Quiz 13 Relational Design

Question 1: Consider the relation $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$ with functional dependencies

```
\(\mathrm{A} \rightarrow \mathrm{C}, \mathrm{E} \quad\) (equivalent to \(\mathrm{A} \rightarrow \mathrm{C}\) and \(\mathrm{A} \rightarrow \mathrm{E}\) )
\(\mathrm{C}, \mathrm{D} \rightarrow \mathrm{E} \quad\) (NOT equivalent to \(\mathrm{C} \rightarrow \mathrm{E}\) and \(\mathrm{D} \rightarrow \mathrm{E}\) )
```

Which of the following is a key for R?
$\{A\} \quad$ (closure of $\{A\}$ is $\{A, C, E\}$
$\{A, B\} \quad$ (closure of $\{A\}$ is $\{A, B, C, E\}$
$\{A, B, D\}$ (closure of $\{A, B, D\}$ is $\{A, B, C, D, E\}$)
$\{C, E\}$ (closure of $\{C, E\}$ is $\{C, E\}$)
$\{E\} \quad$ (closure of $\{E\}$ is $\{E\}$)

The closure of $\{\mathrm{A}, \mathrm{B}, \mathrm{D}\}$ includes all attributes. The closure of the other choices does not

Take a big step towards identifying keys (in most but not all cases) by observing that any attribute that is not on the right-hand side (RHS) of any FD, must be part of a key. Note that A,B,D not on RHS of any FD (in general, however, this is not alone sufficient for identifying keys).

When I say "key", I will (almost) always mean "minimal key" (A,B,D is a minimal key - no proper subset of its attributes are also a "key")

Question 2: Consider the relation $\mathrm{S}(\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I})$ with functional dependencies
F, G \longrightarrow H
I, F \longrightarrow G
Which of the following is a decomposition of S into BCNF relations, S 1 and S 2 ?
First, what are the (minimal) keys? F and I are not on the RHS of any FD, so must be part of any key. \{I, F\}
$\rightarrow\{\mathrm{F}, \mathrm{G}, \mathrm{I}\} \rightarrow\{\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}\} .\{\mathrm{I}, \mathrm{F}\}$ is the only minimal key.
S1(F,G), S2(H, I) (no basis for natural join)
S1(F,G,H), S2(I) (no basis for natural join)
S1(F, G, H, I), S2 $\quad(\mathrm{F}, \mathrm{G} \rightarrow \mathrm{H}$ is assignable $\mathrm{S} 1(\mathrm{~F}, \mathrm{G}, \mathrm{H}, \mathrm{I})$, but F, G is not a key of this relation, so S 1 not in BCNF)
S1(F, G, H), S2(F, G, I) (this is obtained by using standard decomposition technique. The LHS of each FD assignable to to a relation is a key of that relation

S1 (H,G), S2(F,Y) (no basis for natural join)
$\mathrm{S} 1(\underline{\mathbf{F}, \mathbf{G}, \mathrm{H})}$
S2($\mathbf{F}, \mathrm{G}, \underline{\text { I }})$
S1(F, G, I), S2(F, H, I) F,G \rightarrow H not assignable to either relation.
F, G is basis for natural join $\mathrm{I}, \mathrm{F} \rightarrow \mathrm{G}$ is assignable to S 1 (and I,F $\rightarrow \mathrm{H}$ is assignable to S 2), and I, F is the key for both S 1 and S 2 . $\{\mathrm{I}, \mathrm{F}\}$ is basis of natural join. Both S 1 and S 2 are in BCNF. This decomposition is not dependency preserving, however (relevant to an aside made by Widom on limits of BCNF). Note that $\mathrm{F}, \mathrm{G} \rightarrow \mathrm{H}$ is not assignable to either relation. To enforce this FD requires joining S1 and S2

