
Final Database Design Deliverables

CS x265, Introduction to Database Management Systems, Spring 2017

Group 0

Douglas H. Fisher

Each group will submit four items to complete their Group Project.

1. Complete Design Document must be uploaded by Saturday, April 8 at 11:59 pm.

2. Complete Implementation File is an SQLite .sql file with all CREATE TABLE,
TRIGGER, INDEX, VIEW statements, as well as INSERTs, DELETEs, UPDATEs, and
queries (SELECT). This must be uploaded by Saturday, April 8 at 11:59 pm.

3. Video presentation summarizing the project must be available by Friday, April 14 at
11:59 pm (private or public) link on Youtube, Box, or some other host.

4. Group affirmation and release form must be scanned and uploaded as a PDF by
Friday, April 14 at 11:59 pm.

Each of these items is described in greater detail below, though not in this order.

Group Affirmation and Release Form

The last document that you submit will be the Group affirmation and release form, which will be
formatted with title lines in Garamond 14 pt bold face font, and group number and names in 12 pt
Garamond bold-face font. Three statements follow the title and team lines.

Each team member should sign the first statement. If an individual can’t honestly sign such a
statement, then don’t sign it, but we will talk! If group members do NOT agree to a policy of the
remaining two questions, then I will not make any Project material available on the Web in any form.
You can use the following template for the group affirmation and release form.

One or Two Lines

Giving the Title of your Project

Group <your group #>

Each group member’s name, in 1-4 lines (12 pt)

Statement 1: “We have each contributed to this design and design document, and though we may have divided some
work up between team members, we have checked each others work, we have each checked the totality of the design, and
we have sought to synthesize our contributions into one cohesive, robust, and elegant design.”

___________________ ___________________ ___________________ ___________________

 Statement 2: “We DO / DO NOT (choose one) agree to have our project’s written document and video posted to
the Web. ” (If you only want to release ONE of the written document or video, then select “DO”
and put a line through the option you do NOT want to permit)

___________________ ___________________ ___________________ ___________________

Statement 3 Only if you agree above: “We DO / DO NOT (choose one) want our names attached to any
Web-posted document and video on our project.”

___________________ ___________________ ___________________ ___________________

-------------------------------------- End of group affirmation and release form --------------------------------

Video Presentation

You will prepare a (roughly) 5 minute video, using one of a variety of freely available or at cost tools
(e.g., Screenflow, Screenr, Camtasia). Your video should be structured as follows.

(a) application overview, perhaps opening with a grand vision and summarizing the
functional specification, perhaps with illustrations, but minimally with slide deck of bullet
items;

(b) an overview of the design, with a focus on the UML, highlighting different parts of the
design, and highlighting relationships between the design and the functional specification;

(c) a demo of selected queries on a small sample database; and

(d) a very brief summary of future directions that this project could develop.

You can get as creative as you want on this video, but I expect noting more than a screen capture
presentation. I advise scripting it ahead of time, however, and giving each team member some
speaking lines (but that is optional). Each group will be giving an in-class presentation in advance of
the video due date.

I have created a Blackboard Forum to post about video screen capture tools. Please post if
you have favorite tools you’d like to let your colleagues know about.

Complete Implementation File

You will submit an SQLite .SQL file with CREATE TABLE, CREATE TRIGGER, CREATE
VIEW, and CREATE INDEX statements, as well as INSERT statements to build a sample
database. The beginning of your file should be formatted much like the Widom course sample .sql
files, such as rating.sql, a snapshot of which is shown here:

/* GIVE the GROUP number and GROUP member names who did coding – I hope all */

/* Delete the tables if they already exist */
drop table if exists Movie;
…
/* Create the schema for our tables */
create table Movie(mID int, title text, year int, director text);
…
/* Populate the tables with our data */
insert into Movie values(101, 'Gone with the Wind', 1939, 'Victor Fleming');
insert into Movie values(102, 'Star Wars', 1977, 'George Lucas');
…
insert into Reviewer values(201, 'Sarah Martinez');
insert into Reviewer values(202, 'Daniel Lewis');
…
insert into Rating values(201, 101, 2, '2011-01-22');
insert into Rating values(201, 101, 4, '2011-01-27');
…

Presumably, your table definitions, in the form of CREATE TABLE statements, will be much richer,
with in-table checks, primary keys, foreign key constraints, and the like. The various initial INSERT
statements, using the VALUES format, in this file is where I will find your sample data. See Section
3 and Section 4 under Complete Design Document for more information on tables that you will be
listing.

