
Psychology, Public Policy, and Law Copyright 1996 by the American Psychological Association, Inc.
1996, Vol. 2, No. 2, 363-376 1076-8971/96/$3.00

SEEING THE FOREST FROM THE TREES:
When Predicting the Behavior or

Status of Groups, Correlate Means

David Lubinski Lloyd G. Humphreys
Iowa State University University of Illinois, Urbana-Champaign

When measures of individual differences are used to predict group performance, the
reporting of correlations computed on samples of individuals invites misinterpreta-
tion and dismissal of the data. In contrast, if regression equations, in which the
correlations required are computed on bivariate means, as are the distribution
statistics, it is difficult to underappreciate or lightly dismiss the utility of psychologi-
cal predictors. Given sufficient sample size and linearity of regression, this technique
produces cross-validated regression equations that forecast criterion means with
almost perfect accuracy. This level of accuracy is provided by correlations
approaching unity between bivariate samples of predictor and criterion means, and
this holds true regardless of the magnitude of the "simple" correlation (e.g., r^ =
.20, or r,y = .80). We illustrate this technique empirically using a measure of general
intelligence as the predictor and other measures of individual differences and
socioeconomic status as criteria. In addition to theoretical applications pertaining to
group trends, this methodology also has implications for applied problems aimed at
developing policy in education, medical, and psychological clinics, business,
industry, the military, and other domains of public welfare. Linkages between this
approach and epidemiological research reinforce its utility as a tool for making
decisions about policy.

The initial response to a correlation coefficient by a large number of
psychologists, as well as other professionals who have had training in statistics, is
to square it. This is the well-known proportion of common variance: For
correlations of modest size (.20, .30, .40), the square is quite small (.04, .09, .16,
respectively), whereas the proportion of nonshared or unique variance (1 — r2) is
quite large (.96, .91, .84, respectively). As a consequence, many professionals who
are consumers of psychological research conclude at this point that the relationship
between the two variables is trivial and that correlations of modest size are of little
practical value. For example, after a Newsweek story was published involving a
National Research Council's report (Wigdor & Garner, 1982) that indicated that
cognitive tests were unbiased for predicting performance across multiple groups,
Bruce Alberts, the president of the National Academy of Sciences, replied in a
letter to Newsweek, "The prediction for any group is not strong—about nine
percent of the variation in job performance." (Alberts, 1994, p. 22).

The perception of triviality also is induced by computing the standard error of
estimate, which, in standard score form, is (1 — r2)172. This expression is the basis
for the commonly quoted statement that the correlation must equal .866 before the
error in prediction is reduced by 50% from the error one could make in using a
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random device. The corresponding value for a correlation of .50 produces only a
13% reduction in errors over chance.

The tendency to dismiss modest correlations is reinforced even further by the
inevitable presence of false positive and false negative errors in the prediction of
individuals. For example, if both a predictor test and a performance criterion are
dichotomized at scores representing minimally satisfactory performance on each
measure, the combination of false negative and false positive errors in prediction
decreases slowly as the correlation increases from zero to unity. The decrease in
false positive and false negative errors is not linear, because the reduction in
amount of error positively accelerates with large correlations. Standards for
Educational and Psychological Testing (APA, AERA, & NCME, 1985) require
that gains from the reduction of false positive errors must be evaluated against the
costs of false negative errors. The harm to persons who would have been
"successful" had they not been disqualified by a fallible test is given great weight
by critics of tests and by testing experts (Hartigan & Wigdor, 1989).

To summarize, psychological variables generating modest correlations fre-
quently are discounted by those who focus on the magnitude of unaccounted for
criterion variance, large standard errors, and frequent false positive and false
negative errors in predicting individuals. Dismissal of modest correlations (and the
utility of their regressions) by professionals based on this psychometric-statistical
reasoning has spread to administrators, journalists, and legislative policy makers.
Some examples of this have been compiled by Dawes (1979, 1988) and Linn
(1982). They range from squaring a correlation of .345 (i.e., .12) and concluding
that for 88% of students, "An SAT score will predict their grade rank no more
accurately than a pair of dice" (cf. Linn, 1982, p. 280) to evaluating the differential
utility of two correlations .20 and .40 (based on different procedures for selecting
graduate students) as "twice of nothing is nothing" (cf. Dawes, 1979, p. 580). It is
curious that even among psychologists, all of whom certainly have taken courses
in psychological measurement, there are many highly vocal critics who would like
to abolish the use of predictor tests. They often assert that the amount of error in
prediction is antithetical to democratic values. In truth, what follows may lead one
to conclude the opposite.

