
Exam 2 CS x265 Spring 2017 Name: _____________KEY________________________

To request a regrade or to otherwise appeal your score, submit a one paragraph explanation of why
you think the grade was “in error” and submit your explanation/request together with your exam to
Doug after class or in office hours.

The lowest possible on any problem is 0 (regardless of how many negative points might be assigned by rubric)

Exam 2 CS x265 Spring 2017 Name: _____________KEY________________________

I will not use notes, other exams, or any source other than my own brain on this exam: ___(please sign)

2

1. (2 pts) You have two relations R (C, F, G) and P (B, C, D, F, H). Using only relational algebra select (σ)and cross
product (X) operators, express the natural join of R and P.

σ
R.C=P.C AND R.F=P.F

(R X P) σ
R.C=P.C

(R X P) σ
R.F=P.F

OR

2. (3 pts) Consider the following four relational schema, with the key for each relation underlined

Customer (SSN: integer, name: string, address: string, city: string)
Account (SSN: integer, AccntNo: integer, balance: real)
Transaction (AccntNo: integer, ProdId: integer, date: string, quantity: integer)
Product (ProdId: integer, ProdName: string, cost: real)

SELECT A.AcctNo, P.ProdId, P.ProdName, T.quantity
FROM Customer C, Account A, Transaction T, Product P
WHERE C.city = ‘Nashville’ AND T.date = X
 AND C.SSN = A.SSN
 AND A.AcctNo = T.AcctNo
 AND T.ProdId = P.ProdId

Rewrite the following query using only JOIN-keyword
operations for joining (you may assume SQLite)

6 minutes

-1 for any missing major
component like a σor a X,
or a confition on one of
these. Forgive what you
think is an obvious typo
or minor syntax error

See next page for possible answers

3

SELECT A.AcctNo, P.ProdId, P.ProdName, T.quantity
FROM Customer C, Account A, Transaction T, Product P
WHERE C.city = ‘Nashville’ AND T.date = X
 AND C.SSN = A.SSN
 AND A.AcctNo = T.AcctNo
 AND T.ProdId = P.ProdId

6 minutes

SELECT A.AcctNo, P.ProdId, P.ProdName, T.quantity
FROM (((Customer C JOIN Account A ON C.SSN = A.SSN)
 JOIN Transaction T ON A.AcctNo = T.AcctNo
 JOIN Product P ON T.ProdId = P.ProdId))
WHERE C.city = ‘Nashville’ AND T.date = X

SELECT A.AcctNo, P.ProdId, P.ProdName, T.quantity
FROM (((Customer C JOIN Account A USING (SSN)
 JOIN Transaction T USING(AcctNo))
 JOIN Product P USING(ProdId))
WHERE C.city = ‘Nashville’ AND T.date = X

SELECT A.AcctNo, P.ProdId, P.ProdName, T.quantity
FROM (((Customer C INNER JOIN Account A ON C.SSN = A.SSN)
 INNER JOIN Transaction T ON A.AcctNo = T.AcctNo
 INNER JOIN Product P ON T.ProdId = P.ProdId))
WHERE C.city = ‘Nashville’ AND T.date = X

SELECT A.AcctNo, P.ProdId, P.ProdName, T.quantity
FROM Customer C NATURAL JOIN Account A
 NATURAL JOIN Transaction T
 NATURAL JOIN Product P
WHERE C.city = ‘Nashville’ AND T.date = X
 AND C.SSN = A.SSN
 AND A.AcctNo = T.AcctNo
 AND T.ProdId = P.ProdId

and still other variations, which can include
not including C, A, T, P, but rather prefacing
by table name (Customer, Account,
Transaction, Product) as needed, instead.

