
1	

    Exam 1   CS x265    Spring 2017            Name: _____________________KEY_________________________ 
 
 
I will not use notes, other exams, or any source other than my own brain on this exam: __________________________________ 

To students: To request a regrade or to otherwise appeal your score, 
submit a one paragraph explanation of why you think the grade was 
“in error” and submit your explanation/request together with your 
exam to Doug after class. 
 
To graders: No question answer should receive less than 0, regardless 
of what rubric otherwise suggests. In general, be forgiving of minor 
syntax errors, but ask if there is any question 



2	

1. (2 pts) In the MoneyThink Mobile app “spend or save” challenge, choose one of the following groups 
of relations as most reasonable for inclusion in the database, with potentially still other relations, to 
support this app. 
 
 
(a) Decision(PersonId, ItemId, ItemImage, DateOfDecision, Buy?),  Friend(Person1Id, Person2Id) 
 
 
(b) Decision(PersonId, StockId, DateOfDecision, StockPrice, Buy?),  Broker(BrokerId, ClientId) 
 
 
(c) Decision(PersonId, ItemId, ItemImage, DateOfDecision, Buy?),  Friend(Person1Id, Person2Id)       
                                                                                                     i.e., no social information recorded 
 
(d) Decision(PersonId, StockId, Buy?),  Broker(BrokerId, ClientId) 
 
 
(e) None of the above are reasonable choices. Explain: ______________________________________________ 

1	minute	

    Exam 1   CS 265    Spring 2017            Name: _____________________KEY_________________________ 
 
 
I will not use notes, other exams, or any source other than my own brain on this exam: __________________________________ 

2	pts	

1	pt	



3	

2. Consider the following relational schema (underlined variables in each schema make up its key) 
 

Supplier ( sid: integer, sname: string, address: string, city: string)  
Catalog (sid: integer, pid: integer, cost: real) 
Part (pid: integer, pname: string, color: string) 

 
 
a) (2 pts) Give a relational algebra expression that implements the query specified as 
 

Find the pids and pnames of any green part.  
 
Project(pid, pname) (select(color = ‘green’) Part) 
 
 
 
b) (3 pts) Give a relational algebra expression that implements the query specified as 
 

Find the snames of Suppliers that supply any part that costs less than $5 (or just ‘5’), and list the pid 
along with the supplier’s name. 

 
Project(sname, pid) ( select(cost < 5) (Supplier njoin Catalog)) 

 
 

4	minutes	

1	pt	for	a	proper	selec4on	(sigma),	including	
								the	base	table	(Part)	and	condi4on	
1	point	for	a	proper	projec4on	(pi)	

1	pt	for	a	proper	selec4on	(sigma),	including	
								condi4on	
1	point	for	a	proper	join,	including	both	tables	
1	point	for	proper	projec4on	

π												(σ							(Supplier									Catalog))		Sname,	pid						cost<5	

njoin means natural join 

Answers can also write a natural join as a theta join (e.g., with the explicit condition of equality between 
all same named attributes (but to be precisely correct, this would require renaming 
operators, but be lenient if such an answer forgets renaming) 



4	

3. (3 pts) Consider the following relational schema (bold underlined variables in each schema make up a key) 
 

Supplier ( sid: integer, sname: string, address: string, city: string)  
Catalog (sid: integer, pid: integer, cost: real) 
Part (pid: integer, pname: string, color: string) 

 
Give a relational algebra expression that implements the query specified as 
 

Find the pairs of Sids of suppliers that are in the same city. List each qualifying pair of Sids only once, 
regardless or order (i.e., if 123, 456) is listed, (456, 123) will not be. 