It should be stressed, however, that we do not argue that concerns about errors
in the prediction of individuals are illegitimate. Vocational counselors, clinical
psychologists, and others whose roles involve judgments about individuals must
be acutely aware of both false positive and false negative errors in predicting
individuals. A recommendation that Johnny will become a successful engineer is
highly probabilistic. Likewise, looking at the analogue in medicine, the probabili-
ties of false negative and false positive errors in diagnosis and treatment must be
known as accurately as possible. A choice between performing a dangerous
operation on Jane immediately versus, if the diagnosis is accurate, imminent death
requires highly valid diagnostic validities.

In dealing with individuals, giving accurate information to the patient or client
is only part of the problem. Helping the person balance the gains and losses from
the two kinds of errors also is required. Further, the utility of the decision is not
simply an objective function of the probabilities of error. Clients may assess gains
and losses differently. And the probability that a civil suit will be brought against
practitioners for errors of either type affects the judgment of the practitioner. Errors
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made about individuals in clinical settings are inevitable, even when valid
information is used by competent consumers of research (cf. Dawes, 1988; Dawes,
Faust, & Meehl, 1989; Meehl, 1954,1956).

Tests are used, however, in ways other than the prediction of individuals or of a
specific outcome for Johnny or Jane. And policy decisions based on tests
frequently have broader implications for individuals beyond those directly
involved in the assessment and selection context (see the discussion later in this
article). For example, selection of personnel in education, business, industry, and
the military focuses on the criterion performance of groups of applicants whose
scores on selection instruments differ. Selection psychologists have long made use
of modest predictive correlations when the ratio of applicants to openings becomes
large. The relation of utility to size of correlation, relative to the selection ratio and
base rate for success (if one ignores the test scores), is incorporated in the
well-known Taylor-Russell (1939) tables. These tables are examples of how
psychological tests have revealed convincingly economic and societal benefits
(Hartigan & Wigdor, 1989), even when a correlation of modest size remains at
center stage. For example, given a base rate of 30% for adequate performance and
a predictive validity coefficient of .30 within the applicant population, selecting the
top 20% on the predictor test will result in 46% of hires ultimately achieving
adequate performance (a 16% gain over base rate). To be sure, the prediction for
individuals within any group is not strong—about 9% of the variance in job
performance. Yet, when training is expensive or time consuming, this can result in
huge savings.

For analyses of groups composed of anonymous persons, however, there is a
more unequivocal way of illustrating the significance of modest correlations than
even the Taylor-Russell tables provide. And when presented in this fashion,
dismissal of small correlations becomes almost irrational and allows policy makers
to understand more readily their precise utility. Presenting this model is the central
message of this article.

Rationale for an Alternative Approach
Applied psychologists discovered decades ago that it is more advantageous to

report correlations between a continuous predictor and a dichotomous criterion
graphically rather than as a number that varies between zero and one. For example,
the correlation (point biserial) of about .40 with the pass-fail pilot training
criterion and an ability-stanine predictor looks quite impressive when graphed in
the manner of Figure la. In contrast, in Figure Ib, a scatter plot of a correlation of
.40 between two continuous measures looks at first glance like the pattern of bird
shot on a target. It takes close scrutiny to perceive that the pattern in Figure Ib is
not quite circular for the small correlation. Figure la communicates the informa-
tion more effectively than Figure Ib.

When the data on the predictive validity of the pilot ability-stanine were
presented in the form of Figure 1 a (rather than, say, as a scatter plot of a correlation
of .40; Figure Ib), general officers in recruitment, training, logistics, and
operations immediately grasped the significance of the data for their problems.
Because the Army Air Forces were an attractive career choice, there were many
more applicants for pilot training than could be accommodated and selection was
required. The decision to use the tests that produced results displayed in Figure la
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Figure la
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Figure 1. a: Percentage of pilots eliminated from a training class as a function of
pilot aptitude rating in stanines. Number of trainees in each stanine is shown on each
bar. (From DeBois, 1947). b: A synthetic example of a correlation of .40 (N = 400).
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resulted in each of the following (all of which have implications for individuals
beyond those that are involved directly in the personnel selection context): (a)
fewer training bases (less land, fewer buildings, fewer administrative personnel),
(b) fewer instructors (releasing pilots for combat), (c) fewer training aircraft
(allowing increased production of combat aircraft), (d) less consumption of
aviation gasoline and motor oil (both in short supply), and (e) higher levels of
proficiency of the pilots graduating from training. As a corollary, it was also easy
to choose the most effective selection device among amount of education, the
Army General Classification Test, and the pilot ability-stanine simply by
comparing graphs.