Best	to	parenthesize	in	case	of	these	op2ons,	but	
no	points	off	if	condi2ons	ON	or	USING	are	placed	
adjacent	to	their	corresponding	JOIN	opera2ons	

-1	if	OITER	JOIN	used	(changes	the	rows	returned	in	result)	
-1	missing	one	or	both	WHERE	condi2ons	
-2	for	two-three	missing	JOIN	keywords	(assume	typo	
								if	only	one)	
-2	if	JOIN	used	(without	NATURAL	prefix),	and	ON	or	USING	
							is	not	used	
-3	(i.e.,	0	score)	if	JOIN	keyword	not	used	as	all	

JOIN	alone	implies	INNER	JOIN;	
Can’t	use	USING	and	ON	in	same	clause	(e.g.,	for	single	
				join,	but	could	see	examples	of	intermixing	ON	and	USING	
				in	this	case	(but	no	good	reason	to	since	all	equality	joins)	

4	

3. (4 pts) Consider the same relational schemas as
problem 2 (without quantity for Transaction).
 Customer (SSN: integer, name: string, address: string, city: string)

 Account (SSN: integer, AccntNo: integer, balance: real)

 Transaction (AccntNo: integer, ProdId: integer, date: string)

 Product (ProdId: integer, ProdName: string, cost: integer)

CREATE TABLE Customer (
 SSN Integer,
 Name CHAR[25] NOT NULL,
 Address CHAR[25] NOT NULL,
 City CHAR[25] NOT NULL,
 PRIMARY KEY (SSN)

)

CREATE TABLE Product (
 ProdID Integer,
 ProdName CHAR[15],
 Cost Integer,
 PRIMARY KEY (ProdId)

)

CREATE TABLE Accouns (
 SSN Integer NOT NULL,
 AccntNo Integer,
 Balance Float NOT NULL,
 PRIMARY KEY (AccntNo)

 FOREIGN KEY (SSN)
 REFERENCES Customer
 ON DELETE CASCADE
)

CREATE TABLE Transaction (
 AccntNo Integer,
 ProdId Integer,
 Date CHAR[6],
 PRIMARY KEY (AccntNo, ProdId)

 FOREIGN KEY (AccntNo)
 REFERENCES Account
 ON DELETE NO ACTION,
 FOREIGN KEY (ProductId)
 REFERENCES Product
 ON DELETE NO ACTION)

-2 FOR any other change, most notably the inclusion of FK constraints in
Customer or Product

Consider the CREATE TABLE statements that implement the relations
to the left. SSN in Account refers to an SSN in Customer. AcctNo in
Transaction refers to an AccntNo in Account. ProdId in Transaction
refers to a ProdId in Product. Complete these definitions so that if a
Customer is deleted, all the Customer’s Accounts are deleted (i.e., all Accounts
with an SSN that matches the deleted Customer’s SSN), unless one or more
of the Customer’s Accounts participates in any Transaction (as identified by
AccntNo), in which case the attempt to delete the Customer is blocked. Also,
the definitions should insure that a product can only be deleted if it does
not participate in any transaction (as identified by ProdId in Transactions).
While certain default settings might have otherwise applied in answering
this problem, I want you to ignore defaults and make explicit all actions in
the appropriate definitions.

2 pts for one FK declaration properly done;
3 pts for two, 4 pts for all three.
if UPDATE included, it would probably be same
actions as for DELETE, but don’t grade
UPDATE actions

6 minutes

or
RESTRICT
instead of
NO ACTION

or could modify attribute declarations themselves
to include FK actions, such as

 AccntNo Integer REFERENCES Account ON DELETE NO ACTION

5	

4. (4 pts) Consider the following table definitions (attribute types omitted).

CREATE TABLE Reading (
 Kilowatts, Date, Time, LocationId,
 PRIMARY KEY (Date, Time, LocationId),
 FOREIGN KEY (LocationId) REFERENCES Location)

CREATE TABLE Location (
 LocationId, Occupancy, …
 PRIMARY KEY (LocationId))

We want a query that returns the average Kilowatts over all readings for each Location on a given Date (Date = D,
where D is a parameter). In addition to the averages, the result should list the LocationId and the locations’ occupancy
for each reported average. Moreover, the query should only return the averages for LocationIds for which the minimum
individual Kilowatt reading at the location is greater than 0.5 on date D.

