person is going to do next using an ‘M-rule’ 
that takes their specific preferences into account using an 
algorithm built around a set of Gaussian kernels.”), and 
nonintentional mental properties (for example, grouping 
information in long term memory using a “regression-based 
principle”).  Each subject read two scenarios of each kind that 
asked about inductions from a person, and two that asked 
about inductions from a computer. The induction source was 
counterbalanced across domains. 

Subjects responded to the scenarios by completing paper 
packets individually or in small groups.  
 



IV.  EXPERIMENT 1 RESULTS 

Results supported the basic hypothesis. First, subjects 
were significantly more likely to assign mental properties 
taught about one person to another (78%) than they were to 
assign properties taught about a person to a computer (52%), 
t(22)=4.601, p=.019. The same was true of properties taught 
about the computer (computer -> computer induction: 80%, 
computer -> person induction, 43%, t(22)=4.601, p<.001) 
More important, subjects were significantly less willing to 
extend intentional mental properties from a person to a 
computer than they were for nonintentional mental properties.  
64% of nonintentional mental properties were assigned from 
people to computers, whereas only 39% of intentional mental 
properties were, t(22)=3.749, p<.001.  This effect was not 
present when making inductions from computers to people: 
42% of intentional properties taught of computers were 
assigned to people in comparison to 45% of nonintentional 
properties, ns.   

Inductions to the robot suggest that subjects did not 
anthropomorphize the robot.  Overall, subjects were 
significantly more likely to assign mental properties taught 
about the computer to the robot (52%) than when the 
properties were taught about the person (37%), t(22)=2.299, 
p=.031.  Subjects assigned 39% of intentional mental 
properties to the robot when they were taught about a person, 
and 45% of nonintentional properties when they were taught 
about a person, t<1, ns. When they were taught about a 
computer, subjects assigned 45% of intentional properties to 
the robot, and 58% of nonintentional properties to the robot, 
t(22)=1.447, p=.162.   

Although our focus is not on inductions to the thermostat 
and mouse, we briefly note that they were not significantly 
different for intentional and nonintentional mental properties 
(all p’s>.10). When the computer was the source, subjects 
made 20% intentional inductions and 37% nonintentional 
inductions to the thermometer, and 45% intentional and 32% 
nonintentional inductions to the mouse. When the person was 
the source, subjects made 20% intentional inductions and 9% 
nonintentional inductions to the thermometer, and 52% 
intentional and 52% nonintentional inductions to the mouse. 
 
V.  EXPERIMENT 1 DISCUSSION 

These results of Experiment 1 suggest that subjects 
differentiate human and computerized representational 
systems using an intentional/belief-desire framework. Not 
only were subjects significantly less likely to assume mental 
property commonalities between computers and people than 
they were for members of the same category, but they were 
significantly less willing to make inductions from people to 
computers for intentional mental properties than 
nonintentional mental properties.  One interesting finding was 
that this inductions pattern was not symmetric.  Intentional 
properties had no special status when making inductions from 
computers to people.  One possible reason for this might be 
that people interpreted the intentional properties as 
nonintentional when they were characteristic of computers. 

Future experiments will be designed to follow up on this 
possibility.  

In addition, subjects appeared to anthropomorphize the 
robot minimally. The relative prevalence of computer -> robot 
inductions over human -> robot inductions suggests that 
subjects considered the robot to be more functionally similar 
to the computer than the person. 
 