 
Possible answers 
 
Project(S1.sid, S2.sid) ( Rename(Supplier = S1)  
                                      join(S1.sid < S2.sid and S1.city = S2.city)  
                                    Rename(Supplier = S2) ) 
 
Project(S1.sid, S2.sid) ( Select(S1.sid < S2.sid and S1.city = S2.city) 
                                      ( Rename(Supplier = S1)  
                                         X                                                         
                                       Rename(Supplier = S2)  
                                      ) 
                                   ) 
Or perhaps an answer that puts one condition in the join condition and one condition in an outer 
selection condition 
 
The notation students will use is below,  
but they might also use assignment  
notation for renaming, such as  
S1 = Supplier  and S2 = Supplier 

Notice that a selection is not needed 
for this question; notice this is not a 
natural join, but a theta join 

-1 if there is a missing rename operator (should be at least two) 
but be flexible on syntax for the renaming – it will typically be through 
use of rho , but might also be though use of an “assignment” op 
 
-1 for each of missing/botched selesction, join, projection, etc 

Cross product  

π														(ρ									(Supplier)																												ρ											(Supplier))		S1.sid,	S2.sid							S1(sid,...)																																			S1.sid<S2.sid							S2(sid...)	
																																																																																	AND	S1.city	=	S2.city	



5	

4. (3 pts) Consider the following relational schema (underlined variables in each schema make up its primary 
key) 
 

Supplier ( sid: integer, sname: string, address: string, city: string)  
Catalog (sid: integer, pid: integer, cost: real) 
Part (pid: integer, pname: string, color: string) 
 

 
Give a left-deep expression that represents 
 

Find the sids of Suppliers that supply any green part and are in the city of Nashville.  
 
Project(sid) ( select(color=Green and city=Nashville) (Supplier njoin Catalog njoin Part)) 
 
This is one possible relational algebra expression on which the tree can be based, and if they gave a  
Correct RA expression, ensure 1 point partial credit regardless of how incorrect the tree is. Other 
candidate expressions might have pushed a selection (or both selesctions – still partial credit, but 
something we will discuss in class) 
 
Project(sid) (select(color=Green) (select(city=Nashville) (Supplier))  njoin  Catalog njoin Part)) 
 
Project(sid) ( select(city=Nashville) (Supplier njoin Catalog njoin (select(color=Green) Part))) 
 

Any correct expression tree in which the right child of each join is a base table 
receives 3 points; and correct tree that is not left deep receives 1 point 

5	minutes	



6	

Give a left-deep expression that represents 
 

Find the sids of Suppliers that supply any green part and are in the city of Nashville.  
 
Possible answers 
Project(sid) ( select(color=Green and city=Nashville) (Supplier njoin Catalog njoin Part)) 
Project(sid) (select(color=Green) (select(city=Nashville) (Supplier))  njoin  Catalog njoin Part)) 

π	

σ	

sid	

Color=‘Green’		
				and	city=‘Nashville’	

Part	

Supplier	 Catalog	

π	

σ	

sid	

Color=‘Green’		

Part	

Supplier	

Catalog	σ	
city=‘Nashville’		



7	

Give a left-deep expression that represents 
 

Find the sids of Suppliers that supply any green part and are in the city of Nashville.  
 
WRONG answer 

π	sid	

Supplier	

Catalog	σ	
city=‘Nashville’		

Part	

σ	
color=‘Green’		

This	is	a	valid	expression	tree	
that	correctly	implements	the	
query	specifica4on,	but	it	is	
NOT	leV	deep	(because	there	
exists	a	child	of	a	join	that	is	
NOT	a	base	table)	

For	other	examples	of	leV	deep	trees,	though	not	for	the	same	query	specifica4on,		
see	the	key	for	Quiz	2		under	week	3	of	h\ps://my.vanderbilt.edu/cs265/schedule/	



8	

5. Assume the following relational schemas (underlined variables in each each schema make up its key). 
 
    Customer ( SSN: integer, name: string, address: string, city: string) 
 
    Account (SSN: integer, AccntNo: integer) 
 
    Transaction (AccntNo: integer, ProductId: integer, date: string, quantity: integer)  
                      /* quantity is the number of ProductId purchased on given transaction */ 
                      /* You can think of “transaction” as synonymous with a purchase */ 
 
    Product ( ProductId: integer, ProductName: string, cost: real) 
 
Write SQL queries for the following. You may NOT use nested queries and you may NOT use any JOIN keyword 
constructs. 
 
a) (1 pt) Write an SQL query that lists the names of all customers living in Nashville (i.e., city = ‘Nashville’). 

b) (2 pt) Write an SQL query that lists the names and account numbers of all customers (regardless of city). 

