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Abstract

In previous research, we demonstrated that people distinguish between human and 
nonhuman intelligence by assuming that humans are more likely to engage in intentional 
goal-directed behaviors than computers or robots. In the present study, we tested whether 
participants who respond relatively quickly when making predictions about an entity are 
more or less likely to distinguish between human and nonhuman agents on the dimension 
of intentionality. Participants responded to a series of five scenarios in which they chose 
between intentional and nonintentional actions for a human, a computer, and a robot. 
Results indicated that participants who chose quickly were more likely to distinguish 
human and nonhuman agents than participants who deliberated more over their 
responses. We suggest that the short-response time participants were employing a first-
line default to distinguish between human intentionality and more mechanical nonhuman 
behavior, and that the slower, more deliberative participants engaged in deeper second-
line reasoning that led them to change their predictions for the behavior of a human 
agent. 
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1.  Introduction

A central requirement for successful human-robot interaction is to understand the 
concepts that people use when thinking about intelligent artificial agents. Within the 
general framework of people’s understanding of technology, these concepts are 
particularly important for HRI. Because robots are, in many cases, embodied interactive 
partners with their human users, they do more than simply respond to specific commands; 
they interact with people, learn from them, and make intelligent decisions, and it appears 
as though people sometimes prefer to interact with robots that exhibit characteristically 
human social cues (Bruce et al., 2002).  Accordingly, it is important to create robots that 
behave in a manner consistent with user expectations. Lee et al. (2005) have explored 
specific knowledge that people attribute to robots and we have explored what people 
think more generally about the capabilities inherent to a range of intelligent artificial 
agents. In previous work, we have established that people strongly distinguish goal-
directed human thought from more rote computerized thought, and that they default to the 
assumption that robots are similar to computers. We established this by asking 
participants to make predictions about the behavior of a human, a robot, and a computer 
in a range of scenarios in which these agents interacted with a set of objects (Levin et al., 
2008). In the present study we expand on this finding to explore how people use a range 
of reasoning strategies to draw conclusions about the difference between artificial and 
human agents. In particular, we created an on-line version of our behavioral prediction 
scenarios, and tested whether participants who make their predictions rapidly distinguish 
between natural and artificial agents more or less than participants who make their 
decisions more slowly.  We find that more rapid decision making is associated with a 
stronger dissociation between human and nonhuman thinking. 

1.1.  Humans, Robots, and Computers – do they think alike, or differently?



Perhaps the most basic question one might ask regarding people’s concepts about 
natural and artificial agents is whether people believe that different agents “think” in 
fundamentally different ways.  It is possible, for example, that people simply generalize 
their naive psychology to apparently intelligent machines. One compelling aspect of this 
possibility is that it allows people to benefit from a well-established “Theory of Mind” 
which they use to understand human behavior in terms of the beliefs, desires, and goals 
that drive it (Gopnick and Wellman, 1992). This generalization might, in many ways, be 
relatively effective for understanding the representations that guide the behavior of 
artificial agents, and some existing data at least indirectly imply that people do this.  For 
example, experiments by Nass and Moon (2000) demonstrate that people apply a range of 
social norms to computers. On the other hand, research exploring early-developing 
foundations of TOM in infants and children demonstrates that they distinguish between 
goal-directed human action from more mechanical actions that lack these goals 
(Woodward, 1998).

In this context, we have been exploring adults’ beliefs about how different kinds 
of agents think. Our basic approach has been to ask participants to make specific 
behavioral predictions about different entities that rely on deeper concepts related to 
TOM. At the most general level, these are concepts about intentionality. Intentionality is 
defined in two basic ways, and we draw on both. First, intentionality reflects a level of 
analysis for human behavior (Dennett, 1991). In theory, one could try to understand why 
people do the things they do by analyzing the statistical regularities of stimuli preceding 
specific actions, and the consequences that follow them. An alternative would be to 
invoke mediating representations of beliefs, desires and goals as a more efficient way of 
understanding and predicting behavior. Second, intentionality is defined as a specific 
property of mental representations that affords a close connection between mental 
symbols and their referents – this reflects the idea that humans have a semantic system 
that allows them to truly know what a symbol such as a word refers to in the real world, 
while, according to many philosophers, computers do not (Searle, 1984). Thus, an 
intentional theory of mind is a collection of specific and general strategies for 
understanding human behavior using an underlying intentional framework. In the 
remainder of this paper, we will refer to predictions of human-like actions as being 
intentional predictions.