Each level of the pilot ability-stanine was, in effect, a mean of all of the scores
in a segment of a normal distribution. The proportions passing (or failing) are also
means of binary distributions. The graph in Figure la represents a "simple"
individual differences correlation of modest size, r^ = .40, but no misinformation
was conveyed. That is, the significance of a modest correlation for policy decisions
was not hidden by interpretations based on the scatter of individuals in a bivariate
plot of two continuous distributions. (A continuous distribution of proficiency
underlying the dichotomy of pass-fail is a reasonable assumption, and a good deal
of effort was expended in developing such a measure.)

Again, there is an analogue in medicine, particularly in public health medicine.
Epidemiological studies are currently being used with confidence as the bases for
changes in related policies. Research on smoking is one example, even though the
accuracy of predicting death from lung cancer for individuals from the number of
cigarettes smoked per day must be very modest indeed.1 Nevertheless, the
accuracy of predicting health effects for groups of persons who are homogeneous
with regard to an appropriate measure of amount of smoking is highly predictable.
The point is that when individuals are aggregated systematically to form
well-defined groups, the harmful effects of smoking are more clearly revealed.2

The presence or absence of lung cancer, a dichotomous criterion, limits the
figural presentation of a correlation between the predictor and the criterion to a
relation between means, just as it does for selection tests and a pass-fail criterion.
However, a continuously distributed criterion of degree of emphysema could be
correlated with a measure of the amount of smoking in a sample of individuals.
Yet, it would be a mistake to present the scatter plot or the correlation as the basis
for proposed social action. This is because the presumptive size of the correlation
coefficient (predictably small) minimizes the importance of the relation between
smoking and health to all but sophisticated users of regression equations. The
correlation between means, which is standard in epidemiology, is preferable. We
believe it is also preferable in the social sciences when the prediction of groups
(defined by homogeneity on a personal or behavioral attribute) is of interest.

'We are not aware of any published correlations. We have, however, recently secured data from
the National Center for Health Statistics (1992) on smoking/nonsmoking during pregnancy and low
birth weight. We had to collate information from different tables in this document, but the simple
correlation between amount of smoking and low/nonlow birth weight is less than rv = .10.

2There is also a less direct analogue in other branches of psychology and in other sciences.
Experimental psychologists plot functional relations between several levels of one variable and the
means of multiple observations on the dependent variable at each of those points. Biological and
physical scientists do the same. For the experimental psychologist, the multiple observations may at
times be from a single individual but are more frequently from a series of individuals.
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We are not advocating any change (unless it would be to even greater caution)
in decisions, predictions, diagnoses, or advice concerning individuals from
correlations of modest size, as we have emphasized previously. The utilities
associated with false positive and false negative errors about individuals are of
prime importance. However, accuracy of group prediction is not affected by the
amount of error for individuals. We argue that psychologists who use individual
differences data for the prediction of group behavior or status are failing to state
their case in a fashion that inspires confidence and action by holding to a
methodology aimed at the prediction of individuals. The alternative methodology,
graphing and correlating means, allows one to show that psychological tests
provide far greater accuracy for predicting social criteria (for purposes of policy
formation and change) than is realized by those who see only correlations of
modest size, accompanied by large standard errors of estimation.

Correlating Bivariate Means

Our proposal is this: Present all correlations that may serve as a basis for social
and policy decisions or theoretical analyses of group trends as graphs of the
regression of criterion means on predictor means. These bivariate means may be
derived by parsing the predictor into equal intervals and computing predictor-
criterion means within each interval. In order to interpret the data accurately, as
well as to use them in new samples from the same population, the graphs should be
accompanied by the regression equation that makes use of the statistics based
on means:

[y - r^(Syls$x] (1)

where
r^ = correlation between bivariate means,

Xj — successive group means on the predictor,

yf = predicted group mean on the criterion at each xh

Sy = standard deviation of y means,
jj = standard deviation of x means,
y = mean of the y means,
x = mean of the x means.