Place DROP TABLE, DROP VIEW, DROP TRIGGER, and DROP INDEX at the START
and END of your file, so that upon exit, our environment will be cleared for the next group.
DROP statements at both the start and end of file may seem a bit much, but it can ease grading if
there are errors in one group’s file that precede another group’s file.

You should have at least four views. At least two views will be over multiple base tables. Motivate
and explain each of these views, with at least part of each rationale being related to security, and the
principle of “need to know” (e.g., a “user” only needs access to information concerning them). You
may of course define more than two views, but I am really more interested in one sophisticated view
(e.g., see the multi-table example in the in-class exercise on Views), rather than seeing a bunch of
fairly simple views. Each view should have a primary author, and each member must be the
primary author of at least one view (though all group members should review each view). In
header comments of each view, identify the primary author.

You should have at least four triggers, which can be INSTEAD OF triggers to implement
operations on views, and/or BEFORE/AFTER triggers to approximately or exactly implement
constraints dictated by assertions, and/or other. Similar to views, each trigger should have a
primary author, and each member must be the primary author of at least one trigger (though
all group members should review each trigger). In header comments of each trigger, identify the
primary author.

CREATE INDEX statements are optional. See the section on indexes under the complete design
document regarding indexes and their justification.

In addition, you will include a series of at least 20 queries (SELECT) and other INSERT (with
SELECT statement), DELETE, UPDATE commands that you used to test and demo your
database implementation. Its possible that you will include the same query twice in illustrating some
aspect of the DB, but just count this once as part of your “at least 20”. Also, INSERT statements
using VALUES, including those that create your initial database instance, don’t count
towards these 20.

Also, at least four queries should involve GROUP BY, HAVING BY, and aggregation. Each
group member should be primary author of one of these queries, with the name given in header
comments.

All CREATE statements and queries should be preceded by header comments /* … */,
which will appear in the SQLite .SQL file immediately above the corresponding construct,
explaining (for example) why you chose one translation strategy over another (e.g., you might point
to the UML in doing so), why you declared attributes to be of particular types, why you chose to
index a given attribute (see Appendix), and other information that might be helpful in
understanding how your implementation realizes your vision.

In your table definitions do NOT assume defaults for ON DELETE and ON UPDATE
clauses for FOREIGN KEYs. I am not asking you to justify these in writing, but do /* Comment

*/ on choices that you think are interesting, and questions on interactions between ON DELETE
and ON UPDATE actions are candidates for the final exam, so understand my previous examples.

In writing your statements, use a convention of CAPITALIZING all SQL reserved words (e.g.,
CREATE), and use indentation as necessary and that is pleasing to your eye (chances are, it
will be pleasing to others as well, notably me and graders) when read on your formatted pages.

Note that you also will be appending a copy of the implementation .sql file to the complete design
document (as Section 4).

Complete Design Document

There are several sections of the design document. All textual components of this document (except
the UML) will use Garamond font, 12 pt font; 1 inch margins; single line spacing (except as
otherwise noted). YYou will be uploading it as one, large PDF document to Blackboard.

COVER PAGE

At the top of the Cover page, give the title of your project in bold-face 14 pt, and give your Project
Group number in bold face 12 pt font (much like the affirmation and release form), and your
group members’ names.

You may add a picture, perhaps a collage that exemplifies or illustrates your project, in the middle of
the cover page. Hopefully your picture will be better than my reduced screenshot, which illustrates
format settings in Word. The images in your picture should all be licensed for use.
Acknowledge the image sources in a footnote that appears on the cover page.

SECTION 1. Overview

Prepare a one-page overview of your design. Include an

• opening paragraph on motivation and vision for the project, then
• a functional specification with major functions in a bulleted list, and then
• describe your DB’s major design elements to implement these functions,

o with pointers into the remainder of the design document as you see fit, most
particularly the UML.

SECTION 2. Comprehensive UML diagram of database (UML)

Below is a sample, albeit incomplete UML -- this UML was just created to illustrate some formatting
conventions, and is otherwise incomplete (e.g., lack of attributes in classes, which you will have to
include).

Figure 0: A sample UML DB model (perhaps for maintaining learner and teacher portfolios in an
unbundled world).

You can place text annotations (e.g., a concise statement of what a class or relation is intended to
represent, if it doesn’t seem self evident) in the UML, but avoid clutter. For example, I placed “can
be self-paced” to explain the 0..1 cardinality constraint between Term and Section. If you wish to
elaborate on points (e.g., justification for a particular class, relation, or other design choice; on how
your UML design realizes your vision), then include Endnotes immediately after your UML to do so,
which are numbered and in most cases are referenced from the same numbered “citation” that is
placed as annotation in the UML diagram itself (e.g., “See Endnote 3”).

