
CS x265 Exam 3 Spring 2017 Name: _____________KEY_______________

I will not use a source other than my brain on this exam: _________________________________ (please sign)

ALL questions 5 points, except question 11

1. (5 points) Consider the following definitions, and give a UML diagram (on the right of the page) that is consistent with the definitions.

CREATE TABLE M (
 m1, PRIMARY KEY (m1)
)

CREATE TABLE Q (
 q1, PRIMARY KEY (q1)
)

CREATE TABLE R (
 r1, m1, q1, PRIMARY KEY (m1, q1),
 FOREIGN KEY (m1) REFERENCES M,
 FOREIGN KEY (q1) REFERENCES Q
)

CREATE ASSERTION MparticipatesQ
CHECK (NOT EXISTS
 (SELECT *
 FROM M
 WHERE M.m1 NOT IN
 (SELECT m1 FROM R)))

M
m1 PK

1..*
Q

q1 PK

R
r1

0..*

1 point for 1..*

1 point for 0..*

2 points for R

1 point for both (not each)
M and Q classes

5 minutes

2.   (5 points) Consider a DB of a retailer that sells items to customers on an installment plan. The following constraints should hold.
•  A customer is identified by a unique identifier (CId) and has an associated Name and Address.
•  Each installment plan is identified by a plan number (which is unique across ALL customers), and has the current balance.
•  A customer can have zero or more installment plans.
•  A complete history of payments is recorded, giving the payment date and payment amount for each payment on each plan.
•  There are never two payments for the same plan recorded for the same date.

InstallPlan
 PlanNum PK
 Balance

Payment
PaymentDate PK
Amount

1..1

0..*

b) Give a UML that satisfies all constraints stated above by making one simple addition
to the UML on the left.

a) Briefly state which of the constraints above, if any,
that this UML violates (unless you hacked something
ugly up to make it work as is):

Customer
 CId PK
 Name
 Address

1..1

0..*

InstallPlan
 PlanNum PK
 Balance

Payment
PaymentDate PK
Amount

1..1

0..*

Customer
 SSN PK
 CName
 CAddress

1..1

0..* PK

The essential problem is that PaymentDate by itself is
an insufficient key for Payment, excluding the
possibility of a complete history of payments across
all plans (i.e., no record of payments to different plans
on the same date could be made).

+3 points

+2 points

PlanNum is PK and
associated 1..1 w Cust

5 minutes

b) CREATE ASSERTION CompleteCoverageOfTab1AndTab2
CHECK (NOT EXISTS (SELECT Tab.Tkey FROM Tab
 EXCEPT
 SELECT Tab1.Tkey FROM Tab1
 EXCEPT
 SELECT Tab2.Tkey FROM Tab2))

Tab
Tkey PK
Tattr

Tab1 Tab2

c) CREATE ASSERTION CompleteCoverageOfTab1AndTab2
CHECK (NOT EXISTS (SELECT Tab.Tkey FROM Tab
 EXCEPT
 (SELECT Tab1.Tkey FROM Tab1 UNION SELECT Tab2.Tkey FROM Tab2)))

d) CREATE ASSERTION CompleteCoverageOfTab1AndTab2
CHECK (NOT EXISTS (SELECT Tab.Tkey FROM Tab
 WHERE Tab.Tkey NOT IN (SELECT Tab1.Tkey FROM Tab1) AND
 Tab.Tkey NOT IN (SELECT Tab2.Tkey FROM Tab2)

3. (5 pts) Circle all options that would correctly enforce a Complete Coverage constraint of Tab (with subclasses Tab1 and Tab2) in
an SQL translation of the following UML fragment.

a) CREATE ASSERTION CompleteCoverageOfTab1AndTab2
CHECK (SELECT COUNT (DISTINCT Tab.Tkey) FROM Tab)
 = (SELECT COUNT (DISTINCT Tab1.Tkey) FROM Tab1)
 + (SELECT COUNT(DISTINCT Tab2.Tkey) FROM Tab2)

e) None of the above – the primary keys for Tab1 and Tab2 are not specified.

Intended and initially
applied grading scheme:

3 points for one;
4 points for two;
5 points for three;
-2 for (a)

But considering the typo noted
below, I am regrading this
question. In the regrade, no
one’s points for question 3
will go down. The parens on
choice c are easy to miss because
of the formatting, and it wasn’t my
intent to trick anyone.

0 points for this

Complete Coverage

6 minutes

The (…) in red of option (c) were omitted on the exam and
since EXCEPT and UNION have equal precedence, and
evaluated left to right, option (c) as given in your exam,
would not yield the correct answer. At least one student
was also misled into thinking that the order of
evaluation might be right to left in option (b)
because of the typo in (c) – that’s unbelievably good eyes
(and in some languages, parsing is such that it might be
right to left, but that’s not typical).

4. (5 points) Consider the following four table definitions, together with all entries in each of the four tables.

CREATE TABLE Customer (
 SSN Integer, ...
 PRIMARY KEY (SSN));

CREATE TABLE Product (
 ProdID Integer, ...
 PRIMARY KEY (ProdId));

CREATE TABLE Account (
 SSN Integer NOT NULL,
 AccntNo Integer, ...
 PRIMARY KEY (AccntNo),
 FOREIGN KEY (SSN)
 REFERENCES Customer
 ON UPDATE CASCADE);

CREATE TABLE Transaction (
 TransID Integer,
 AccntNo Integer,
 ProdId Integer, ...
 PRIMARY KEY (TransID),
 FOREIGN KEY (AccntNo)
 REFERENCES Account
 ON UPDATE NO ACTION, /* aka RESTRICT */
 FOREIGN KEY (ProdId)
 REFERENCES Product
 ON UPDATE CASCADE); Customer SSN ...