In what follows, we illustrate the extent to which regression equations based
on predictor-criterion group means (derived by parsing the predictor into equal
intervals, computing predictor and criterion means within each interval, and then
correlating these bivariate distributions of means) can provide nearly error-free
prediction of the group performance of new samples from the same population.
The essential conditions for this degree of accuracy are linearity of regression in
the population and a sample of sufficient size to produce stable estimates of its
slope. Given these conditions, the correlation required by Equation 1 inevitably
approaches 1.00, even though the slope of the line obtained from that equation
reproduces the slope of the regression equation for individuals. Although these
illustrations provide no information that is not implicit in regression equations that
use correlations computed on samples of individuals (unless the regression is
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curvilinear; see the material that follows), we believe that they highlight more
effectively the value of psychological predictors for forecasting trends and making
policy decisions about groups of people. In effect, we are advocating an
epidemiological approach to the presentation of psychological predictive data
when the objective is similar to developing policy in public health.

Some Empirical Examples

The data. We analyzed data from the Project Talent Data Bank (Wise,
McLaughlin, & Steel, 1979), which contains almost all the students in a stratified
random sample of the nation's high schools in 1960. It contains four cohorts,
Grades 9 through 12, with approximately 100,000 per cohort, the individuals of
which were administered several dozen conventional status and individual
differences measures. We will illustrate our points using data from the 12th-grade
cohort. The variables chosen for analysis were Talent's (Flanagan et al., 1962)
Intelligence Composite, the predictor, and three criterion measures: general
information, socioeconomic status, and high school mathematics.3

Defining screening and calibration samples for analysis. Following the
screening and calibration nomenclature of Lord and Novick (1968, p. 285), we
divided the 12th-grade cohort by gender into two screening samples (used to
compute the regression equations) and two calibration samples (used to cross-
validate these equations). In the male-female screening samples, means and
standard deviations were computed for all predictor and criterion variables (see
Table 1). For each gender, screening distributions of the Intelligence Composite
were systematically parsed into equal intervals, approximately .20 standard
deviation units each, extending from the mean in both directions. (This parsing
was discontinued when the number of individuals fell below 2% of the sample in
each of the two extreme class intervals.4) The modifier approximately is used
because some rounding error was involved (each interval extended 10 raw-score

3The predictor-criterion measures: Project Talent's Intelligence Composite contains three
components: reading comprehension, arithmetic reasoning, and abstract reasoning (283 possible
point range). The Intelligence Composite comes closest to matching the content found on
conventional measures of general intelligence—the Stanford-Binet Scale (Terman & Merrill, 1960)
and the various Wechsler (1974) tests of general intelligence. This composite will serve as the
predictor variable for all of our analyses. The following three variables will be used as criteria.
General information (143 possible points) consisted of a broad range of information tests, not
particularly linked to high school experiences: art, law, medicine/health, engineering, architecture,
journalism, foreign travel, military, accounting/business/sales, practical knowledge, clerical, the
Bible, colors, etiquette, hunting, fishing, outdoor activities, photography, sedentary games, theater
and ballet, foods, and general vocabulary. Socioeconomic status (135 possible points) was a
conventional measure of socioeconomic status, which included value of home, family income,
number of books in the home, appliances, father's occupation, parent's education. High school
mathematics: (24 possible point range) this is a measure of math achievement of all kinds of
mathematics generally taught up to and including 9th grade; the primary emphasis of this test is on
algebra, but other topics include fractions, percents, decimals, square roots, and elementary
measurement formulas.

4In addition to the problems of relatively small sample sizes in the tails of the distribution of
general intelligence, the almost perfect linear regressions of our dependent measures on the predictor
in the main body of the distribution actually reverse their direction in the lower tail. The small subset
of persons responsible for the reversal are the subject of detailed analyses (Humphreys, Lubinski, &
Yao, 1993).
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Table 1
Raw Score Means and Correlations for Predictor and Criterion Variables
by Gender for the Screening and Calibration Samples

High Men Women
Intelligence General school

Measure composite SES information math x SD x SD

Screening sample
Intelligence

composite
SES
General information
High school math

—
.42
.78
.72

.40
—.46
.39

.78

.45
—
.61

.65

.36

.57
—

185.
99
77
12

.87

.09

.33

.33

52.94
10.05
20.41
5.66

180.96
98.
73.
10.