Complete the following query so that properly implements the specification.

SELECT L.LocationId, L.Occupancy, AVG(R.Kilowatts)
FROM Readings R, Location L
WHERE L.LocationId = R.LocationId AND R.Date = D
GROUP BY L.LocationId, L.Occupancy
HAVING MIN(R.Kilowatts) > 0.5

2 pts for correct GROUP BY (with L.LocationId or R.LocationId
 and L.Occupancy. Only 1.5 if Occupancy missing
2 pts for correct HAVING as given

2 minutes -2 or more for any other additions

6	

S,	V	 V	,	M	
S1		V4																											V1		M1	
S1		V5																											V2		M2	
S2		V6																											V3		M1	
																																						V4		M3	
																																						V5		M4	
																																						V6		M2	
																																						V7		M3	

NULL		V1			M1	
NULL		V2			M2	
NULL		V3			M1	
		S1					V4			M3	
		S1					V5			M4	
		S2					V6			M2	
NULL		V7			M3	

(a) SV NATURAL RIGHT OUTER JOIN Vmo

(b) VMo NATURAL LEFT OUTER JOIN SV

(c) VMo NATURAL RIGHT OUTER JOIN SV

(d) SV NATURAL LEFT OUTER JOIN Vmo

(e) SV NATURAL FULL OUTER JOIN Vmo

(f) None of the above

S							V					M	

5. (3 pts) Consider the two tables, SV and VM below and on the left. Each table has two attributes.

+1 for each,

-1.0 for each

0	total	

5 minutes

SV VM

Result of query

Circle all queries below that would yield the result on the right.

If you picked (c), (d), and (e)
only, I figured you just
got your directions wrong
and counted correct,
but not next time

7	

6. (5 pts) Consider the UML fragment to the right and identify (circle) all equivalent table
translations (i.e., those translations that faithfully enforce the constraints of the UML
without regard to elegance) from those given below. You might receive
partial credit for a brief explanation of your choices. UNIQUE(y) implies
that y NOT NULL, but not vice versa. PK stands for PRIMARY KEY.
FK stands for FOREIGN KEY.

CREATE TABLE XR (
 x1, r1, z1,
 PK(x1),
 FK (z1) refs Z
)

CREATE TABLE Z (
 z1,
 PK(z1)
)

CREATE TABLE X (
 x1,
 PK (x1)
)

CREATE TABLE R (
 x1, r1,
 z1 NOT NULL
 PK(x1)
 FK (z1) refs Z
 FK (x1) refs X
)

CREATE TABLE Z (
 z1
 PK (z1)
)

CREATE TABLE X (
 x1,
 PK (x1),
 FK (x1) refs R
)

CREATE TABLE R (
 x1, r1,
 z1 NOT NULL,
 PK(x1),
 FK (z1) refs Z,
 FK (x1) refs X
)

CREATE TABLE Z (
 z1,
 PK (z1)
)

(A) (B) (C)

(F) None of the above

CREATE TABLE XR (
 x1, r1,
 z1 NOT NULL,
 PK(x1),
 FK (z1) refs Z
)

CREATE TABLE Z (
 z1,
 PK(z1)
)

(D) (E)

CREATE TABLE XR (
 x1, r1, z1,
 PK(x1),
 UNIQUE(z1),
 FK (z1) refs Z
)

CREATE TABLE Z (
 z1,
 PK(z1)
)

X Z
x1 PK z1 PK

r1

R

1..1 0..∞

4 pts for one choice, 5 pts for both

-5 points

-2 points

-2 points
-1 points

6 minutes

Should have been 0..* . Contact if confused

I would expect almost all
to get this one

Not as natural, but
enforces constraints

This enforces 0..1 from
XR to Z, not 1..1

This enforces 0..1 from
XR to Z, not 1..1

UML does not require
each X to be associated
with unique Z

8	

7. (5 pts) Consider the following UML snippet. Debug the definitions of Section and TeachAsst that are given,
so that they conform to the constraints of the UML specification, assuming that the other tables (i.e., Course and
Instructor) have been correctly translated. You may add text and/or strike out text in the current definitions. Be
neat and clear. Note that we are not interested in attribute types in this problem.

