INTRODUCTION

- Self-regulation research largely focuses on crosssectional analyses of laboratory-based measures that may not be optimal for longitudinal field-based research in schools.
- Establishing group and longitudinal ME is a prerequisite to drawing conclusions about latent mean gender differences and latent mean changes in self-regulation across time.
- The purpose of this study was to evaluate whether or not ME can be confirmed between males and females as well as longitudinally in a battery of cognitive selfregulation measures suitable for field-based research.

METHOD

Participants

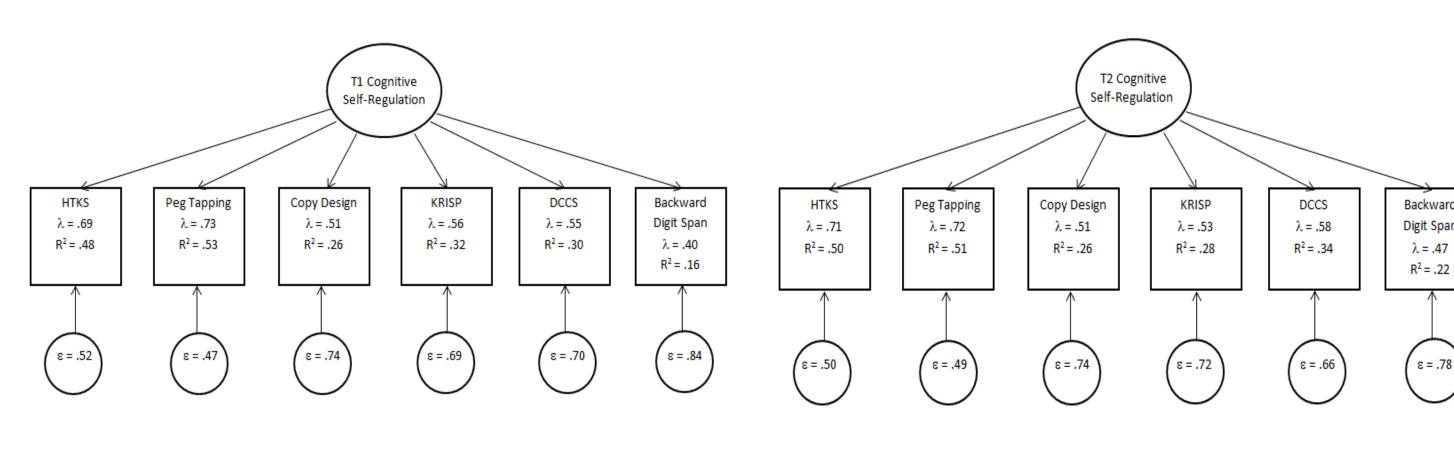
535 preschoolers (48% female), mean age was 54 months (SD = 3months; range 46 – 65 months). Children were recruited from 58 ethnically and economically diverse prekindergarten classrooms. All participants were native English speakers (e.g., passed Pre-LAS)¹.

Measures and Procedure

Head Toes Knees Shoulders (HTKS)² Peg Tapping (PT)³ Copy Design (CD)4 KRISP⁵ Dimensional Change Card Sort (DCCS)⁶ Backwards Digit Span⁷

Preschoolers completed the battery of measures in the fall (T1) and spring (T2) of preschool in a fixed order.

ACKNOWLEDGEMENTS


The project from which these data are drawn is funded by the Institute of Education Sciences (R305A090079; Pls: Mark W. Lipsey & Dale C. Farran). The first author is supported by an Institute of Education Sciences Postdoctoral Fellowship (R305B100016).