In our prediction scenarios, participants are shown a simple scene depicting a set 
of objects and/or simple events. In some cases, participants are told that some agent has 
acted upon some of the objects, and then are asked what the agent will do next.  For 
example, one of the scenarios is based on the above-mentioned developmental research 
demonstrating that infants understand goal-directed action (Woodward, 1998). In this 
scenario, illustrated in Figure 1, participants first see a pair of objects, a duck and a truck, 
resting on a simple grid. They are told that an agent has acted twice (by reaching in the 
case of the human and the robot) upon the duck in location A-1. Then, participants are 
shown a new image with the locations of the duck and the truck swapped, and are asked 
whether the agent will act again upon the duck (now in the new location), or upon the 
truck (now in the location formerly occupied by the duck).  If participants believe that 



they entity is intentional, and has goals like a human, then they would believe that the 
first actions were goal-directed reaches to the Duck, and predict that the entity would 
again reach to the duck in the new location. On the other hand, if the entity had no goals 
and was instead engaging in more rote behavior, they should predict that it will simply 
return to the old location despite the fact that it contains a new object.

Other scenarios assess the second aspect of intentionality: the direct, effective 
connection between mental representation and objects in the world.  One of these is 
founded on the assumption that there is a close link between intentionality and the 
understanding that words generally refer to categories of objects organized by function, 
rather than by surface perceptual features (Bloom, 1997). So, participants were shown a 
set of objects that might be categorized in one way based on meaning/function, and in 
another based on perceptual features (one of the objects was a candy bar that looked like 
office supplies, and the other was an office object that looked like a piece of candy). 
Several experiments have demonstrated that when these scenarios were presented to 
participants, they made considerably more intentional predictions for human agents than 
for computers (Levin et al., In review; Levin et al., 2008; Levin et al., 2006).  This basic 
contrast was validated by participants’ ratings of computers’ ability to infer the goals of 
human action, and their overall intelligence. In a series of multiple regressions, 
participants who believed that computers can infer goals showed less of a human-
computer intentionality difference than participants who did not believe that computers 
can infer goals, and this effect was independent of overall ratings of computer 
intelligence (Levin et al., In review). A key question is how participants construe robots, 
which share features of both humans and computers. In a number of experiments we have 
observed that participants initially do not distinguish computers and robots on the 
dimension of intentionality, even when the robots are given proper names, and shown 
engaging in human-like locomotion. However, when participants were induced to pay 
close attention to repeated episodes of a robot looking at one of a pair of objects, they did 
begin to make more intentional predictions for the robot than the computer (Levin et al., 
In review).

1.2.  The transition model of reasoning about agency

Results such as those described above, combined with previous research make 
clear that reasoning about agency is not a simple matter of categorizing an entity.  For 
example, we have completed developmental experiments demonstrating that as children 
become more sophisticated in understanding the difference between living and nonliving 
things, they borrow and combine features of the two kinds when answering questions 
about robots (Saylor et al., In press). In addition, previous research has explored 
participants’ understanding of a computer vision system that was described in 
nonintentional terms, or anthropomorphized by giving it a name, and describing it in 
terms of goals. In this case, predictions about the anthropomorphized system’s 
capabilities were more human-like, but only when participants could not answer 
questions based on simple deductions, and were instead forced to reply on deeper 
concepts (Levin, In review). Combined, all of these findings suggest that a complete 
understanding of reasoning about agency will require an appeal to a range of reasoning 



processes, and specification of the situations in which these processes are likely to occur.

