
Evaluation of relational operators

1) A file (data records for a table) may be
unsorted (with no index)

2)A file may be sorted by the values of one
attribute (with no index)

3) We can have a clustered B+ tree index for
the file on an attribute

Leaf index nodes with entries
 <T.a, <pageid, slot#>>

Actual data records

4) We can have an unclustered B+ tree index for
a file on an attribute

5) We can have a hash index for a file on an
attribute

index nodes with entries
 <T.a, <pageid, slot#>>

Actual data records

Consider:

SELECT * SELECT *
FROM Shipped FROM Shipped
WHERE Shipped.ShipId = x WHERE Shipped.ShipId > x

1) Shipped unsorted with respect to ShipId; No index on
ShipId: perform file scan

2) Shipped sorted with respect to ShipId; no index on
ShipId: perform file scan. Can terminate early.

3) Clustered B+ tree on ShipId: Lookup x and scan data
records directly

4) Unclustered B+ tree on ShipId: Lookup x and scan index
leaves, only reading/scanning data pages that satisfy
query
5) Hash Index on ShipId: Lookup x and scan data pages in
 case of ‘=‘; file scan in case of ‘>’

σ (Shipped)
ShipId=x σ (Shipped)

ShipId>x

Consider:

SELECT *
FROM Shipped
WHERE Isbn = x AND Quantity < y AND ShipId > z

σ (Shipped)
Isbn=x & Quantity < y & ShipId > z

1) No indices and unsorted with respect to Isbn, Quantity, ShipId:
 file scan

2) Hash Index on Isbn and no index/sort on other two: scan data
pages with matching Isbn and check for other conditions.

3)Clustered B+ tree index on ShipId, no index on Quantity,
hash index on Isbn: Scan data pages with matching ShipId and
check for other conditions OR scan data pages with matching Isbn
And check for other conditions OR Intersect indices with
matching Isbn and ShipId and check for Quantity condition

4) Clustered composite B+ tree index on (Isbn, ShipId)
and no other indices: scan data pages with matching Isbn,ShipId
and check for Quantity condition.

5) Clustered composite B+ tree on (Isbn, ShipId, TransNumber):

6) Clustered composite B+ tree on (TransNumber, ShipId, Isbn):

σ (Shipped)
Isbn=x & Quantity < y & ShipId > z

B+ tree for Isbn: nodes
with identical or contiguous
Isbn values

B+ tree for ShipId:
Nodes with identical
Or contiguous ShipId
values

B+ tree for TransNumber:
Nodes with identical or
contiguous values

Data
records

Consider the queries:

SELECT Isbn, ShipId SELECT DISTINCT Isbn, ShipId
FROM Shipped FROM Shipped

SELECT Isbn, Quantity SELECT DISTINCT Isbn, Quantity
FROM Shipped FROM Shipped

π (Shipped)
Isbn, ShipId

π (Shipped)
Isbn, Quantity

How might sorting be used?

How might hashing be used?

Consider the query:

SELECT *
FROM Transactions T, Shipped S
WHERE S.TransNumber = T.TransNumber

Shipped Transactions
S.TN=T.TN

Shipped Transactions

JoinResult ß Empty
For each tuple, s, in Shipped
 For each tuple, t, in Transactions
 If (s.TN=t.TN) add s+t to JoinResult

S T
 (s R t)

JoinResult ß Empty
For each tuple, s, in S
 For each tuple, t, in T
 if (s R t) add s+t to JoinResult

JoinResult ß Empty
FOR each tuple, s, in S
 FOR each tuple, t, in σ(sRt)(T)
 add s+t to JoinResult

Consider the query:

SELECT *
FROM Transactions T, Shipped S
WHERE S.TransNumber = T.TransNumber

Shipped Transactions
S.TN=T.TN

Shipped Transactions

No indices, no sorts?
S sorted on TN?
T sorted on TN?
Index on S.TN only? Clustered?
Index on T.TN only? Clustered?
Index on both S.TN and T.TN?

Consider the following Query in SQL and relational algebra:

SELECT *
FROM Shipped S1, Transactions T1
WHERE S1.TransNumber = T1.TransNumber AND
 S1.Isbn = I1 AND T1.PaymentClearanceDate = CD

I1 and CD are parameters

(σPCD=CD ((σIsbn=I1 (Shipped)) Transactions))

((σIsbn=I1 (Shipped)) (σPCD=CD (Transactions)))

(σIsbn=I1 (Shipped (σPCD=CD (Transactions))))

Other possibilities?

SELECT *
FROM Shipped S1, Transactions T1
WHERE S1.TransNumber = T1.TransNumber AND
 S1.Isbn = I1 AND T1.PaymentClearanceDate = CD

Query Evaluation Trees

σPCD=CD

TN=TN

σIsbn=I1

Shipped

Transactions

σPCD=CD

TN=TN

σIsbn=I1

Shipped Transactions σPCD=CD

TN=TN

σIsbn=I1

Shipped

Transactions Other trees ??

Left-deep tree: each right child of a join is a base table

Consider the following Query in SQL and relational algebra:

SELECT S1.TransNumber, S2.TransNumber
FROM Shipped S1, Shipped S2, Transactions T1, Transactions T2
WHERE S1.TransNumber = T1.TransNumber AND
 T2.TransNumber = S2.TransNumber AND
 S1.Isbn = I1 AND T1.PaymentClearanceDate = CD AND
 T1.CustomerEmailAddress = T2.CustomerEmailAddress
 AND S2.Isbn = I2

I1, I2, and CD are parameters

πS1.TN,S2.TN (σS2.Isbn=I2 (((((σPCD=CD ((σIsbn=I1 (ρ(S1, Shipped))) ρ(T1,Transactions))) ρ(T2,Transactions))) ρ(S2, Shipped))))

Draw left-deep tree(s) for this query