83
,73
.28

51.01
9.76

18.59
4.85

Calibration sample
Intelligence

composite
SES
General information
High school math

—
.42
.77
.73

.40
—.45
.40

.79

.45
—.62

.66

.36

.58
—

186.24
99.12
77.41
12.40

53.23
10.03
20.58
5.64

180.54
98.
73.
10.

,87
,71
,28

51.
9,

18,
4.

,32
.72
,72
,89

Note. Correlations for female research participants are above the diagonal; correlations
for male participants are below. Screening sample—males: n = 17,358, females: n =
18,337; Calibration sample—males: n = 17,255, females: n = 18,512. SES = socioeco-
nomic status.

units for both genders, and this only approximates .20 standard deviations): For the
boys, x - 185.87, SDX = 52.94, and the predictor was parsed at and above 186 and
at and below 185; for the girls x = 180.96, SDX = 51.01, and the predictor was
parsed at and above 181 and at and below 180.

The selection of 20 intervals on the predictor, as opposed to many fewer
intervals needed to illustrate the methodology, was based on our desire to illustrate
the fit of linear regression with considerable precision. The size of our samples
and the wide range of scores in our quasi-continuous distributions allowed the
use of many intervals without any appreciable reduction in the correlation be-
tween means.

These same raw-score intervals were applied to the gender-equivalent
calibration samples; bivariate means were computed for the calibration samples in
the same manner. Because our measurement instruments were scaled in arbitrary
units, we wanted to view our regression lines in terms of more familiar units. Thus,
all predictor and criterion means, within each interval and across both screening
and calibration samples, were transformed into approximations of standard scores
using the means and standard deviations of the gender-equivalent screening
samples. Finally, because of the amount of data we are about to report, our results
and discussion will focus on scatter plots of the calibration samples and
cross-validation coefficients comparing their regressions to those of the screen-
ing samples.

Results and Discussion

Using data from the male and female screening samples, six regression
equations were computed 2 (gender) X 3 (criteria); they determined the regression
lines found on Figures 2A, 2B, and 2C (for the girls) and Figures 2D, 2E, and 2F
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Figure 2. Regressions of means of general information, socioeconomic status, and
high school math on the means of general intelligence. Data for the female students
are in the left-hand panels; data for the male students are in the right-hand panels.
Cross-validation coefficients rcv were computed by correlating the calibration
samples observed bivariate means with the predicted values.
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(for the boys). Each figure, in addition to the regression line (f,), contains the
bivariate means (the observed ys), for the calibration samples. Finally, cross-
validation (rcv) coefficients also are found in the lower-right quadrant of each
figure (computed by correlating the predicted values, found on the regression line,
with the calibration samples' observed bivariate means). All of these values are just under
unity. All correlations were computed using unit weight for each pair of means.

Interpreting these regressions. The analyses just discussed reveal that group
performance and status can be predicted with remarkable precision even when
"simple" predictor-criterion correlations are moderate in size. As the figures
illustrate, group performance on general information (Figures 2A and 2D) and
group level on socioeconomic status (Figures 2B and 2E), estimated from group
means on the intelligence composite can be predicted with near certainty. The
cross-validation equations required for predicting in new samples contain rcv >
.990 for general information and socioeconomic status. The slope of the bivariate
values, for all four calibration samples, is approximately equal to the slope of the
regression line, y{, computed on the screening samples. Because the units of
measurement were approximately standard, the figures also reveal the magnitude
of the predictor-criterion relationship. The slope of the line for general informa-
tion is nearly twice as steep as the slope for socioeconomic status, which of course
would be expected from the simple correlations (r^,) found in Table 1. The slope of
the regression line for the grouped data, namely, b = r^s^/s^, should equal to a
close approximation the simple correlation r^ of conventional regression analysis
(see Table 1). Higher accuracy can be obtained by weighting pairs of means by the
size of the defined group. Also, to the extent that r^ —> 1.0, one can estimate the
simple correlation using the ratio of the standard deviations of the means: Syls^.