In response to this need, we are developing the transition model of agency-
reasoning. This model hypothesizes two modes of reasoning, first-line defaults and 
second-line conceptualization, and it puts special emphasis on specifying the 
circumstances under which people transition between modes. The idea of two modes of 
reasoning is a generalization of models of TOM which specify an initial, automatic 
agency-detection/belief inference stage of processing, and a later, controlled conceptual 
stage that does the more difficult job of tracking situations where belief and the world do 
not align (Apperly et al., 2006; Baron-Cohen, 1995; Leslie et al., 2004).  The transition 
model is similar, but it does not assume a direct link between specific styles of processing 
and the two stages. Instead, the model distinguishes between one collection of processes 
that people engage in when they first encounter an agent, and reason about it using 
existing, unmodified concepts, and another collection that reflects more controlled 
reasoning, problem solving, and that appeals to deeper concepts about living and 
nonliving things. Our ultimate goal with this model is not only to specify first-line and 
second-line processes and knowledge, but also to specify a) the circumstances that induce 
people to switch from the former to the latter, and b) the consequences of this switch both 
for deeper concepts and first-line defaults. Thus, the transition model seeks to combine a 
description of people’s understandings about agency with a principled way of explaining 
how these conceptions might change in response to experience.

Applying the transition model to our finding that people differentiate human and 
nonhuman thinking, we can ask whether this distinction reflects first-line defaults or 
second-line conceptualization. On the one hand, it is possible that participants do not 
have much of a default notion about the intentionality of different systems, and only 
come to this conclusion with considerable second-line deliberation. On the other hand, if 
there is continuity between early-developing TOM and adult reasoning about agents, then 
one would expect that the distinction would reflect an ingrained first-line concept, 
especially if it is employed commonly.  A similar question can be asked of participants’ 
initial failure to distinguish between the robot and the computer (in the absence of the 
object-attention manipulation): is it the result of a first-line default that can easily be 
overridden if participants give the system a second thought?

As an initial test of these hypotheses, the experiment we describe here attempts to 
characterize the predictions people make when engaging in different modes of reasoning 
by comparing the behavioral predictions people make when they respond quickly to a 
scenario vs. more slowly. This simple distinction is inspired by variety of research 
paradigms that rely on the assumption that the time participants take to make a decision 
can serve as a reliable marker that differentiates the kind of reasoning they have used. For 
example, research on eyewitness lineup identifications shows witnesses who have 
responded quickly have replied upon a more direct perceptual recognition, whereas 
slower identifications reflect a deeper (and generally less reliable) inter-stimulus 
comparison process (Dunning and Perretta, 2002). Using the same logic, we switched 
over to computer presentation of our scenarios to allow us to measure the time 
participants take to make their responses. If the distinction participants make between 



intentional human behavior and nonintentional computer behavior reflects first-line 
defaults, then it may be possible to observe the effect dissipate among participants who 
deliberate over their decision. A secondary goal of this study was to validate a more 
dynamic mode of scenario presentation, so instead of telling participants about the initial 
actions taken by the agents, and instead of showing different categorizations, we showed 
participants sets of objects along with appearing and disappearing arrows reflecting the 
actions of each agent in real time. If this method proves successful in replicating our 
basic effects, it will allow us not only to assess the time participants take to make 
predictions, but also to manipulate the time they have available to them. 

2.  Experiment one

2.1.  Method

2.1.1.  Participants

A total of 30 participants (7 male, three unknown gender) completed experiment 
one. Their mean age was 34. Participants were students in General Psychology classes at 
Nashville Community College. 

2.1.2.  Materials

Participants responded to a series of five agency questions. All five asked 
participants to imagine three different agents' responses in a specific scenario. Each 
scenario showed a set of objects that the entities acted upon. The precise nature of the 
actions (e.g. whether they were looks, points, or some other action) were left ambiguous, 
and were demonstrated by dynamically appearing then disappearing arrows pointing to 
the acted-upon object. The action arrows were followed by a pair of choice arrows which 
indicated two possible actions that might follow the initial actions depicted by the action 
arrows. The choice arrows were visible until the participant responded. Three of the 
scenarios were very similar to those used previously (Levin et al., In review). In the first 
of these, the Duck-Truck scenario, the scene contained a duck and a truck on a simple 
grid of lettered rows and numbered columns, with the duck in location A-1 and the truck 
in location C-3. The first two action-arrows indicated successive actions oriented toward 
the duck. Then, the duck and truck suddenly switched positions, and two arrows 
appeared, indicating two possible final actions, one to the duck and one to the truck. As 
reviewed in the introduction, the duck-oriented action would be considered more 
intentional. In the Pen-Row scenario, a row of seven small objects was depicted on a 
table. The first, third, fifth, and sixth were all writing utensils. The others were not. The 
first three action-arrows pointed to pens in the first and third positions, and a pencil in the 
fifth position. The two choice arrows pointed to a marker in location 6, and a screwdriver 
in location 7. A choice of the first choice arrow, pointing to the marker in location 6, 
would be intentional, whereas choosing the screwdriver in location 7 would be a 
continuation of the spatial response pattern and would be scored as nonintentional. In the 
third scenario, the Feature-Category scenario, six objects were shown on a desktop: three 
were candy and three were office supplies. A dark rectangular candy bar was intended to 



