
Define a view called  
 
     ShipperView (CustName, CustAddr, ShipID, BookIsbn, BookQuantity) 
 
that is required by a person (or process) responsible for “shipping” books  
purchased by customers that are ready to be shipped: that is, the books 
  
•  have been paid for [PaymentClearanceDate is not null],  
•  the books have not been shipped yet [ShipDate is null], and  
•  there are enough copies in stock of the book to satisfy the order 

Use the accompanying UML as your guide to table definitions. 

See next page for “hint” 



Define a view called  
 
     ShipperView (CustName, CustAddr, ShipID, BookIsbn, BookQuantity) 
 
that is required by a person (or process) responsible for “shipping” books  
purchased by customers that are ready to be shipped: that is, the books  
•  have been paid for [PaymentClearanceDate is not null],  
•  the books have not been shipped yet [ShipDate is null], and  
•  there are enough copies in stock of the book to satisfy the order 
Use the accompanying UML as your guide to table definitions. 

C
EA

 
C

us
tN

am
e 

C
EA

 
C

C
# 

Sh
ip

A
dd

r 

Tr
an

s#
 

Sh
ip

D
at

e 

Is
bn

 
Q

ua
nt

ity
 

C
EA

 
C

C
# 

Tr
an

s#
 

PC
D

 

Sh
ip

Id
 

Sh
ip

Id
 

Is
bn

 
C

op
ie

s 

B   E  
B  C  F 

G NUL A 

G  D  5 
B  C  A  X 

D 10 
Customer Account 

Shipment 
Book 

Shipment Transaction Book 



CREATE VIEW ShipperView (Name, Addr, ShipId, Isbn, Quantity) 
AS SELECT C.CustName, A.ShippingAddr, BSt.ShipId, BSt.Isbn, BSt.Quantity 
       FROM Customer C, Account A, Transaction T, 
                    Shipment St, BookShipment BSt, Book B 
       WHERE C.CustEmailAddr = A.CustEmailAddr AND 
                      A.CustEmailAddr = T.CustEmailAddr AND 
                      A.CreditCardNumber = T.CreditCardNumber AND      
                      T.PaymentClearanceDate IS NOT NULL AND 
                      T.TransNumber = St.TransNumber AND 
                      St.ShipDate IS NULL AND  
                      St.ShipId = BSt.ShipId AND 
                      BSt.Isbn = B.Isbn AND 
                      B.CopiesInStock >= BSt.Quantity 

Define a view called  
 
     ShipperView (CustName, CustAddr, ShipID, BookIsbn, BookQuantity) 
 
that is required by a person (or process) responsible for “shipping” books purchased by customers 
that are ready to be shipped: that is, the books have been paid for [PaymentClearanceDate is not 
null], the books have not been shipped yet [ShipDate is null], and there are enough copies in stock 
of the book to satisfy the order 

Important aside: a view can show information on a need-to-know basis. For example. even 
though we need the Transaction table to create the ShipperView, there is no reason that a 
‘shipper’ have access to a customer’s credit card number, so this information from 
Transaction is not shown a shipper 



CREATE VIEW ShipperView (Name, Addr, ShipId, Isbn, Quantity) 
AS SELECT C.CustName, A.ShippingAddr, BSt.ShipId, BSt.Isbn, BSt.Quantity 
       FROM Customer C, Account A, Transaction T, 
                    Shipment St, BookShipment BSt, Book B 
       WHERE C.CustEmailAddr = A.CustEmailAddr AND 
                      A.CustEmailAddr = T.CustEmailAddr AND 
                      A.CreditCardNumber = T.CreditCardNumber AND      
                      T.PaymentClearanceDate IS NOT NULL AND 
                      T.TransNumber = St.TransNumber AND 
                      St.ShipDate IS NULL AND  
                      St.ShipId = BSt.ShipId AND 
                      BSt.Isbn = B.Isbn AND 
                      B.CopiesInStock >= BSt.Quantity 

Now, write an INSTEAD OF TRIGGER that implements 
  
     DELETE FROM ShipperView WHERE ShipID = ‘X’ 



We could delete a row from the ShipperView in many ways by operating on the base 
tables. For example, to implement  
 
            DELETE FROM ShipperView WHERE ShipID = G 
  
we could delete a row from Shipment where ShipID = G, or we could delete a row from 
BookShipment where ShipID = G. 
 
But in this case to delete a row from the ShipperView as indicated, we update 
Shipment Date of Shipment.ShipDate by making non-NULL (suppose CurrDate 
represents the current date) 
 

C
EA

 
C

us
tN

am
e 

C
EA

 
C

C
# 

Sh
ip

A
dd

r 

Tr
an

s#
 

Sh
ip

D
at

e 

Is
bn

 
Q

ua
nt

ity
 

C
EA

 
C

C
# 

Tr
an

s#
 

PC
D

 

Sh
ip

Id
 

Sh
ip

Id
 

Is
bn

 
C

op
ie

s 

B   E  
B  C  F 

G NUL A 

G  D  5 
B  C  A  X 

D 10 
Customer Account 

Shipment 
Book 

Shipment Transaction Book 



CREATE VIEW ShipperView (Name, Addr, ShipId, Isbn, Quantity) 
AS SELECT C.CustName, A.ShippingAddr, BSt.ShipId, BSt.Isbn, BSt.Quantity 
       FROM Customer C, Account A, Transaction T, 
                    Shipment St, BookShipment BSt, Book B 
       WHERE C.CustEmailAddr = A.CustEmailAddr AND A.CustEmailAddr = T.CustEmailAddr AND 
                      A.CreditCardNumber = T.CreditCardNumber AND T.PaymentClearanceDate IS NOT NULL AND 
                      T.TransNumber = St.TransNumber AND St.ShipDate IS NULL AND St.ShipId = BSt.ShipId AND 
                      BSt.Isbn = B.Isbn AND B.CopiesInStock >= BSt.Quantity 
 