TeachAsst	Instructor	

Course	

Sec2on	
0..*	

Cname	PK	

SectNo	PK	
Term	PK	

PK	

Teaches	 TAs	

0..*	

CREATE TABLE Section (
SectNo,
Term,
Cname,
InstID, NOT NULL
PRIMARY KEY (SectNo, Term, Cname),
FOREIGN KEY (InstID) REFERENCES Instructor,
FOREIGN KEY (Cname) REFERENCES Course

)

0..*	

CREATE TABLE TeachAsst (
SectNo NOT NULL,
Term NOT NULL,
Cname NOT NULL,
StuID,
YearEntered,
PRIMARY KEY (SectNo, Term, Cname, StuID),
FOREIGN KEY (SectNo, Term, Cname)
 REFERENCES Section

)

StuId	PK	
YearEntered	

InstId	PK	
Rank	

1..1	

1..1	

0..1	 By declaring NOT NULL,
1..1 is enforced, not 0..1

including the PK of Instructor is the
preferred way of enforcing 1..1, but
without NOT NULL, 0..1 is enforced,
not 1..1

Make link from Section to Course and Instructor explicit
with FK constraints

1 point for each,
Up to MAX of 5 points

The PK given initially allows a
TeachAsst (StuID) to be associated

with multiple Sections

No points should be taken off if NOT NULLs were added to attributes
that were primary key attributes, though NOT NULL is implied already

5 minutes
-1 for additional changes not given above, except as noted otherwise

Only one of these NOT NULL needs to
be crossed out to make technically correct

9

d) CREATE ASSERTION Tab1INTab2
CHECK (NOT EXISTS (SELECT Tab1.Key1 FROM Tab1 INTERSECT SELECT Tab2.Key1 FROM Tab2))

Tab1
Key1 PK

Tab2
Key2 PK

b) CREATE ASSERTION Tab1INTab2
CHECK (NOT EXISTS (SELECT Tab1.Key1 FROM Tab1 EXCEPT SELECT Tab2.Key1 FROM Tab2))

a) CREATE ASSERTION Tab1INTab2
CHECK (NOT EXISTS (SELECT * FROM Tab1 WHERE Tab1.Key1 NOT IN (SELECT Tab2.Key1 FROM Tab2)))

8. (4 pts) Circle all options that would correctly enforce the 1..* cardinality constraint that Tab1 participate at least once
with a record of Tab2 in an SQL translation of the following UML fragment.

e) CREATE ASSERTION Tab1INTab2
CHECK (EXISTS (SELECT Tab1.Key1 FROM Tab1 IN (SELECT Tab2.Key1 FROM Tab2)))

c) CREATE ASSERTION Tab1INTab2
CHECK (EXISTS (SELECT * FROM Tab1 WHERE Tab1.Key1 IN (SELECT Tab2.Key1 FROM Tab2)))

f) None of the above

+3 points for one correct option (a, b); +4 points for both correct options

-1 for one incorrectly circled option (from c, d, e);
-3 for two incorrectly circled options;
-5 for 3 incorrectly circled option

1..* 1..1

0 if this option circled

6 minutes

If even one Tab1.Key1 is represented in Tab2, this evaluates to TRUE

If even one Tab1.Key1 is represented in Tab2, this evaluates to TRUE

Evaluates to TRUE if no Key1s in common between Tab1 and Tab2

Pair of parens left out, but wrong anyway

10

d) CREATE ASSERTION NoOverlapBetweenTab1AndTab2
CHECK (NOT EXISTS (SELECT * FROM Tab1 T1, Tab2 T2 WHERE T1.Tkey = T2.Tkey))