look like two of the office objects (a dark rectangular PDA, and a dark rectangular 
eraser), and a small colorful push pin was intended to look like two of the candies (a 
gummi bear and a hard candy). The first two action-arrows pointed at the eraser, and the 
PDA, and the choice arrows pointed to the candy bar and the push pin.  The intentional 
response would be to predict an action to the same-category (but perceptually different) 
push-pin. 

Figure 1. Illustration of the Duck-Truck scenario. The green arrow represents one of the 
first two “actions” taken upon the duck by the entity. 

The final two scenarios were new, but generally tested similar ideas. The Coin 
scenario showed, from right to left, a penny, a nickel, a dime, and a quarter. The action 
arrows pointed to the penny, then to the nickel, and the choice arrows pointed to the 
quarter and the dime. Choosing the quarter would be a nonintentional interpretation that 
the entity was acting on objects of increasing size, and the intentional response would be 
to pick the action on the dime, suggesting actions based on knowledge about value. 
Finally, the Candy-Paper scenario depicted a set of six objects. Three of them rested upon 
a different piece of paper. The first two action arrows pointed to pieces of candy on 
paper, and the choice arrows pointed to a video converter plug on paper, and a roll of 
Smarties, resting directly on the desktop. The intentional response would be to predict an 
action oriented to the Smarties, which represented a category-consistent action, ignoring 
the fact that the previous objects had rested on paper. 

2.1.3.  Procedure

Scenarios were presented to the participants on 13-inch color LCD laptop 
displays. Before responding to the five scenarios, participants read on-screen instructions 
that first briefly introduced the entities: “a person named John, a robot called ASIMO, 
and a computer system called Yd3”, and emphasized that “we are asking for your 
intuitions, and that there are no right or wrong answers - just respond based on your 
judgment about what each thing will do”. These instructions also noted that ASIMO 
could physically grab things with his arm, and that Yd3 “has been loaded into a system 
that can physically lift objects at different locations using a mechanical vacuum device”. 
A second screen of instructions explained to participants that they would see objects, and 
arrows depicting actions each entity had taken upon those objects. They were told that 
their job would be to view 2-3 actions, and then to choose from a pair of alternatives, 
which action would follow.

After reading the instructions, participants completed the five scenarios in one of 
two orders (forward or reversed). Within each scenario, participants made three 
responses, one for each entity. The order of entities was counterbalanced across 
participants. For each scenario, participants saw a picture of the first entity and then hit a 
key to indicate their readiness to continue. Next, they saw 2-3 action-arrows followed by 
choice-arrows, made their response, and the cycle repeated for the other two entities. 
Once participants responded to all five scenarios, they gave demographic information, 
completed a brief survey assessing beliefs about technology, and completed the Need For 



Cognition scale.

2.2.  Results and Discussion

First, we tested whether each participant’s median response time (RT) predicted 
differences in responding between humans and computers, and between robots and 
computers. RTs, along with participant age (which we have previously observed to be 
correlated with intentionality responses (Levin et al. In review)) and Need for Cognition, 
were therefore entered as predictors into two multiple regressions, one for the difference 
in intentional responding between the human and the computer, and one between the 
human and the robot. The regression predicting the human-computer difference 
demonstrated that increases in RT were significantly predictive of smaller human-
computer differences in intentionality (Beta=-.507, p<.025), while age (Beta=-.064) and 
Need for Cognition (Beta=-.201) were not. The regression predicting the difference 
between human and robot intentionality was similar: increased RTs predicted a smaller 
difference between humans and robots in intentionality (Beta=-.504, p<.001). Increased 
age was also predictive of a lessened difference (Beta=-.572, p<.05), while Need for 
Cognition scores were not (Beta=.056). 