SELECT C.Name FROM Customer C WHERE C.city = ‘Nashville’ 

SELECT C.Name, A.AcctNo  
FROM Customer C, Account A  
WHERE C.SSN = A.SSN 

For SQL questions, you may not use the JOIN keywords 

4	minutes	

All	or	nothing	

All	or	nothing	



9	

6. Using the same relational schemas, write SQL queries for the following 
     
    Customer ( SSN: integer, name: string, address: string, city: string) 
 
    Account (SSN: integer, AccntNo: integer) 
 
    Transaction (AccntNo: integer, ProductId: integer, date: string, quantity: integer) 
 
    Product ( ProductId: integer, ProductName: string, cost: real) 
 

b) (2 pts) For EACH transaction date and ProductId, list the date, ProductId, and the total number (sum) of all  
the product’s quantities purchased on that date. 

SELECT T.ProductId, T.date, SUM(T.quantity)  
FROM Transactions T  
GROUP BY T.ProductId, T.date 

a) (1 pts) List the total number (sum) of all quantities for the product identified by “ProductId = X”,  
regardless of AccntNo, that were purchased on “date = Y”.  

SELECT SUM(T.quantity)  
FROM Transactions T  
WHERE T.ProductId = X AND T.date = Y 

6	minutes	

All	or	nothing	

-1	if	didn’t	Group	By	both	ProductID	and	date	
-2	if	no	Group	By	at	all	
-1	if	didnt	use	aggregate	operator	
-1	for	other	errors	

There	were	some	who	were	confused	between	SUM	and	COUNT	on	this	ques4on,	and	ques4ons	7	and	8	



10	

SELECT	AVG(Temp.Flux)	
	
FROM	(SELECT	MAX(D.weight)	–	MIN(D.weight)	AS	Flux	
	
													FROM	Client	C,	DailyRecord	D	
	
													WHERE	C.id	=	D.id	AND	D.weight	IS	NOT	NULL	AND	C.age	>=	45	AND	C.age	<=	60			
		
													GROUP	BY	C.id	
	
													HAVING	COUNT(*)	>=	100																																																																			)	AS	Temp	

7. (5 points) A health facility wants to measure the AVERAGE (AVG) spread in the weight of clients 
between the ages of 45 and 60, inclusive, who have at least 100 weight entries in the facility’s 
DB. The spread of a client’s weight is the maximum weight on record in the facility’s DB minus the 
minimum weight on record in the DB (regardless of age at the time the weight entries were made).  The 
DB contains two tables representing these two relations (among others). 
 
                     Client (cid, name, age, address, phone, ...)   DailyRecord(cid, date, weight, ...) 
 
The attributes making up the key of each table (relation) are bold-face and underlined. In the actual 
table definitions, the attribute of age is declared as NOT NULL (i.e., it will never be NULL), and weight 
can be NULL. 
 
Complete the following skeletal query to compute the AVERAGE (AVG) spread in the weight of clients 
between the ages of 45 and 60, inclusive, with at least 100 weight entries, by filling in the blanks. 

10	minutes	



11	

SELECT	AVG(Temp.Flux)	
	
FROM	(SELECT	MAX(D.weight)	–	MIN(D.weight)	AS	Flux	
	
													FROM	Client	C,	DailyRecord	D	
	
													WHERE	C.id	=	D.id	AND	D.weight	IS	NOT	NULL	AND	C.age	>=	45	AND	C.age	<=	60			
		
													GROUP	BY	C.id	
	
													HAVING	COUNT(*)	>=	100																																																																			)	AS	Temp	

7. (5 points) A health facility wants to measure the AVERAGE (AVG) spread in the weight of clients 
between the ages of 45 and 60, inclusive, who have at least 100 weight entries in the facility’s 
DB. The spread of a client’s weight is the maximum weight on record in the facility’s DB minus the 
minimum weight on record in the DB (regardless of age at the time the weight entries were made).  The 
DB contains two tables representing these two relations (among others). 
 
                     Client (cid, name, age, address, phone, ...)   DailyRecord(cid, date, weight, ...) 
 
The attributes making up the key of each table (relation) are bold-face and underlined. In the actual 
table definitions, the attribute of age is declared as NOT NULL (i.e., it will never be NULL), and weight 
can be NULL. 
 