That the simple correlation r^ approximately equals sjls^. when x and 3; are
standardized is important, because these values estimate the difference in group
means on the criterion, in standard deviation units, for every standard deviation
difference between two groups on the predictor. So, for modest predictor-criterion
correlations of, say, .20 or .40, every standard deviation difference between
predictor group means corresponds to a precise .20 or .40 standard deviation
difference, respectively, between the criterion group means. A group standard-
score difference of .20 or .40 on a substantively significant criterion variable (e.g.,
law school bar examinations or National Board Examinations in medicine) can
have great utility (Cronbach & Gleser, 1965; Hunter & Schmidt, 1983; Schmidt,
Ones, & Hunter, 1992; Taylor & Russell, 1939).5

5The graph of the regression of criterion means on predictor means can also provide a contrast
between the objectives of predicting performance of individuals and of groups. The two objectives do
not have to be considered in every application, but they should certainly not be confused. For
individuals, the conventional standard error of estimate [i.e., Sy(\ — r^2)1'2] can be used to place a
confidence interval about the regression of criterion means on predictor means. As sample size
increases, the confidence interval becomes more stable, but the accuracy of predicting an individual's
criterion status is not affected. For groups, the size of the sampling error about the regression line
determines the size of an alternative confidence interval about the same regression line and can be
approximated by the following formula: Sy(\ — r^y2)"2 -=- AT,172 (where Nt = the sample size of the ith
group defined on the predictor). This confidence interval is always smaller than the one required for
predicting the performance of an individual, and its size decreases monotonically as a function of N.
Here, as sample sizes increase, the amount of gain in mean criterion performance accompanying a
group's unit gain on the predictor mean can be determined with almost perfect accuracy.
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Revealing nonlinear trends. Figures 2C and 2F illustrate how this methodol-
ogy may be used to uncover curvilinear trends that might go undetected by
conventional regression analyses. The simple correlations between general
intelligence and high school mathematics (.72 for boys and .65 for girls) would
generate scatter plots with regressions not readily distinguished from linearity. The
cross-validated correlations between means are .97 and .95 for boys and girls,
respectively! Yet these regressions are clearly curvilinear and became obviously so
in the scatter plot of bivariate means. Accuracy in prediction was only attenuated a
little using the linear model (down from .99 to .95 for the girls), but clearly a
rational, curvilinear function could be fitted to these data to enhance prediction.

Other approximations to this approach. Our demonstration of stability in
cross-validation analyses is more elaborate than the requirements for broad use of
correlations between means. The initial computation of the correlations in
individual differences data (i.e., the simple correlations found in Table 1) are not
required. It is important, however, to have N sufficiently large and the number of
means sufficiently small to minimize sampling error. The regression equation
needed for predicting individual performance is not a prerequisite for predicting
mean criterion performance or mean criterion status. A continuous predictor can be
converted into TV class intervals and a mean criterion score computed for each
interval. The product-moment correlation between the two distributions of means
then can be computed and used in the regression equation appropriate for means.
The regression of means on means cannot be linear unless the regression of
criterion scores on predictor scores is also linear. For example, when well-
designed ability tests are used to predict proficiency criteria with desirable
measurement properties (Carroll & Horn, 1981; Keating & Stanley, 1972;
Linn, 1982; Schmidt & Hunter, 1992), there are few regressions in samples typi-
cal of those psychologists ordinarily use in which the hypothesis of linearity can
be rejected.

Moreover, when the regression in the individual differences data is not
presented (e.g., the simple r^s), as in Figure la, nothing is actually hidden. If both
the predictor and criterion have been converted to distributions having means of
zero and standard deviations of 1.0, the size of the individual differences
correlation can be estimated directly from the graph of the functional relation or
the slope of the regression line. It also can be estimated with nugatory error from
the ratio of standard deviations of the distributions of means: sjls^.

When raw scores are in meaningful units, we recommend that the regression
equation for the means be in terms of the raw score units. In this instance,
additional information is required in order to estimate the simple r^ correlation,
but knowledge of the correlation is not essential. If experts agree that the relation
portrayed has utility, it does not matter whether the original slope included a
correlation of .20 or .80. Nonetheless, when the regression of the criterion on the
predictor is linear, if one has available the standard deviation in the individual
differences sample of the criterion scores, the ratio of the standard deviation of the
criterion means to the former standard deviation provides an estimate of the simple
r^ correlation that is only slightly inflated in large samples.

Finally, although we have chosen to illustrate our proposed methodology using
systematically parsed intervals on the predictor variable to define our groups,
groups can be formed in multiple ways. Some more naturally occurring groups (for
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which our methodology is also applicable) are college majors, occupation,
political affiliation, psychiatric types, and race. Bivariate predictor-criterion
means for these groups (based on mean predictor status and mean criterion status)
are easily accommodated by the proposed regression of criterion means onto
predictor means.