Use sharp, well-defined lines. If you use a special graphical formatting tool, make sure that it’s
consistent with our course’s variant of UML (if you want an exception, please get it from me ahead
of time).

Label any association that will be translated as a separate table using SQL CREATE TABLE
statements. You’ll note that I labeled such associations in the diagram above, but I did not label
associations that would not be translated into separate tables. When an association involves a 1..1
constraint, I would almost never translate the association into a table, and I would often not
translate an association that involves a 0..1 into a separate table either. Label roles of a self-
association when the association is NOT symmetric (e.g., PreReqOf). In contrast, when a self-
association is symmetric (e.g., CourseEquiv) the attribute names in the translated tables will be
somewhat arbitrary (e.g., Course1, Course2) and there is no need to label them in the UML.

Some groups will have to give their UML’s in parts. Figure 1 gives the full definitions and context of

• Course
• Section
• Participant
• Instructor
• Student
• Term

All attributes of these six classes would be listed, had I bothered to list them, in the respective Class
boxes of Figure 1. In addition, all associations (including association classes) in which these six
classes participate are fully defined in Figure 1, including cardinality constraints on both ends of the
association. In short, I can look at this one page for the “full” definition of these six classes and their
various associations, but I must look on other pages to find the definitions of other classes, three of
which are given as stubs in Figure 1, with an indication of where their full definitions can be found.
So Resource, Recommendation, and Program are stubs, and I must look in Figures 2 and 3 for their
full definitions.

Figure 1: partial UML of student/instructor portfolios

Figure 2 shows the complete definitions for Resource and Recommendation (and again, the class
boxes would have listed all attributes for those classes in Figure 2). Pointers back to Figure 1 are
given for Course and Participant, and the associations are stripped of all specificity, because that is
given in Figure 1 as well. The idea is to eliminate as much redundancy (and therefore potential for
inconsistency) as possible, while making the UML unambiguous, even though it is split across
multiple pages.

Similarly, Figure 3 shows the full definition of class Program (other than specifics of associations
that have been defined elsewhere), referenced from Figure 1. In addition, class Institution makes its
first appearance and is fully defined in Figure 3.

Figure 2: more partial UML of student/instructor portfolios

Figure 3: final partial UML of student/instructor portfolios

SECTION 3. Assertions

List any assertions that you developed as part of the design. Include assertions that represent 1..*
cardinality (aka multiplicity) constraints, disjoint (no overlap) across subclasses, and
complete coverage of subclasses. Include other assertions as you wish.

For each of the assertions that you end up specifying in this section, I want you to also point out
how you enforced the constraints implied by the assertion in the final database design. For example,
consider this assertion from the Books database that you were given in earlier classes, which ensure
that each book (Isbn) participates in association with at least one author through WrittenBy.

CREATE ASSERTION BookWrittenByConstraint /* ensure 1..* constraint of Books in */
CHECK (NOT EXISTS (SELECT * /* WrittenBy. Other constructs possible. */
 FROM Book B
 WHERE B.Isbn NOT IN (SELECT W.Isbn FROM WrittenBy W)))

This policy could be approximated by an in-table CHECK in BOOK, which I show as the very last
statement in the definition of Book below.

CREATE TABLE Book (
 Isbn INTEGER,
 Title CHAR[120] NOT NULL,
 Synopsis CHAR[500],
 ListPrice CURRENCY NOT NULL,
 AmazonPrice CURRENCY NOT NULL,
 SavingsInPrice CURRENCY NOT NULL,
 …
 PRIMARY KEY (Isbn),
 FOREIGN KEY (PublisherName) REFERENCES Publisher,
 ON DELETE NO ACTION, ON UPDATE CASCADE,
 CHECK (Format = ‘hard’ OR Format = ‘audi’
 OR Format = ‘cd’ OR Format = ‘digital’)
 /* alternatively, CHECK (Format IN (‘hard’, ‘soft’, ‘audi’, ‘cd’)) */
 CHECK (AmazonPrice + SavingsInPrice = ListPrice)
 CHECK (Isbn IN (SELECT Isbn FROM WrittenBy))
)

In the commented CHECK statement, the outer Isbn refers to the Isbn of a Book record that has
just been inserted or updated , and the CHECK is evaluated every time that an insert or update (to
Isbn in Book) is made. It only approximates the power of the assertion at top, because this CHECK
in Book will NOT be evaluated when a DELETE from WrittenBy is made, which could potentially
cause the only association between a Book and an Author to be removed.