Complete the following skeletal query to compute the AVERAGE (AVG) spread in the weight of clients 
between the ages of 45 and 60, inclusive, with at least 100 weight entries, by filling in the blanks. 

10	minutes	1	pt	

1	pt	

2	pts	for	rest,	use	discre0on	

1	pt	for	join	condi0on	 Ok	if	weight	NOT	NULL	check	is	missing,	but	not	next	0me		



12	

SELECT	AVG(Temp.MaxWeight)	–	AVG(Temp.MinWeight)(or	AVG(Temp.MaxWeight-Temp.MinWeight))	
	
FROM	(SELECT	MAX(D.weight)	AS	MaxWeight,	MIN(D.weight)	AS	MinWeight		
	
													FROM	Client	C,	DailyRecord	D	
	
													WHERE	C.id	=	D.id	AND	D.weight	IS	NOT	NULL	AND	C.age	>=	45	AND	C.age	<=	60			
		
													GROUP	BY	C.id	
	
													HAVING	COUNT(*)	>=	100																																																																			)	AS	Temp	

7. (5 points) A health facility wants to measure the AVERAGE (AVG) spread in the weight of clients 
between the ages of 45 and 60, inclusive, who have at least 100 weight entries in the facility’s 
DB. The spread of a client’s weight is the maximum weight on record in the facility’s DB minus the 
minimum weight on record in the DB (regardless of age at the time the weight entries were made).  The 
DB contains two tables representing these two relations (among others). 
 
                     Client (cid, name, age, address, phone, ...)   DailyRecord(cid, date, weight, ...) 
 
The attributes making up the key of each table (relation) are bold-face and underlined. In the actual 
table definitions, the attribute of age is declared as NOT NULL (i.e., it will never be NULL), and weight 
can be NULL. 
 
Complete the following skeletal query to compute the AVERAGE (AVG) spread in the weight of clients 
between the ages of 45 and 60, inclusive, with at least 100 weight entries, by filling in the blanks. 

Alternate	(to	previous	page)	



13	

8. Using the same relational schemas, write SQL queries for the following 
     
    Customer ( SSN: integer, name: string, address: string, city: string) 
 
    Account (SSN: integer, AccntNo: integer) 
 
    Transaction (AccntNo: integer, ProductId: integer, date: string, quantity: integer) 
 
    Product ( ProductId: integer, ProductName: string, cost: real) 
 

b) (2 pts) For EACH item, list the item’s ProductId, ProductName, and total (Sum) of all item quantities  
purchased by Nashville customers, BUT ONLY for those product’s with an individual cost > 50 and having  
a total purchased quantity of greater than 100. You may answer by stating the addition(s) to your query in (a)  
if you wish) 

a) (3 pts) For each product, list the item’s ProductId, ProductName, and total (sum) of all item quantities  
purchased by Nashville customers. 

SELECT P.ProductId, P.ProductName, SUM(T.quantity)  
FROM Customers C, Accounts A, Transactions T, Products P  
WHERE C.city = ‘Nashville’ AND C.SSN = A.SSN AND A.AcctNo = T.AcctNo AND T.ProductId = P.ProductId 
GROUP BY P.ProductId, P.ProductName Don’t take off this time for missing ProductName in Group By, 

but -1 for each ommission from this standard 

SELECT P.ProductId, P.ProductName, SUM(T.quantity)  
FROM Customers C, Accounts A, Transactions T, Products P  
WHERE C.city = ‘Nashville’ AND C.SSN = A.SSN AND A.AcctNo = T.AcctNo AND  
              T.ProductId = P.ProductId AND P.cost > 50 
GROUP BY P.ProductId, P.ProductName 
HAVING SUM(T.quantity) > 100 

1 point for each addition in red (to whatever query  
they had from part (a), even if part (a) was incorrect 

Could also use the answer to (a) as a nested query in the FROM clause, creating a temporary 
Table, with SUM(T.quantity) AS Total, for B, and checking whether Temp.Total  > 100 in the 
WHERE clause of the outer query of B.  