Sampling error. We bypassed earlier the problem of estimating sampling
error around our regression lines. In samples of almost 25,000 cases, sampling
stability is a trivial problem for this methodology. However, we recommend the
use of this technique in much smaller samples. Given homoscedasticity in the y
scores in the arrays defined by x, the sampling error of the slope of the regression
line in individual data is given by the following:

^lope = S,(l - r^mISx(N - 2)1/2. (2)

Because the slope of the regression using bivariate means is essentially
identical with the slope in individual data, this standard error can be used for the
slope of the regression of means on means. The simple regression of y on x has its
origin in x, whose sampling error is well known. Because x is also nearly identical
to the mean of the means, x, as just computed, it also can be used for the mean of
the means (an exact estimate would be obtained by computing a weighted mean).
Given that the total sample size appears in both standard errors, samples do not
need to be nearly as large as ours in order to have confidence in the regression of
means on means in estimating group outcomes in new samples. Indeed, if N
increased to merely several hundred, as it often does for the prediction of clinical
outcomes (Dawes et al., 1989; Meehl, 1954, 1986), college grades (Jensen, 1980;
Linn, 1982; Stanley, 1971), military proficiency criteria (DuBois, 1947; McHenry,
Hough, Toquam, Hanson, & Ashworth, 1990), or validity generalization studies
(Hunter, 1980; Hunter, Schmidt, & Hunter, 1979; Schmidt & Hunter, 1992), the
amount of error in prediction would be modest.

Magnitude appraisals in experimental psychology. To more fully appreciate
the magnitude of small correlations, it is instructive to examine a common practice
among experimental psychologists. Following Cohen (1988), experimenters
routinely refer to effect size differences (standard deviation) between control and
experimental groups as: small ^ .20, medium > .50, and large S: .80. Cohen
(1988, p. 22) provided a formula for converting effect size differences (or ds) into
correlational units6: r = d + (d2 + 4)1/2. But the significance of this transformation
for evaluating the magnitude of predictor-criterion covariation in individual
differences research is underappreciated. Small, medium, and large effect size
differences translate into correlations of .10, .24, and .37, respectively! Given ds of
.80 are considered large when uncovered by experimental psychologists (examin-
ing differences between experimental and control groups), we recommend giving
such values commensurate attention when uncovered by differential psychologists
(examining differences between groups as a function of predictor-criterion
covariation). For further treatment of this idea and how it pertains to this article,
readers are referred to Lubinski and Humphreys (in press).

6The more general formula for the transformation exchanges "l/pq" with 4, where p =
proportion of Group 1 in combined Group 1 and Group 2 populations and q = 1 — p (i.e., proportion
of Group 2 in combined Group 1 and Group 2 populations). Thus: whenp = q, \lpq = 4.
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Conclusion
If a nonzero correlation computed across individuals has an approximately

linear slope in the population, the correlation between bivariate means (r^;), that is,
means of the criterion variable and means of the segments of the predictor in which
the former are obtained, will approach unity as sample size increases—and will do
so quickly. Given that group performance can be predicted with this degree of
accuracy, the utility of the predictor (for either theoretical or applied concerns
involving groups) can be grasped more readily in terms of the amount of gain on
the criterion that accompanies a unit of gain on the predictor. (If the regression in
the population is nonlinear but monotonic, a linear function may still provide a
good fit, but a rational function can be substituted to achieve higher accuracy. If
raw scores are not in meaningful units, investigators can normalize one or both
distributions and convert nonlinearity to approximate linearity in many cases.)

A small gain on a criterion for a unit of gain on the predictor, as long as it is
predicted with near-perfect accuracy, can have high utility. Also, given the
assumption of approximate linearity in the population of individual persons, there
are no false negative or false positive groups. Given a correlation between means
near unity, the standard error of estimation for the prediction of groups is almost
zero. Viewers, in looking at graphic presentations of data involving grouped bivariate
means, are not distracted or misled, as they often are in conventional presentations of
individual differences data, by the amazing scatter of scores about regression lines.

The precision that can be achieved with individual differences variables for
predicting group trends versus individual performance or status is often underap-
preciated by psychologists, policy makers, and other consumers of psychological
research. Greater appreciation is attained when individual data points are
systematically grouped to form bivariate means, to replace the constituent trees
with a view of the forest.
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