VANDERBILT UNIVERSITY

Factor Struct ME was eval p < .001; RMS33.57, p < .00 models were

Measuremer

Results with F gender at T1 significantly both time pc mean of 0, la SE = .10) and weak ME did

Model Description

Tests of Measurem

- T1 Gender ME BAS
- T1 Gender ME LOA
- T1 Gender ME INTE
- T1 Gender ME Late
- Tests of Measurem
- T2 Gender ME BAS
- T2 Gender ME LOA
- T2 Gender ME INTE
- T2 Gender ME INTE T2 Gender ME Late
- Tests of Longitudin
- Longitudinal ME BA
- Longitudinal ME LC
- * Denotes significar worse fit compare

Evaluating Group and Longitudinal Measurement Equivalence in a Battery of Cognitive Self-Regulation Measures for Preschoolers

Mary Wagner Fuhs & Kimberly A. Turner

RESULTS

cture Summary caluated using CFA in Mplus V. 6.11 ⁸ . At T1 (χ^2 (9) = 29.53, ASEA = .065; CFI = .967; SRMR = .031) and T2 (χ^2 (9) = D01; RMSEA = .071; CFI = .962; SRMR = .033), one-factor re preferred over alternative models. $tri copylegen = \frac{1}{2.50} = \frac{1}{2.50}$						Evaluating Non-ME Sets of Variables Longitudinally Simulation studies and empirical evidence suggest that the choice of reference indicator can affect tests of ME, particularly if the referent indicator is noninvariant ⁹ . In the first set of ME analyses, the referent indicator was PT. An examination of loadings across time suggested several variables could be noninvariant. Thus, we used factor ratio tests (LRT) and the stepwise partitioning procedure to empirically determine an appropriate referent invariant indicator or set of indicators ^{10,11} . Eight pairs were noninvariant, resulting in three final invariant sets: 1) HTKS, CD, DCCS, 2) PT, KRISP, DCCS, and 3) PT, CD, DCCS.	
							Stepwise Partitioning Procedure
ent Equivalence Summary PT as the referent indicator supported strong ME for T1 and partial ME for gender at T2. Model fit was worse when constraining latent means to be equal at points. With girls as the referent group having a latent latent means for boys were significantly worse at T1 (36, ad T2 (47, SE = .10). Tests of longitudinal ME revealed that id not hold. Tests of Measurement Equivalence						VariablesNoninvariant Sets*1.PT 2.HTKS 3.CD 4.DS 5.KRISP 6.DCCS (1.2) 23456 13456 3.CD 4.DS 5.KRISP 6.DCCS (1.4) 23456 3456 1356 (2.4) 3456 2356 3456 1356 (2.5) 3456 356 236 1356 (3.4) 456 356 236 1356 (3.5) 456 56 36 236 156 (4.5) 56 46 36 236 156 (4.6) 56 36 236 156 136 Final Sets 236 156 136 *Noninvariant sets determined by 15 comparisons of each variable pair with the baseline model. Models that fit worse than the baseline model according to an LRT were considered noninvariant. Because 15 tests were performed, the required p value was .05/15 = .003.	
on	Chi- Square	DF	n	RMSEA	CFI	SRMR	
ment Equivalence for Gender at T1	Jyoure		P	MMJLA		31/1/11	Using DCCS as a referent indicator and invariant
ASELINE	33.21	18	0.016	0.056	0.974	0.033	Set 3, we found noninvariance using LRT critical
DADINGS constrained	36.15	23	0.010	0.046			values but strong ME using alternative CFI
		20					estimates. Children's latent means were
TERCEPTS constrained	45.49	_	0.019	0.048	0.97		significantly greater at T2 (referent latent mean at T1 set to 0) (21 SE $-$ 04)
atent Means constrained	59.41*	29	0.001	0.063	0.948†	0.076	T1 set to 0) (.91, SE = .06).
ment Equivalence for Gender at T2	07.0/	10	0.005	0.070	0.070	0.005	Tests of Longitudinal Measurement Equivalence: PT,
ASELINE	37.26	18	0.005				CD, and DCCS
DADINGS constrained	48.32	23	0.002	0.064	0.958	0.078	
TERCEPTS constrained	73.17*	28	<.001	0.078	0.925†	0.114	Chi- Square DF p RMSEA CFI SRMR
TERCEPTS KRISP Backward Digit Span free	49.17	26	0.004	0.058	0.961	0.078	Longitudinal ME BASELINE 88.43 47 <.001 0.041 0.98 0.03
atent Means Constrained	73.26*	27	< .001	0.08	0.923†	0.113	Longitudinal ME LOADINGS constrained 95.52* 49 < .001 0.042 0.98 0.04
inal Measurement Equivalence							Longitudinal ME INTERCEPTS constrained 102.86* 51 < .001 0.044 0.98 0.04
BASELINE	88.43	47	<.001	0.041	0.981	0.034	Longitudinal ME Latent Means Constrained 500.04* 52 < .001 0.127 0.79† 0.09
LOADINGS constrained	163.21*	52	<.001	0.063	0.949†	0.084	* Denotes a significantly worse fit compared to the previous model using a Likelihood
cantly worse fit compared to previous model using a Likelihood Ratio Test. † Denotes significantly ed to previous model using a Likelihood Ratio Test. † Denotes significantly alternative ΔCFI criteria proposed by Cheung & Rensvold (2002).							