14	

9. (5 pts) (Inspired by a Widom practice exercise) Consider a database of researchers and their works (like 
ResearchGate.com), with relational schema 
 

 Researcher (ID, Name, Institution ) 
 Collaborator (ID1, ID2 ) /* ID1 is a collaborator with ID2. Collaboration is symmetric, so if (abc, wxy) is in the 
         Collaborator table, so is (wxy, abc) */ 
 Follows (ID1, ID2 ) /* ID1 follows the posts of ID2, where Follows is not symmetric, so if (abc, wxy) is in Follows 
         table, there is no guarantee that (wxy, abc) is also present. */ 

 
Consider finding all those researchers for whom all of those they Follow are at different institutions than themselves. 
Return the names and institutions of all such researchers. One way to write this query is 
 

SELECT R.Name, R.Institution 
FROM Researcher R 
WHERE NOT EXISTS (SELECT * FROM Follows F, Researcher R2 
                                  WHERE R.ID = F.ID1 AND F.ID2 = R2.ID AND R2.Institution = R.Institution) 

 
Write the query that satisfies the same English specification using the “NOT IN” phrase rather than “NOT EXISTS”: 

2 points if literal replacement of NOT EXISTS by NOT IN 

SELECT R.Name, R.Institution 
FROM Researcher R 
WHERE R.ID NOT IN (SELECT F.ID1  
                                FROM Follows F, Researcher R2  
                                F.ID2 = R2.ID AND R.Institution = R2.Institution)  

The set of all researchers following someone who is at  
the same institution of R 

-1 point if Name used instead of ID; 2 points only if they have * in inner SELECT 

All researchers who don’t follow anyone from the same institution 



15	

9. (5 pts) (Inspired by a Widom practice exercise) Consider a database of researchers and their works (like 
ResearchGate.com), with relational schema 
 

 Researcher (ID, Name, Institution ) 
 Collaborator (ID1, ID2 ) /* ID1 is a collaborator with ID2. Collaboration is symmetric, so if (abc, wxy) is in the 
         Collaborator table, so is (wxy, abc) */ 
 Follows (ID1, ID2 ) /* ID1 follows the posts of ID2, where Follows is not symmetric, so if (abc, wxy) is in Follows 
         table, there is no guarantee that (wxy, abc) is also present. */ 

 
Consider finding all those researchers for whom all of those they Follow are at different institutions than themselves. 
Return the names and institutions of all such researchers. One way to write this query is 
 

SELECT R.Name, R.Institution 
FROM Researcher R 
WHERE NOT EXISTS (SELECT * FROM Follows F, Researcher R2 
                                  WHERE R.ID = F.ID1 AND F.ID2 = R2.ID AND R2.Institution = R.Institution) 

 
Write the query that satisfies the same English specification using the “NOT IN” phrase rather than “NOT EXISTS”: 

SELECT R.Name, R.Institution 
FROM Researcher R 
WHERE R.ID NOT IN (SELECT F.ID1 /* could be R.ID here */  
                                FROM Follows F, Researcher R2  
                                WHERE R.ID = F.ID1 AND F.ID2 = R2.ID AND R.Institution = R2.Institution)  

Basically same as previous, but for each researcher being considered in turn;  
will return empty set if R.ID isn’t following anyone at same institution  

This addition to previouspage query is what causes nested query to evaluate to NULL 
for Rs who arent following anyone at same institution. This isn’t needed, but full credit. 



16	

9. (5 pts) (Inspired by a Widom practice exercise) Consider a database of researchers and their works (like 
ResearchGate.com), with relational schema 
 

 Researcher (ID, Name, Institution ) 
 Collaborator (ID1, ID2 ) /* ID1 is a collaborator with ID2. Collaboration is symmetric, so if (abc, wxy) is in the 
         Collaborator table, so is (wxy, abc) */ 
 Follows (ID1, ID2 ) /* ID1 follows the posts of ID2, where Follows is not symmetric, so if (abc, wxy) is in Follows 
         table, there is no guarantee that (wxy, abc) is also present. */ 

 
Consider finding all those researchers for whom all of those they Follow are at different institutions than themselves. 
Return the names and institutions of all such researchers. One way to write this query is 
 

SELECT R.Name, R.Institution 
FROM Researcher R 
WHERE NOT EXISTS (SELECT * FROM Follows F, Researcher R2 
                                  WHERE R.ID = F.ID1 AND F.ID2 = R2.ID AND R2.Institution = R.Institution) 