To clarify the pattern of results, participants were divided into two groups by RT 
(the fastest 15 vs. the slowest 15; see Figure 2). This makes clear that participants who 
responded relatively quickly indicated that the human agent would respond significantly 
more intentionally (72%) than the computer (43%; t(14)=2.662, p=.019) or the robot 
(36%; t(14)=5.077, p<.001). The difference between the computer and the robot was 
nonsignificant. Those who responded more slowly showed no significant differences in 
predicted intentionality between the agents, although there was a nonsignificant trend for 
the computer to be judged as more intentional (57%) than the human (43%; 
t(14)=1.749,p=.102), and the robot (43%; t(14)=1.852, p=.085).

Figure 2. Mean percentage of intentional predictions for different agents. The “Overall” 
bars represent all participants. The “Fast RT” and “Slow RT” bars represent participants 
who responded relatively quickly and slowly respectively. 

The results of this experiment are clearly consistent with the transition model. 
Participants who delayed their response were less likely to differentiate human and 
nonhuman behavior. Of course, the primary limit to this experiment is that participants 
self selected leaving open the possibility that other individual differences aside from 
choice of reasoning style caused these results. Therefore, in Experiment 2, we employed 
an experimental design in which half of participants were encouraged to respond based 
on their first instinct, and half were required to delay their responses and were instructed 
to consider their answers more deeply. 

3.  Experiment two

3.1.  Method



3.1.1.  Participants

Fifty-one subjects completed experiment two (30 female, 21 male, mean age=20, 
SD=3.8).  Subjects were students at Vanderbilt University (n=35) or volunteers from the 
university’s paid research pool (n=16), and received course credit or $5 in exchange for 
participating.  Of these, 25 completed the “open response” condition and 26 completed 
the “slowed response” condition.

3.1.2.  Materials and Procedure

Subjects responded to five scenarios presented on a laptop computer with 12-inch 
LCD display, or a desktop computer with 15-inch CRT display.  Each scenario required 
subjects to predict the responses of three different agents, including a computer called 
Yd3, a robot called ASIMO, and a human called John.  All scenarios presented each 
agent in turn, “looking at” and ambiguously “acting upon” a series of objects, as 
indicated by dynamically appearing and disappearing arrows.  Subjects predicted the final 
action of each agent by choosing from two arrows pointing toward different objects.  
Three of these scenarios were the same as those in a previous experiment (Levin et al., 
2008).  The two new scenarios will be discussed below.

Subjects received spoken and written instructions before beginning the 
experiment.  Those in the “open response” condition had no constraints placed on their 
response time.  Accordingly, it was emphasized, “there is no time limit for your 
responses.”  Subjects were instructed to use their first “instinct” or “conclusion.”  Further, 
subjects were instructed not to hesitate and to “respond as quickly as possible.” Those 
subjects participating in the “slowed response” condition were constrained by the 
computer program and thereby required to respond only after three seconds had passed. 
In this condition verbal and written instructions emphasized this time constraint, asked 
subjects to “think deeply about all relevant factors,” and “consider [their] answer 
carefully.”

3.2.  Results and discussion

The difference in intentionality between humans and machines (the average of 
robots and computers) was significantly greater for the free response condition (14.8%) 
than for the slow-response condition (1.5%; t(49)=1.728, one-tailed p=.045). The same 
was true of the differences between the human and computer (fast condition: 16.0%, slow 
condition: -.07%; t(49)=1.752, one-tailed p=.043). The difference in human-robot 
intentionality was nonsignificantly larger in the free response condition (13.6%) than in 
the slow response condition (3.8%, t(49)=1.187, one-tailed p=.12).

Within the fast-response condition, the human-machine (e.g. robot+computer) 
difference (t(24)=3.201, p=.004), the human-computer difference (t(24)=2.2667, p=.013), 
and the human-robot difference were significant (t(24)=2.527, p=.018; See Figure 3). 
These differences did not approach significance in the slow response condition (t's<1), 
and in neither condition did the difference between the computer and robot approach 



significance (t's<1).   

Figure 3. Mean intentionality of predictions for different agents under fast and slow 
experimental conditions. 