Tab Tkey PK
Tattr

Tab1 Tab2

b) CREATE ASSERTION NoOverlapBetweenTab1AndTab2
CHECK (NOT EXISTS (SELECT Tab1.Tkey FROM Tab1) INTERSECT (SELECT Tab2.Tkey FROM Tab2))

a) CREATE ASSERTION NoOverlapBetweenTab1AndTab2
CHECK ((SELECT COUNT (Tab1.Tkey) FROM Tab1) = (SELECT COUNT (Tab2.Tkey) FROM Tab2))

9. (3 pts) Circle all options that would correctly enforce the Disjoint constraint (i.e., no overlap allowed) between
Tab1 and Tab2 in an SQL translation of this UML fragment.

e) CREATE ASSERTION NoOverlapBetweenTab1AndTab2
CHECK (NOT EXISTS (SELECT Tab1.Tkey FROM Tab1
 WHERE Tab1.Tkey IN (SELECT Tab2.Tkey FROM Tab2)
 UNION
 SELECT Tab2.Tkey FROM Tab2
 WHERE Tab2.Tkey IN (SELECT Tab1.Tkey FROM Tab1)))

c) CREATE ASSERTION NoOverlapBetweenTab1AndTab2
CHECK (EXISTS (SELECT * FROM Tab1 T1, Tab2 T2 WHERE T1.Tkey = T2.Tkey))

f) None of the above

+1 point for each

0 points if this is circled, with or without other choices

-1 for each option (a)
or (c)

6 minutes

11	

10. (5 pts) Assume that you have a DB with a table, Likes(a, b) (read ‘a’ likes ‘b’),with Primary Key (a,b). Write a
trigger so that when a row is inserted into ‘Likes’ of the form Likes(X, 'Friendly’), where ‘Friendly’ is a constant
and X can match any value, a tuple that indicates that ‘Friendly’ Likes X is inserted into Likes (unless it is already in
the table). So if Likes(‘Abe’, ‘Friendly’) is inserted, then Likes(‘Friendly’, ‘Abe’) is inserted. MOREOVER, for each
person, Y, who X Likes, the trigger also inserts Likes (‘Friendly’, Y) (unless it is already there).

So if Likes(‘Abe’, ‘Mary’) and Likes(‘Abe’, ‘Hua’) are in Likes, and Likes(‘Abe’, ‘Friendly’) is inserted into Likes, then
Likes(‘Friendly’, Abe) is inserted, and so is Likes(‘Friendly’, ‘Mary’) and Likes(‘Friendly’, ‘Hua’).

Use as close to SQLite syntax as you can.

 CREATE TRIGGER RinsFriendly
AFTER INSERT ON Likes
REFERENCING NEW ROW AS new
FOR EACH ROW /* Complete the Trigger definition */
WHEN new.b = 'Friendly'
BEGIN

INSERT INTO Likes VALUES (‘Friendly’, new.a);

INSERT INTO Likes(a, b) SELECT ‘Friendly’, L.b
 FROM Likes L
 WHERE new.a = L.a
END;

Implied by SQLite, but ok if added

1 pt

1 pt

3 pt

6 minutes

Should have BEGIN – END, but no points off if missing

12	

10. (5 pts) Assume that you have a DB with a table, Likes(a, b) (read ‘a’ likes ‘b’),with Primary Key (a,b). Write a
trigger so that when a row is inserted into ‘Likes’ of the form Likes(X, 'Friendly’), where ‘Friendly’ is a constant
and X can match any value, a tuple that indicates that ‘Friendly’ Likes X is inserted into Likes (unless it is already in
the table). So if Likes(‘Abe’, ‘Friendly’) is inserted, then Likes(‘Friendly’, ‘Abe’) is inserted. MOREOVER, for each
person, Y, who X Likes, the trigger also inserts Likes (‘Friendly’, Y) (unless it is already there).

