
Assume the following conditions hold for a relational DB that we’ve designed for an e-bookseller.

i) a block/page is 2^12 bytes.
ii) each tuple of Transactions requires 2^4 bytes
iii) each tuple of Shipped requires 2^4 bytes
iv) Each index (for any attribute of any table) requires 2^3 bytes
v) There are 2^27 tuples in Transactions
vi) There are 2^28 tuples in Shipped
vii) There are 2^17 tuples that satisfy PCD=CD
 (PCD is PaymentClearanceDate, CD is a particular value, i.e., a constant)
viii) There are 2^20 unique Isbn distributed across Shipped
ix) There are 2^18 unique CEA distributed across Transactions (CEA is CustEmailAddress)
x) clustered B+ tree of order 2^8 index on PCD for Transactions, hash index on TN for Transactions,
 hash index on CEA for Transactions, hash index on Isbn for Shipped, hash index on TN for Shipped
 (TN is TransactionNumber)

•  Which of these, (i) – (x), would be stored in the System Catalog. Elaborate as necessary with page
references. I am particularly curious about (vii).

•  Under the conditions listed above, what is the shallowest that the B+ tree on PCD can possibly be?
What is deepest that it can be? Give your answers in terms of index nodes (root included) only (i.e., do
not count the data pages as part of the tree).

Consider the following Query in SQL and relational algebra:
 For each book, I1, bought on date CD, by a customer T1.CEA on transaction S1.TN, list the Transactions
 S2.TN for which T1.CEA bought a second book, I2. (this query might be an auxiliary/nested query for updating
 CoBought books or the like)

SELECT S1.TransNumber, S2.TransNumber
FROM Shipped S1, Shipped S2, Transactions T1, Transactions T2
WHERE S1.TransNumber = T1.TransNumber AND
 T2.TransNumber = S2.TransNumber AND
 S1.Isbn = I1 AND T1.PaymentClearanceDate = CD AND
 T1.CustomerEmailAddress = T2.CustomerEmailAddress AND
 S2.Isbn = I2

I1, I2, and CD are parameters

πS1.TN,S2.TN (σS2.Isbn=I2
 (((((σPCD=CD ((σIsbn=I1 (ρ(S1, Shipped))) ρ(T1,Transactions)))

 ρ(T2,Transactions)))

 ρ(S2, Shipped))

))

Draw left-deep tree(s) for this query

σT1.PCD=CD

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

T1.CEA=T2.CEA

T2.TN=S2.TN

σS2.Isbn=I2

πS1.TN, S2.TN

TN = TransNumber
CEA = CustEmailAddr
PCD = PaymentClearDate
I1, I2, CD are parameters

A left-deep query tree: the right child
of each join is a base table.

σT1.PCD=CD

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

T1.CEA=T2.CEA

T2.TN=S2.TN

σS2.Isbn=I2

πS1.TN, S2.TN

TN = TransNumber
CEA = CustEmailAddr
PCD = PaymentClearDate
I1, I2, CD are parameters

A left-deep query evaluation plan

On-the-fly

Index nested loops
join with pipelining

Index nested loops
join with pipelining

On-the-fly

Index nested loops
join with pipelining

materialize (alternatively, could specify on-the-fly
and send result directly to an output
buffer)

(hash index on Isbn,
 hash index on TN)

clustered B+ tree index on PCD,
unclustered B+ tree index on CEA,
hash index on TN

Unclustered B+ tree (versus
hash) index might facilitates
alphabetical listing of intervals

Exploit index,
do not
materialize

What is the estimated cost of this plan?
How does its estimated cost compare
 to the estimated cost of other plans?

σT1.PCD=CD

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

On-the-fly

Index nested loops
join with pipelining

(hash index on Isbn,
 hash index on TN)

clustered B+ tree index on PCD,
unclustered B+ tree index on CEA,
hash index on TN

Exploit index,
do not
materialize

Assume:

•  a block/page is 212 bytes (upper range)

•  each tuple of Shipped relation/table requires 24 bytes
 è one block/page holds 212/24 = 28 Shipped tuples
•  each index on Isbn of form <Isbn, <pageid, slot#>> requires 23 bytes
 è each block/page holds 212/23 = 29 indices

•  there are 228 tuples in Shipped (Cardinality) è 228/28 = 220 pages <= Size <= 221 = 228/27 pages
•  there are 220 distinct Isbns in Shipped (Index Cardinality) è 228/29 = 219 <= Index Size <= 220 = 228/28

1. Estimate size of result (under
 uniform assumption).

228/220 = 28 tuples estimated to
 satisfy S.Isbn=I1
Estimated size of result = 28 tuples

28/228 < 5% of Shipped table
 (probably cheaper to use
 index, versus file scan, p. 401)