Write an INSTEAD OF TRIGGER that implements  
     DELETE FROM ShipperView WHERE ShipID = ‘X’ 

using policy 
   Update Shipment.ShipDate by making non-NULL 

CREATE TRIGGER DeleteFromShipperView 
INSTEAD OF DELETE ON ShipperView 
/* FOR EACH ROW */ 
BEGIN 
   UPDATE Shipment SET ShipDate = CurrDate WHERE ShipID = Old.ShipID; 
END;  

But we also want to update Book copies in stock 

A reference to a row of 
The view that is deleted 



Write an INSTEAD OF TRIGGER that implements  
     DELETE FROM ShipperView WHERE ShipID = ‘X’ 

CREATE TRIGGER DeleteFromShipperView 
INSTEAD OF DELETE ON ShipperView 
/* FOR EACH ROW */ 
BEGIN 
   UPDATE Shipment SET ShipDate = CurrDate WHERE ShipID = Old.ShipID; 
   UPDATE Book SET CopiesInStock = CopiesInStock – Old.Quantity  
                             WHERE Isbn = Old.Isbn; 
END;  

CREATE VIEW ShipperView (Name, Addr, ShipId, Isbn, Quantity) 
AS SELECT C.CustName, A.ShippingAddr, BSt.ShipId, BSt.Isbn, BSt.Quantity 
       FROM Customer C, Account A, Transaction T, 
                    Shipment St, BookShipment BSt, Book B 
       WHERE C.CustEmailAddr = A.CustEmailAddr AND A.CustEmailAddr = T.CustEmailAddr AND 
                      A.CreditCardNumber = T.CreditCardNumber AND T.PaymentClearanceDate IS NOT NULL AND 
                      T.TransNumber = St.TransNumber AND St.ShipDate IS NULL AND St.ShipId = BSt.ShipId AND 
                      BSt.Isbn = B.Isbn AND B.CopiesInStock >= BSt.Quantity 
 



C
EA

 
C

us
tN

am
e 

C
EA

 
C

C
# 

Sh
ip

A
dd

r 

Tr
an

s#
 

Sh
ip

D
at

e 

Is
bn

 
Q

ua
nt

ity
 

C
EA

 
C

C
# 

Tr
an

s#
 

PC
D

 

Sh
ip

Id
 

Sh
ip

Id
 

Is
bn

 
C

op
ie

s 

B   E  
B  C  F 

G NUL A 

G  D  5 
B  C  A  X 

D 10 
Customer Account 

Shipment 
Book 

Shipment Transaction Book 

3/26/15 
5 

Results of previous page’s trigger when deleting one row of the ShipperView 

Note that when CopiesInStock (Copies for short) is decremented, it may fall below the 
Quantity in other BookShipments with the same Isbn that are in the view. 
 
Question: Will any rows of the view that now violate the  
          B.CopiesInStock >= BSt.Quantity 
constraint be removed from the ShipperView “automatically” or must something 
additionally be done ? Is the answer dependent on the SQL environment? 



CREATE VIEW ShipperView2 (Isbn, Copies) 
AS SELECT B.Isbn, B.CopiesInStock FROM Book B 

CREATE ShipperView3 (ShipId, ShipDate) 
AS SELECT St.ShipId, St.ShipDate FROM Shipment St 

FOR each tuple, t, of ShipperView DO 
        <physical aspects of book processing such as printing    
           labels, getting and packaging books, etc> 
     
        UPDATE ShipperView2 S2 
        SET S2.CopiesInStock = S2.CopiesInStock – t.Quantity 
        WHERE S2.Isbn = t.Isbn 
 
        UPDATE ShipperView3 S3 
        SET S3.ShipDate = CurrentDate 
        WHERE S3.ShipId = t.ShipId 

An aside. If we wanted to depend on automatic view updates only (without INSTEAD OF 
TRIGGERS) we could add single base-table views, to which we can do updates (including 
deletes and inserts). For example, consider these two additional views 

And to update, use some form of embedded SQL 



We can also define views in terms of other views: 
 
CREATE HandlerView (Isbn, Quantity) 
AS SELECT S.Ibn, S.BookQuantity From ShipperView 

GRANT and REVOKE (privilege) commands. 
 
GRANT <SELECT, INSERT, DELETE, UPDATE> 
ON <table or view> TO <ids> (with GRANT OPTION) 
 
REVOKE <GRANT option for> PRIVILEGES 
ON <table or view> FROM <ids> {RESTRICT | CASCADE} 

And remember that views can hide information, so that we can grant 
access privileges to users for a view (e.g., the ShipperView) but 
NOT for some of the base tables that are used in the view’s definition 
(e.g., Transaction). 
 
We can grant various kinds of privileges to base tables and views 
to specified users.  

For those doing data diaries (or anyone), you may want to do the Widom 
Authorization videos from DB12 (listed under Optional Material on the Schedule. 