So if Likes(‘Abe’, ‘Mary’) and Likes(‘Abe’, ‘Hua’) are in Likes, and Likes(‘Abe’, ‘Friendly’) is inserted into Likes, then
Likes(‘Friendly’, Abe) is inserted, and so is Likes(‘Friendly’, ‘Mary’) and Likes(‘Friendly’, ‘Hua’).

Use as close to SQLite syntax as you can.

 CREATE TRIGGER RinsFriendly
AFTER INSERT ON Likes
REFERENCING NEW ROW AS new
FOR EACH ROW /* Complete the Trigger definition */
WHEN new.b = 'Friendly’
BEGIN
INSERT INTO Likes VALUES (new.b, new.a) WHERE <not redundant>;
INSERT INTO Likes(a, b) SELECT new.b, L.b
 FROM Likes L
 WHERE new.a = L.a AND <not redundant>
END;

Some answers may generalize the intended answer, by allowing a variable in place of
“Friendly” and/or added tests to guard against attempts to insert duplicate rows.

In general, both are fine if done correctly.

13	

11. (3 pts) Consider two tables represented by these schema:

 Accounts (SSN: integer, AccntNo: integer, balance: real)

 Transactions (AccntNo: integer, ProductId: integer, date: string, amountCharged: real)

Write a row-level trigger that decrements the appropriate balance in the Accounts table, as defined by matching
AccntNo, by the amountCharged value of a newly inserted transaction to the Transactions table.

CREATE TRIGGER UpdateAccountBalance
AFTER INSERT ON Transactions // Complete the Trigger definition

CREATE TRIGGER UpdateAccountBalance
AFTER INSERT ON Transactions
REFERENCING
 NEW ROW AS New
FOR EACH ROW
BEGIN
 UPDATE Accounts A
 SET balance = (SELECT SUM(amountCharged)
 FROM Transactions T
 WHERE T.AccntNo = A.AccntNo)
 WHERE A.AccntNo = New.AccntNo;
END;

CREATE TRIGGER UpdateAccountBalance
AFTER INSERT ON Transactions
REFERENCING
 NEW ROW AS New
FOR EACH ROW
BEGIN
 UPDATE Accounts
 SET balance = balance – New.amountCharged
 WHERE Accounts.AccntNo = New.AccntNo;
END;

Accepting of close (incorrect) syntactic variants,
This includes some SQLite specific aspects

6 minutes

14	

12. (5 pts) Give a UML diagram that captures the following information for a simplified Department of Transportation
database.

a) A Person can be a licensed vehicle driver and/or a vehicle owner. A person is uniquely identified by SSN,
 and is also described by name and address. Only persons that are licensed drivers and/or owners are to
 be recorded in the DB (a driver need not own a vehicle, and an owner need not be a licensed driver).
b) Each vehicle is identified uniquely by vehicle registration number (VRN), with other attributes:
 make, model, and type (e.g., motorcycle, car, truck).
c) Each vehicle is owned by AT MOST one person (i.e., owner).
d) A driver has exactly one driver’s license
e) Each license is associated with exactly one driver, and has an attribute license number that uniquely identifies the license and

an (Boolean) attribute MotorcycleQualified (MotoQ).

Full coverage
Overlap allowed

This is close,
but recognize
that it doesn’t
convey
uniqueness of
Licence#
(which could
still be
conveyed by
UNIQUE in
table
translation) 1..*

0..1

SSN PK
Name
Addr

Driver
License#
MotoQ

Owner

VRN PK
Ma
Mo
Type

Person

Vehicle

Full coverage
Overlap allowed

1..*

0..1

SSN PK
Name
Addr

Driver Owner

VRN PK
Ma
Mo
Type

Person

Vehicle License
License# PK
MotoQ

1..1

1..1

Ideal. This conveys
uniqueness of Licence#,
1-1 correspondence with
Driver

10 minutes

Typically, separate SQL tables will be be
translated from separate UML classes, but that is
not always the case. Translation of Driver
and License (and their association) to left would
probably combine them into one table, with
either SSN or License# being made the PK, and
the other UNIQUE.