 
Write the query that satisfies the same English specification using the “NOT IN” phrase rather than “NOT EXISTS”: 

SELECT R.Name, R.Institution 
FROM Researcher R 
WHERE R.ID NOT IN (SELECT F.ID1 /* could be R1.ID here */  
                                FROM Follows F, Researcher R1, Researcher R2  
                                WHERE R1.ID = F.ID1 AND F.ID2 = R2.ID AND R1.Institution = R2.Institution)  

IDs of all researchers who follow anyone from the same institution 

A version that doesn’t use a correlated query – full credit 



17	

9. (5 pts) (Inspired by a Widom practice exercise) Consider a database of researchers and their works (like 
ResearchGate.com), with relational schema 
 

 Researcher (ID, Name, Institution ) 
 Collaborator (ID1, ID2 ) /* ID1 is a collaborator with ID2. Collaboration is symmetric, so if (abc, wxy) is in the 
         Collaborator table, so is (wxy, abc) */ 
 Follows (ID1, ID2 ) /* ID1 follows the posts of ID2, where Follows is not symmetric, so if (abc, wxy) is in Follows 
         table, there is no guarantee that (wxy, abc) is also present. */ 

 
Consider finding all those researchers for whom all of those they Follow are at different institutions than themselves. 
Return the names and institutions of all such researchers. One way to write this query is 
 

SELECT R.Name, R.Institution 
FROM Researcher R 
WHERE NOT EXISTS (SELECT * FROM Follows F, Researcher R2 
                                  WHERE R.ID = F.ID1 AND F.ID2 = R2.ID AND R2.Institution = R.Institution) 

 
Write the query that satisfies the same English specification using the “NOT IN” phrase rather than “NOT EXISTS”: 

SELECT R.Name, R.Institution 
FROM Researcher R 
WHERE R.Institution NOT IN (SELECT R2.Institution 
                                               FROM Follows F, Researcher R2 
                                               WHERE R.ID = F.ID1 AND R2.ID = F.ID2) 

Institutions of all researchers who are followed by a given R  

Correct answers also stem  
from variants on a different  
perspective, exemplified at left  

All researchers who don’t follow anyone from the same institution 

5	pts		



18	

10. (5 pts) This question uses the same relational schema as the last problem. 
 

Researcher (ID, Name, Institution ) 
Collaborator (ID1, ID2 ) 
Follows (ID1, ID2 ) 

 
What is the average number of Collaborators per Researcher? Importantly, compute this average over only those 
Researchers who have more than 1 Collaborator. (Your result should be just one number.) . 

SELECT AVG(Temp.Cnt) 
FROM (SELECT COUNT(*) AS Cnt  
           FROM Collaborator C 
           GROUP BY C.ID1 /* or C.ID2 because Collaborator is symmetric */  
           HAVING COUNT(*) > 1) AS Temp  
 
 
 
SELECT AVG(Temp.Cnt) 
FROM (SELECT COUNT(*) AS Cnt  
           FROM Researcher R, Collaborator C  
           WHERE R.ID = C.ID1 
           GROUP BY C.ID1 
           HAVING COUNT(*) > 1) AS Temp  
 
 
SELECT AVG(Temp.Cnt) 
FROM (SELECT COUNT(*) AS Cnt  
           FROM Researcher R, Collaborator C  
           WHERE R.ID = C.ID1 
           GROUP BY C.ID1) AS Temp 
WHERE Temp.Cnt > 1  
 
 

Most will have something very much like this (5 pts)  
-2 for each main missing element  

Don’t need rename as Temp in any of these  

Some will have something more complicated, like this, but still (5 pts)  

/* or C.ID2 because Collaborator is symmetric */  
/* or R.ID */   



11. (5 pts) Consider the relational schema 
 
              HRel (ID, name)                                    
 
Circle all queries below that return the tuples of HRel with the top 5 values of ID                                                                         

(b) SELECT H.ID, H.name 
     FROM HRel H 
     WHERE (SELECT COUNT (*) 
                   FROM HRel H2 
                   WHERE H.ID < H2.ID) < 5 
     ORDER BY H.ID DESC 
 