VI.  EXPERIMENT 2 

In the second study, we tested the degree to which these 
different representational theories would affect specific 
predictions about the behavior of intentional and 
nonintentional systems. Subjects in this experiment first read 
descriptions of either a person, a computer, or an 
anthropomorphized robot, and then made predictions about 
its/his behavior in a series of six scenarios.  We asked subjects 
to reason about scenarios in which a system’s response was 
either object-directed (as would be the case for an intentional 
system), or location directed.  For example, one of the 
scenarios was directly based on previous research 
demonstrating that infants differentiate human action from 
mechanical action by assuming that mechanical reaches are 
location-directed whereas intentional reaches are object 
directed [7]. In this previous experiment, infants were shown a 
hand or rod reaching for one of two objects (e.g., a bear on the 
right and the a ball on the left). The objects’ locations were 
switched and infants were shown trials where the hand or 
rod/claw reached for the old object at a new location, or a new 
object at the old location. Infants revealed a preference for 
new object-old location trials for the hand, indicating they 
were tracking the relationship between the reacher and her 
goal. In contrast, for the rod/claw they no such preference, 
indicating they did not have the same expectation for object-
directed behavior on the part of the rod.  In the present 
experiment, we adapted this situation, and others like it, to 
allow subjects to make predictions about the behavior of one 
of three different entities, a human, a computer, and an 
anthropomorphized robot. The basic prediction is that 
predictions about the human will reflect the presumption that 
it has goals, and uses semantic categories to organize the 
word, whereas predictions for the computer will reflect a more 
mechanical form of reasoning in which actions generally do 
not have goals, and instead are directed at locations. 
 
VII.  EXPERIMENT 2 METHOD 

A.  Subjects 
A total of 33 subjects completed the experiment. Of these, 

11 completed the Human Condition, 12 completed the Robot 
condition, and 10 completed the Computer condition.  
 
B.  Stimuli and Procedure 

Subjects read a series of six scenarios asking them to 
make predictions about an entity’s behavior, or a judgment 
about the optimal instructions to give it. The first scenario (the 
“Switch” scenario) described two trials of a “reaching 
exercise” in which an entity reached for one of two objects in 



two locations. Then, the objects were switched to new 
locations, and the subject was asked whether the entity would 
reach to the old location (and therefore the new object) or to 
the new location (and the old object).  The intentional 
response would be the reach for the old object at the new 
location demonstrating that subjects believe that the entity was 
engaged in a goal directed reach to the object and would reach 
for it again.  The second scenario (the “Imitate” scenario) 
described an exercise in which the entity was “imitating” or 
“repeating” a person’s actions (throwing balls into a basket). 
On the first two trials, the action is successful, and the entity 
successfully repeats the action. Then, on the third trial the 
person misses the basket, and the question is whether the 
entity will imitate the specific action (the miss), or will 
recognize the goal of the action and throw the ball into the 
action. In the “Category” scenario, an array of six objects is 
pictured first in a disorganized state, then organized by 
category in two different ways. In one, the objects are grouped 
by perceptual similarity (the dark square objects are grouped), 
and in another they are organized by semantic category (candy 
and office supplies). Subjects were asked which of the two 
organizational schemes the entity would use with the 
categorical organization putatively characteristic of an 
intentional system.  In the “row” scenario, subjects are told 
that the entity has “reached” for the first, third, and fifth item 
in a row including writing utensils, and other similarly shaped 
objects.  The three reached-for items all happen to be writing 
utensils, and 6th item is a marker, and the 7th a screwdriver. 
The question is whether the system will continue spatial 
pattern of reaching and go for the 7th item (the intentional 
response), or continue reaching for writing utensils and reach 
for the marker at position 6.  In the “description” scenario, 
subjects were shown a picture of a floppy disk, and a red pen 
and asked whether it would be better to direct the entity to “lift 
the red pen” (intentional) or to “lift the object on the left” 
(Mechanical response).  Finally, in the “card” scenario, 
subjects are shown two pictures, each representing a trial in a 
card sorting task in which cards with a circle or square on the 
left or right side are placed into boxes labeled with a matching 
shape in the matching location. Then, on the critical trial, 
subjects were asked what the entity will do with a card that 
matches the shape, but not the location, of the illustration on 
one box, and the location, but not the shape of the illustration 
on the other box.  The intentional response would be to 
assume that the system would put the card in the box that 
matched in shape, not location.  
 Each subject completed one of three different conditions. 
In each they made predictions about a different entity. In the 
Human condition, subjects made predictions about a man 
named “John” (a picture of a college age male was provided as 
an illustration). In the Computer condition, they made 
predictions about a computer vision system called “SOCAR” 
that was briefly described as a machine vision attached to a 
vacuum operated “lifting” system. A computer attached to a 
camera was shown as the illustration.  Finally, in the Robot 
condition, subjects were shown a Robot named “OSCAR” that 
had a mechanical appearance, but an anthropomorphic shape 

with a head, arms, and legs. The wording of the scenarios was 
modified slightly to use either intentional language for the 
human and robot, and more passive mechanical language for 
the computer.  