Nonetheless, this is an example of how you might mitigate the need for an assertion, or eliminate it
entirely with a TRIGGER (recall one of the quizzes that had you complete an AFTER DELETE
ON trigger), in addition to or instead of other within-table constraint mechanisms.

CREATE TABLE Author (
 AuthorName CHAR[120],
 AuthorBirthDate DATE,
 AuthorAddress ADDRESS,
 AuthorBiography FILE,
 PRIMARY KEY (AuthorName, AuthorBirthDate)
)

CREATE TABLE WrittenBy (
 Isbn INTEGER,
 AuthorName CHAR[120], /* Consider: how to insure that are no “skipped” */
 AuthorBirthDate DATE, /* OrderOfAuthorship beginning at 1 (i.e., */
 OrderOfAuthorship INTEGER NOT NULL, /* disallow entries that represent first, third, */
 AuthorComment FILE, /* fourth authors (only) for a given Isbn, disallow */
 AuthorCommentDate DATE, /* a second author, but no first author, etc. */
 PRIMARY KEY (Isbn, AuthorName, AuthorBirthDate),
 FOREIGN KEY (Isbn) REFERENCES Book,
 ON DELETE CASCADE, ON UPDATE CASCADE,
 FOREIGN KEY (AuthorName, AuthorBirthDate) REFERENCES Author,
 ON DELETE CASCADE, ON UPDATE CASCADE
)

For each assertion you give in this section, point to the implementation file (also Section 4 below)
and explain how you approximated the assertion’s affects through other means.

SECTION 4. Comprehensive Table, Inserts, Deletes, Updates, Triggers

Simply list the code from your .sql complete implementation file in this section of your complete
design document. Reformat minimally to eliminate undesirable line breaks, and line overflow – make
it look presentable in this document. You may use a different font than Garamond for this if you
want.

A major component of grading will be to check for consistency between the UML and the SQL
definitions, most notably tables, but also triggers. Inconsistencies will carry much greater weight than
they did in prior project deliverables.

This section may include additional explanatory text on your reasons for a particular translation
strategy, and other matters regarding implementation that you want to elaborate on, such as
implementation challenges that you faced.

Appendix (of this guide): On Justifying Indexes

In the implementation file, CREATE INDEX statements are optional, but if you include them, you
should have header comments explaining intuitively why is will be beneficial! It is not critical that
these be the most important indexes, but the choices should make good sense in terms of the
queries that they will speed up (and updates that they might slow down).

I do NOT expect a deep analysis in your header comments for CREATE INDEX statements, but
simply evidence that you understand that selection of indexes should be informed by the frequency
of queries (and inserts, deletes, and updates) that you expect will be run on the database. If we were
just worried about queries (SELECTs) then we might well index everything, but inserts, deletes, and
updates can be more costly with stupid indexes, since each indexing structure must also be revised
when table entries are revised. Thus we might be more liberal in our use of indexes in a table where
inserts and deletes are relatively rare (e.g., the Books table in our illustrative database), than in the
Transactions table (inserts frequent).

Professor Widom spoke of sophisticated software that could select indexes automatically given a set
of queries, inserts, deletes, updates (call this set O for “operations”). Roughly speaking, this software
will select an index if the expected cost associated with using the index is less than the expected cost
of NOT using it, or:

 ExpectedCostSavings(Index I) = ΣO P(O)[Cost(O,~I) – Cost(O,I)],

where P(O) is the estimated proportion of time O is executed over all operations in the workload;
Cost(O,~I) is an estimate of the cost of executing O without the index, I; and Cost(O,I) is an
estimate of O’s cost with I. You can imagine that to be more accurate, this software would consider
the effect of multiple indexes simultaneously, rather than considering them independently as above,
so if you’ve had the AI class before, you can probably see the relevance to some of the methods
studied there – search, constraints, optimization, planning.

But, I digress. Suffice it to say that when you choose an index, justify it by explaining how it
will increase the efficiency of frequent queries. In doing so, you can point to queries that you
have actually given in your implementation file. Also, as part of the justification, mention inserts,
deletes, and updates that will be slowed by the index (think B+ tree node splitting and extendible
hash table bin splitting); the operations that are slowed may be relatively infrequent compared to the
queries that are speeded up, but it may be more that the queries are speeded up by huge amounts on
average and “updates” (inserts, deletes, updates) are slowed only a wee bit.

