
Strict two-phase locking (2PL)

1. If a Transaction wants to read (modify/write) an “object”, it first obtains a
shared (exclusive) lock on the “object”

2. All locks held by a transaction are released when the transaction
is complete (upon Commit)

A shared lock on an object can be obtained in the absence of an exclusive
lock on the object by another transaction.

An exclusive lock can be obtained in the absence of any lock by another
transaction

Basically, locking is concerned with ensuring atomic and isolation properties
of individual transactions, while exploiting parallelism/interleaving.

What “objects” can be locked?

 Entire tables

 Individual records within a table

 A set of records that satisfy a condition (e.g., TransNumber = abc)

 An entire indexing structure on an attribute for a table

 Individual nodes (index pages) within the indexing structure

 Individual data pages

In general, we want exclusive locks on the smallest “objects” possible?

Can individual attribute fields of an individual record be locked?
 Check it out….

T1 T2
X(A)
R(A)
W(A)
X(B)
R(B)
W(B)
Commit
 X(A)
 R(A)
 W(A)
 X(B)
 R(B)
 W(B)
 Commit

S4

T1 T2
S(A)
R(A)
 S(A)
 R(A)
X(A)
W(A)
X(B)
R(B)
W(B)
Commit
 X(A)
 W(A)
 X(B)
 R(B)
 W(B)
 Commit

S5

T1 T2
X(A)
R(A)
W(A)
 X(A)
 R(A)
 W(A)
 X(B)
 R(B)
 W(B)
Commit
 X(B)
 R(B)
 W(B)
 Commit

S6

Remember, in 2PL, locks are only
released upon commit, but can be
changed
(Shared -> Exclusive) during transaction

Which of these are legal schedules (that interleave transactions
T1 and T2) under 2PL?

These schedules only show the locks (X: exclusive lock; S:
shared lock), reads (R) and writes (W). Between a read and
write of an object (resource), there would also be an operation
on the object (e.g., update a tuple, an index, etc), which I don’t
show.

T1 T2
X(A)
R(A)
W(A)
X(B)
R(B)
W(B)
Commit
 X(A)
 R(A)
 W(A)
 X(B)
 R(B)
 W(B)
 Commit

S4

T1 T2
S(A)
R(A)
 S(A)
 R(A)
X(A)
W(A)
X(B)
R(B)
W(B)
Commit
 X(A)
 W(A)
 X(B)
 R(B)
 W(B)
 Commit

S5

T1 T2
X(A)
R(A)
W(A)
 X(A)
 R(A)
 W(A)
 X(B)
 R(B)
 W(B)
Commit
 X(B)
 R(B)
 W(B)
 Commit

S6

OK NO NO

Illegal under
Strict 2PL

Can you do any interleaving of T1 and T2 under strict 2PL at all?

deadlock
blocks

blocks

In cases where transactions involve the same objects, Strict 2PL can radically
limit opportunities for parallelism/interleaving

…. But Strict 2PL makes interleaving safe, and the good news is that

in practice, there are many transactions that do not involve the same objects and
that can be interleaved to improve throughput

and even transactions that share objects (through reads) can be interleaved
with strict 2PL (and shared locks)

Th
ro

ug
hp

ut

active transactions

Thrashing region: as number of
active transactions increase, so does
likelihood of shared objects and thus
blocks (and aborts – due to waiting too
long and to resolve deadlocks)

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 16..3 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

SELECT T.C FROM T WHERE T.A > 14 AND T.B <= 10

S1 (shared lock)

S2

S3

S4 S5

S6

S41

An example: what happens
when query at bottom
executed.

What locks and in what order?

Attribute A
Value of
tuple

Attribute B
Value of
tuple

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 16..3 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

UPDATE T SET T.C = T.C+1 WHERE T.A > 14 AND T.B <= 10

S1 (shared lock)

S2

S3

X4 X5

X6

Do these individual record locks
make sense given the exclusive
page locks? Probably not, but a
shared lock of the node, and an
exclusive lock of a tuple would
make sense. The granularity of
objects that can be locked will
vary with SQL platform

Second example: see update below

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 16..3 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

INSERT INTO T (A, B, C) VALUES (18, 12, …) What locks and in what order?

Third example: see insert below

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 16..3 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

S1

S2

S3

X4

INSERT INTO T (A, B, C) VALUES (18, 12, …) Continued on next page

If this data page is not
full, then write record to
it and exit/Commit

Continuing third example:
see insert below

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

S1

S2

X4

INSERT INTO T (A, B, C) VALUES (18, 12, …)

If this data page is
full, then split it putting
some of its tuples (and
new tuple) on new page

16..3 18..12

18*

X5

We must write this modified page
back to disk (and if this node is not
full, then we need not split any
other nodes)

Continued on next page: must update B
index too

Continuing third example:
see insert below

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

S1

S2

X4

X7

INSERT INTO T (A, B, C) VALUES (18, 12, …)

16..3 18..12

18*

X5

Continued on next page:

S6

X8

Continuing third example:
see insert below

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

S1

S2

X4

X7

INSERT INTO T (A, B, C) VALUES (18, 12, …)

16..3 18..12

18*

X5

Continued on next page

S6

X8

is full…so split…

Continuing third example:
see insert below

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 19..17 20..10 22..14 24..8

4 9 12 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

S1

S2

X4

X9

X7

INSERT INTO T (A, B, C) VALUES (18, 12, …)

16..3 18..12

18*

X5

X8 *12*13*14
X10

Because of
2 way pointers?

Continuing third example:
see insert below