4.  Discussion

The results of this experiment are consistent with the hypothesis that the basic 
contrast between the intentionality of human behavior and the nonintentional behavior of 
computers and robots is the result of first-line reasoning. The specific form of the finding 
came as a surprise, and, if replicated, could prove quite interesting. If one looks at what 
changed the most between the fast-response participants and the slow-response 
participants, it is the intentionality assigned to the human, not the intentionality assigned 
to the mechanical systems. Therefore, it appears as though participants’ deliberations led 
them away from a simple goal-directed interpretation of human behavior. 

There are a number of interesting possible reasons why this occurred. One 
possibility is that participants began to generate predictions about human behavior that 
were still goal-directed, but idiosyncratic enough to incorporate unusual location-oriented 
goals. For example, in the duck-truck scenario, perhaps the slower participants’ attention 
drifted to the salient location-cues in the labeled grid and as a result, they developed the 
intuition that these would be relevant to the human’s goals. On this hypothesis, the 
primary effect of first-line defaults was to direct attention to typical goals (e.g. object-
oriented goals), and that further consideration might lead people to other less salient, but 
still plausible, goals inherent to the scene. Some indirect support for this possibility 
comes from previous research exploring people’s justifications for their predictions about 
visual experience. When asked whether they would detect unexpected visual changes in 
scenes, participants often dramatically overestimate their success, and sometimes justify 
their predictions by claiming that they would find the specific objects in the scene 
interesting (Levin et al., 2000; Levin et al., 2002). In a similar vein it is possible to 
speculate that the deliberative participants in this experiment focused on the identity of 
the objects and created ad hoc justifications for unusual goal-changes on the part of the 
human agent. Future versions of these experiments might use response justifications to 
test these possibilities.

A key result of this study was that first-line reasoning not only distinguished 
predictions about human and nonhuman entities, but it also was associated with no 
difference between computers and robots. Thus, the basic default form of reasoning 
seems to be to discount the anthropomorphism associated with robots, and this does not 
change as participants think more deeply. This is consistent with our developmental 
research, which suggests that as children age they become progressively more able to 
discount anthropomorphic surface features (e.g. appearance and self-initiated movement 
(Saylor et al., Unpublished results). However, participants who deliberated more 
extensively also failed to dissociate computers and robots. This finding should be 
considered in the context of the previous findings reviewed above, in which participants 
did make more intentional predictions for the robot after they had witnessed the robot 



repeatedly looking at objects. Combined, these two findings suggest that the physical 
anthropomorphism associated with humanoid robots fails to affect participants’ first-line 
predictions, but that it sometimes does, and sometimes does not affect second-line 
reasoning (if we assume that the previous object-looking experiment result was due to 
second-line reasoning). One possible difference between the two findings is that the 
second-line reasoning involved in Experiment 1 was self-generated, whereas the 
nominally second-line reasoning in the Experiment 2 was driven more by external task 
demands.

We would like to point out the advantages of relying both on differences in self-
selected strategies and experimentally manipulated strategies. Although most 
experimentalists gravitate to manipulating participants’ reasoning, it is important to note 
that there are significant, and often under-appreciated, advantages to analyzing 
differences in self-selected strategies.  Most important, the fact that participants 
spontaneously choose to use different strategies makes it likely that the conceptual 
distinction between the strategies is relevant for real-world behavior. If we had forced 
participants to decide quickly, their behavior might have been particular to a set of 
contingencies that are uncommon in real-world decision making. Accordingly, we would 
advocate that the best approach is to use converging methods employing both the more 
naturalistic self-selection procedure with the more controlled forced procedures. 

5.  Conclusion

This experiment successfully differentiated the reasoning of participants who 
responded relatively quickly from those who responded more slowly. Consistent with the 
hypothesis that contrasts between human and nonhuman intelligence represent first-line 
reasoning, participants who responded quickly were more likely to predict that humans 
would engage in more characteristically intentional behavior than computers. In addition, 
neither group differentiated robots and computers by predicting more intentional behavior 
for the robot. These results represent an important step in understanding how people 
reason about the thinking inherent to different entities, and they suggest that people have 
available to them a collections of concepts and strategies that must be accounted for if we 
are to understand how people might respond to interactive and/or anthropomorphic 
agents in a variety of situations. 
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