Subjects were given packets with color illustrations to 
read the scenarios from, and responded using a separate 
response sheet. 

 
VIII.  EXPERIMENT 2 RESULTS 

Subjects gave significantly more intentional responses for 
the human’s behavior (59%) than the computer’s behavior 
(38%), t(19)=2.31, p=.032.  The robot predictions were 
intermediate between these (45%), but significantly different 
from neither. Although the robot mean across the 6 scenarios 
was between the other means, this was true for none of the 
individual scenarios. As Figure 1 makes clear, the proportion 
of intentional responses for the robot was either less than the 
proportion for the computer, or more than the proportion for 
the human.   

 
Figure 1. Proportion of intentional responses to each of six 
behavioral prediction scenarios.  
 
IX.  EXPERIMENT 2 DISCUSSION 

In this experiment, subjects gave different predictions for 
human and computer actors consistent with the hypothesis that 
they impute intentionally guided action for the human and 
nonintentional action for the computer.  This provides support 
not only for the hypothesis that subjects use different concepts 
to understand human and computer driven behavior, but also 
that these concepts have an impact on the specific predictions 
they make about the behavior of these systems. The specific 
pattern of results across scenarios was relatively consistent for 
the comparison between the computer and human actors - in 
five of six cases, subjects made more intentional predictions 
for the human than the computer.   

Although results contrasting the human and computer 
were consistent, reasoning about the robot was much more 
variable. In three of the scenarios the robot was seen as very 
similar to, or even less intentional than the computer, and in 
two of the cases it was seen as more intentional than the 



human. This pattern of results suggests that subjects were 
engaging in ad hoc reasoning for the robot, making their 
decision about what it would do on a case-by-case basis 
instead of using more general knowledge about robots to guide 
decisions in a consistent way across scenarios.  Research on 
concept formation does suggest that subjects sometimes create 
ad hoc categories in the service of the immediate goal of 
understanding a given situation [8]. Another option, however, 
is that subjects do have a more systematic explanation of the 
representational processes inherent to robots, but that it is 
organized around dimensions that vary orthogonally to the 
intentional/nonintentional contrast we have tested here.  
Future research might get at this issue either by testing 
individuals with more knowledge of robots to determine 
whether they are guided by a consistent domain theory, or by 
searching for different dimensions upon which behavioral 
predictions might vary for robots. 
 
X.  CONCLUSION 

These studies suggest that adult reasoning about 
representational systems is shaped by a belief-desire folk 
psychology that has at its base a distinction between 
intentional and nonintentional representational systems.  In 
Experiment 1, subjects not only differentiated intentional 
(human) and nonintentional (computer) representational 
systems, but they did so specifically for intentional mental 
states. In Experiment 2, subjects made fundamentally different 
predictions about the behavior of these systems, predicting 
more goal-directed behavior for the human relative to the 
computer.  In addition, initial data on the robot, a system with 
a mixture of a features characteristic of intentional and 
nonintentional systems suggests that subjects do not simply 
choose an intermediate model for them, but rather tailor their 
responses to the specific situation. This pattern of responding 
may occur because, in contrast to people and computers, 
subjects lack a coherent, internally consistent model for the 
capabilities of robots, and instead reason on an ad hoc basis as 
new situations present themselves.   
 In addition to the applied implications of these findings, 
we would like to point out the more basic way in which they 
can inform not only research on the adult folk psychology, but 
also theory in cognitive development. First, these findings 
make a clear connection between early emerging 
understandings of representation, and the later adult 
understanding of the same issue. Early differentiation between 
human and mechanical representational systems can be used 
to understand how adults organize these categories later in 
life.  Many researchers assume as much in arguing that 
understandings of early knowledge will provide a basis for 
organizing an understanding of adult knowledge by 
discovering the concepts that underlie, organize, and constrain 
adult thinking.  However, this assumption is rarely tested, and 
in some cases adult understandings may not be the richly 
elaborated extension of early knowledge that is reflected in 
default assumptions about cognitive development. For 
example, based on research exploring early representational 
understanding, one might predict that adults would be able to 

effectively reason about visual attention, and understand that 
their mental representation or a scene is not a copy of it, but is 
a reduced and abstracted version of the scene.  In stark 
contrast to this prediction, we have found that adults make 
very large mispredictions about their ability to perceive visual 
changes in a wide variety of circumstances, responding as if 
they had a copy of the visual world in their head [6]. 