Information found in System Catalog

σT1.PCD=CD

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

On-the-fly

Index nested loops
join with pipelining

(hash index on Isbn,
 hash index on TN)

clustered B+ tree index on PCD,
unclustered B+ tree index on CEA,
hash index on TN

Exploit index,
do not
materialize

1. Estimate size of result (under
 uniform assumption, p. 401).

228/220 = 28 tuples estimated to
 satisfy S.Isbn=I1
Estimated size of result = 28 tuples

2. Estimate # of page scans using
 Index on Isbn

 1 index page since 28 per Isbn < 29 indices per block

 between 1 data page (if all 28 tuples
 fit on 1 page) and
 28 data pages (if each 28 tuples
 on different data page)
Exercise: can you find some reference to an “average” or expected number of data pages?

Assume:

•  a block/page is 212 bytes (upper range)

•  each tuple of Shipped relation/table requires 24 bytes
 è one block/page holds 212/24 = 28 Shipped tuples
•  each index on Isbn of form <Isbn, <pageid, slot#>> requires 23 bytes
 è each block/page holds 212/23 = 29 indices

•  there are 228 tuples in Shipped (Cardinality) è 228/28 = 220 pages <= Size <= 221 = 228/27 pages
•  there are 220 distinct Isbns in Shipped (Index Cardinality) è 228/29 = 219 <= Index Size <= 220 = 228/28

σT1.PCD=CD

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

On-the-fly

Index nested loops
join with pipelining

(hash index on Isbn,
 hash index on TN)

clustered B+ tree index on PCD,
unclustered B+ tree index on CEA,
hash index on TN

1. Estimated size of result = 28 tuples

2. Estimated # of page scans using
 Index on Isbn
 = 1 + 28 (worst case) page scans

Assume:

•  a block/page is 212 bytes (upper range)

•  each tuple of Shipped relation/table requires 24 bytes
 è one block/page holds 212/24 = 28 Shipped tuples
•  each index on Isbn of form <Isbn, <pageid, slot#>> requires 23 bytes
 è each block/page holds 212/23 = 29 indices

•  there are 228 tuples in Shipped (Cardinality) è 228/28 = 220 pages <= Size <= 221 = 228/27 pages
•  there are 220 distinct Isbns in Shipped (Index Cardinality) è 228/29 = 219 <= Index Size <= 220 = 228/28

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

(hash index on Isbn,
 hash index on TN)

clustered B+ tree index on PCD,
unclustered B+ tree index on CEA,
hash index on TN

1. Estimated size of result = 28 tuples

2. Estimated # of page scans using
 Index on Isbn
 = 1 + 28 (worst case) page scans

Assume:

•  a block/page is 212 bytes (upper range)

•  each tuple of Shipped relation/table requires 24 bytes
 è one block/page holds 212/24 = 28 Shipped tuples
•  each index on Isbn of form <Isbn, <pageid, slot#>> requires 23 bytes
 è each block/page holds 212/23 = 29 indices

•  there are 228 tuples in Shipped (Cardinality) è 228/28 = 220 pages <= Size <= 221 = 228/27 pages
•  there are 220 distinct Isbns in Shipped (Index Cardinality) è 228/29 = 219 <= Index Size <= 220 = 228/28

28 tuples

In general, a join can increase or decrease the
number of tuples, but TN is the primary key for
Transactions and TN is a foreign key (and NOT
NULL) for Shipped, so estimated result size for
join remains 28 tuples (but each result tuple
is about twice the size of tuples resulting
from initial select)

1 index page and 1 data page
for each 28 tuples from σ on
Shipped

σT1.PCD=CD

S1.TN=T1.TN

σIsbn=I1

Shipped

Transactions

On-the-fly

(hash index on Isbn,
 hash index on TN)

clustered B+ tree index on PCD,
unclustered B+ tree index on CEA,
hash index on TN

Estimated # of page scans using
 Index on Isbn
 = 1 + 28 (worst case) page scans

28 tuples

In general, a join can increase or decrease the
number of tuples, but TN is the primary key for
Transactions and TN is a foreign key (and NOT
NULL) for Shipped, so expected result size for
join remains 28 tuples (but each result tuple
is about twice the size of tuples resulting
from initial select)

(1+1)28 = 29 page scans (worst case)

Total estimated page scans so far:
 1 + 28 + 29

(exercise: can you find a reference to
lower expected cost stemming from possibility
of Transaction Index or data pages
being in page buffer?)

Estimate the expected result size and worst case page scans for this operation.
What additional informaion do you need to know?

1. Finish estimating the total cost of the example plan (found on slide 3).

2. Give 2 alternative left deep plans for the sample query.

3. Estimate the cost of these alternative left deep plans (remember: the index and other catalog
 assumptions will remain the same!!)