 
 
 
 
(d) SELECT H.ID, H.name  
     FROM HRel H 
     EXCEPT 
     SELECT H1.ID, H1.name 
     FROM HRel H1, HRel H2 
     WHERE H1.ID < H2.ID 
     GROUP BY H1.ID, H1.name 
     HAVING COUNT(*)+1 > 5 
     ORDER BY ID DESC 

(a) SELECT H.ID, H.name  
     FROM HRel H 
     WHERE NOT EXISTS  
                  (SELECT * 
                   FROM HRel H1, HRel H2 
                   WHERE H.ID = H1.ID AND H1.ID < H2.ID 
                   GROUP BY H1.ID 
                   HAVING COUNT(*) >= 5) 
     ORDER BY ID DESC  
 
 
(c) SELECT H.ID, H.name  
     FROM HRel H 
     EXCEPT 
     SELECT H.ID, H.name 
     FROM HRel H 
     WHERE (SELECT COUNT (*) 
                   FROM HRel H2 
                   WHERE H.ID < H2.ID) >= 5 
     ORDER BY H.ID DESC 
 
 
 
 
(e)   None of the above 
 

19	

+2	for	one	of	correct	answers	selected,	and	1	point		
each	addi0onal	op0on		

0	pts	if	op0on	(e)	selected,	whether	alone	or	in	conjunc0on	
with	any	other	answer	(though	unlikely	anyone	did	that)	

10	minutes	

There	are	less	than		
5	IDs		greater	than		
H.ID	

There	are	at	
least	5	IDs			
greater		
than	H.ID	



20	

Question 11 comments. 
 
I had intended that ID was the key of  HRel, and I think most everyone assumed 
this, even though I didn’t bold face and underline it. So, here appear to be almost 
no one affected by that omission, but the following comments are worth making 
and understanding. 
 
Even without specifying the primary key, these answers will be right using what I 
think is a reasonable interpretation (but not the only one). 
 
Lets say that we have repeats of  ID, supposing its not the key. Consider this 
 
ID,name    larger IDs             Place aka COUNT(*)+1 
 
11,a          <                           1 
8,b           < 11                        2 
8,c           < 11                        2 
8,d           < 11                        2 
6,e           < 8,8,8,11                  5 
6,f            < 8,8,8,11                  5 
3,g           < 6,6,8,8,8,11              7 
3,h           < 6,6,8,8,8,11              7 
3,i           < 6,6,8,8,8,11              7 
2,j           < 3,3,3,6,6,8,8,8,11       10 
1,k           < 2,3,3,3,6,6,8,8,8,11     11 
 
You’ve probably seen rankings (e.g., of  colleges), in which ties receive that same 
number (e.g., ties for 2nd), but then the ordering picks up after the last tied value. 
 
Look at the simplest of  the queries (b) 
 
SELECT H.ID, H.name  
FROM HRel H 
WHERE (SELECT COUNT (*) 
               FROM HRel H2 
               WHERE H.ID < H2.ID) < 5  
ORDER BY H.ID DESC 

In query (b), rows of  HRel that would pass the WHERE test are 11, 8, 6, and all 
the corresponding rows would be returned (6 of  them). 
 
Consider (d), which I think is the next most intuitive 
 
SELECT H.ID, H.name  
FROM HRel H 
EXCEPT 
SELECT H1.ID, H1.name              
FROM HRel H1, HRel H2 
WHERE H1.ID < H2.ID  
GROUP BY H1.ID, H1.name  
HAVING COUNT(*)+1 > 5       (will include groups (3,g), (3,h)…(1,k)) 
 
ORDER BY ID DESC 
 
Again, the right answer is returned under a reasonable interpretation that is often 
used. 
 
I intended ID to be the key, which would have resulted in much less potential for 
misunderstanding, but if  you were one of  the very few who didn’t assume that 
ID was key (and you didn’t assume the interpretation I just laid out), then see me. 
In particular, I think that a very few might have interpreted the question as 
asking to either (i) return exactly 5 rows with highest Ids, or (ii) return rows with 
the highest ID values regardless of  ties, which would have been rows with values 
of  11 down to 2 in the example above.  