However, in this context it is important to note that in a 
sense, we are turning the developmental data on its head by 
arguing that the concepts we have identified cause differential 
predictions about behavior because most theories of the 
development of TOM suggest that the behavioral predictions 
are a precursor to the full concepts.  At this point, we have not 
revealed the causal connections between 
intentional/nonintentional explanatory frameworks, and 
specific behavioral predictions, so our hypotheses relating the 
two are necessarily speculative. It is certainly plausible that 
subjects reason from behavior to create ad hoc TOM-like 
explanations for all of the systems, not just the robot. 
However, one factor that makes this seem unlikely is that the 
induction scenarios in Experiment 1 were relatively divorced 
from specific behaviors making a behavior-first chain of 
reasoning awkward.  One option might be to hypothesize a 
developmental sequence whereby initial learning is behavior-
based, but with conceptual maturity, the concept-behavioral 
prediction link changes to allow a rich interchange between 
progressively more independent, but structurally similar, 
reasoning systems. Thus, in adults’ conceptual induction and 
behavioral predictions allow both for abstract knowledge to 
inform an understanding of specific behaviors, and for a more 
behavior-based attributions about the essential nature of the 
internal processes driving the behavior.  In other words adults 
can both take evidence about what something does to learn 
about how it thinks, and use understandings about thinking to 
predict what something does.  

These findings show that adults classify representational 
systems and make behavioral predictions about them using 
concepts that vary in the degree to which they attribute 
intentionality to different kinds of agent.  In doing so, they 
converge with other recent data showing that people segment 
action streams differently when they imagine a human or 
computer audience [9], and move differently and produce 
more social gestures when actually demonstrating actions for 
human and computer audiences [10]. In addition, future 
experiments along these lines may inform current work in 
robotics exploring how people perform perspective taking 
with robots [11], and how they attribute different kinds of 
knowledge to these systems [12]. Thus, this research may have 
implications both for human-machine interaction and 
cognitive development. In the former case, this research can 
serve as the basis for understanding people’s expectations 
about the capabilities of the systems they interact with, and in 
the latter case it can help understand the developmental 
endpoint of well-understood early developing TOM.  
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Appendix: Complete Set of Intentional and Nonintentional 
Mental Properties.  
 
The following is a complete listing of the intentional and 
nonintentional mental properties used in Experiment 1. Note 
that each was presented as an induction from the person for 
some subjects, and from the computer for other subjects.  
 
Intentional 
Imagine that the Dell personal computer attempts to predict 
what a person is going to do next using an "M-rule" that takes 
their specific preferences into account using an algorithm built 
around a set of Gaussian kernels.  
 
Imagine that John's brain uses a special rule to determine what 
specific kind of information another person wants. This rule is 
an IR-rule.  
 
Imagine that the Dell personal computer attempts to determine 
whether a person does not know some important bit of 
information by completing a series of inferences about their 
behavior called a "Rhinnean set".  
 
Imagine that John's brain attempts to determine when a person 
is working under a false assumption by using a stimulus-
response procedure. This procedure requires that previous 
behaviors be correlated with known stimuli using hierarchical 
set analysis.  
 

Nonintentional  
Imagine that John's brain can keep a large amount of 
information for a long time, and sometimes organizes it by 
grouping things temporally (e.g. by putting things together 
that occurred at about the same time) using a regression-based 
principle. 
 
Imagine that some processes within the Dell personal 
computer can only handle a few bits of information at a given 
time. This limit is referred to as a core striction. 
 
Imagine that in some cases, the Dell personal computer 
encodes internal information using a "labeled line" code.  
 
Imagine that John's brain sometimes transmits internal 
information more quickly at the expense of accuracy using a 
"delta rule". 
 