DISCUSSION

- A cognitive self-regulation battery was suitable for examining gender latent mean differences.
- Empirically identifying the best referent indicator and invariant sets using LRTs and the stepwise partitioning procedure yielded three possible invariant sets of indicators. Using set 3 with DCCS as the referent indicator, CFI criteria but not LRT criteria revealed adequate fit to test latent mean differences.
- The cognitive self-regulation construct may be changing across time and may predict children's performance on measures of cognitive selfregulation differently depending on children's age and/or maturation level.
- This study highlights the importance of explicitly testing for ME before making assumptions about the stability of a latent construct across time, particularly for young children.
- The implications of partial ME for developmental methodology, and more specifically for studying the development of critical school readiness skills such as selfregulation, are important areas for future research.

REFERENCES

1. Duncan, S. E., & De Avila (1986). Pre-LAS user's manual. San Rafael, CA: Linguametrics.

2. Ponitz, C. C., McClelland, M. M., Matthews, J. S., & Morrison, F. (2009). A structured observation of behavioral self-regulation and its contribution to kindergarten outcomes. Developmental Psychology, 45, 605-619. doi: 10.1037/a0015365

3. Diamond, A., & Taylor, C. (1996). Development of an aspect of executive control: Development of the abilities to remember what I said and to "Do as I say, not as I do". Developmental Psychobiology, 4, 315-334. doi: 10/1002/(SICI)1098-2302(199605)

4. Davie, R., Butler, N., & Goldstein, H. (1972). From birth to seven: The second report of the National Child Development Study. London: Longman. 5. Wright, J. C. (1971). The Kansas Reflection Impulsivity Scale for Preschoolers. St. Louis, MO: CEMREL

6. Zelazo, P. D. (2006). The Dimensional Change Card Sort: A method of assessing executive function in children. Nature Protocols, 1, 297-301. doi: 10.1038/nprot.2006.46

7. Davis, H. L., & Pratt, C. (1996). The development o children's theory of mind: The working memory explanation. Australian Journal of Psychology, 47, 25-31. 8. Muthén, L. K., & Muthén, B. O. (2007). Mplus user's guide (5th ed.). Los Angeles: Muthén & Muthén.

9. Johnson, E. C., & Meade, A. W. (2007, April). The role of referent indicators in tests of measurement invariance. Paper presented at the 22nd Annual Meeting of the Society for Industrial and Organizational Psychology, New York. 10. French, B. F., & Finch, H. (2008). Multigroup confirmatory factor analysis: Locating the invariant referent sets. Structural Equation Modeling, 15, 96-113. doi: 10.1080/10705510701758349

11. Cheung, G. W., & Rensvold, R. B. (1999). Testing factorial invariance across groups: A reconceptualization and proposed new method. Journal of Management, 25, 1-27.