Ssn1 ...

Ssn2Ssn5...

Ssn3 ...

Account SSN AccntNo ...

Ssn1 Acct1 ...

Ssn2Ssn5 Acct4 ...

Ssn1 Acct2 ...

Ssn2 Ssn1 Acct3 ...

Ssn2Ssn5 Acct5 ...

Ssn3 Acct6 ...

Transaction TransID AcctNo ProdID ...

Product ProdID ...

Pid1 ...

Pid2 ...

Pid3 Pid4 ...

Change all attribute values as a result of performing these
UPDATE operations in order (BE NEAT!!!). If an operation fails,
and has no effect as a result, then move to the next operation.

 UPDATE Transaction SET AccntNo = Acct4 WHERE TransID = Tid2;
 UPDATE Account SET AccntNo = Acct1 WHERE AccntNo = Acct5; violates PK, fails
 UPDATE Account SET SSN = Ssn1 WHERE AccntNo = Acct3;
 UPDATE Product SET ProdID = Pid4 WHERE ProdID = Pid3; cascades to Trans
 UPDATE Customer SET SSN = Ssn5 WHERE SSN = Ssn2; cascades to Account
 UPDATE Account SET AccntNo = Acct7 WHERE SSN = Ssn3; blocked in Trans

Tid1 Acct6 Pid3Pid4 ...

Tid2 Acct3 Acct4 Pid2 ...

Tid3 Acct3 Pid3Pid4 ...

No change

+1pt
+1pt

+1pt

+1pt

+1pt

-2pt if this changed;
-1 for any other change

10 minutes

5. (5 points) Consider the following table definition:

 CREATE TABLE RelC (Cid integer, c1 integer, c2 integer, c3 integer, PRIMARY KEY (Cid))

Circle all queries below that are equivalent to the query: SELECT C.c2, AVG (C.c3) AS avc3
 FROM RelC C
 WHERE C.c3 > 5
 GROUP BY C.c2
 HAVING COUNT (*) > 1

By equivalent, we mean “would return the same result”, without concern for efficiency or elogance.

(b) SELECT C.c2, AVG (C.c3) AS avc3
 FROM RelC C
 WHERE C.c3 > 5
 GROUP BY C.c2
 HAVING 1 < (SELECT COUNT (*)
 FROM RelC C2
 WHERE C.c2 = C2.c2 AND C2.c3 > 5)

(d) SELECT Temp.c2, Temp.avc3
 FROM (SELECT C.c2, AVG (C.c3) AS avc3, COUNT (*) AS c2cnt
 FROM RelC C
 WHERE C.c3 > 5
 GROUP BY C.c2) AS Temp
 WHERE Temp.c2cnt > 1

(a) SELECT C.c2, AVG (C.c3) AS avc3
 FROM RelC C
 WHERE C.c3 > 5 AND COUNT(*) > 1
 GROUP BY C.c2

(c) SELECT C.c2, AVG (C.c3) AS avc3
 FROM RelC C
 GROUP BY C.c2
 HAVING COUNT(*) > 1 AND C.c3 > 5

(e) None of the above

- 2pts

- 2pts

0 total

+3 for one right,
+5 for two right

6 minutes

CREATE VIEW Maintenance (ReadingDate, BuildingName, AverageValue) AS
SELECT WR.WReadingDate, WS.BuildingName, AVERAGE(WR.HRWReadingValue) AS AverageValue
FROM WaterSensor WS, WReading WR
WHERE WS.WaterSensorID = WR.WaterSensorID
GROUP BY WR.WReadingDate, WS.BuildingName
HAVING COUNT(*) > 2

6. (5 points) Consider the two tables below. Write a CREATE VIEW statement that lists the average water readings for each building of
each day, but only for daily averages computed over more than 2 values. The view, call it Maintenance, should list ReadingDate,
BuildingName, and the average reading for that date/building, listed as AverageValue.

CREATE	TABLE	WaterSensor	(
BuildingName	VARCHAR(35)	NOT	NULL,		
WaterSensorID	INTEGER,	
WaterSensorOnLineDate	DATE,		
PRIMARY	KEY	(WaterSensorID));		

CREATE	TABLE	WReading	(
WaterSensorID	INTEGER,		
WReadingDate	DATE,		
WReadingTime	TIME,		
WValue	INTEGER	NOT	NULL,	
PRIMARY	KEY	(WaterSensorID,	WReadingDate,	WReadingTime),	
FOREIGN	KEY	(WaterSensorID)	REFERENCES	WaterSensor);	

5 minutes

7. (5 points) Consider the following UML snippet below. Assume that the two classes are translated into two tables following the usual translation
rules for subclasses and parents. Assume further that a VIEW is defined that gives all the attributes of Student (undoubtedly there would be many
more than I have included here), to include those that are inherited from Individual. Write an INSTEAD OF TRIGGER that implements
INSERTs to WholeStudentView by inserting into the relevant base tables.

Student

Individual

partial coverage

CREATE VIEW WholeStudentView (Id, Name, YearEntered)
AS SELECT I.Id, I.Name, S.YearEntered
 FROM Individual I, Student S
 WHERE I.Id = S.Id;

Id	PK	
Name	

YearEntered	

BEGIN
 INSERT INTO Individual VALUES (NEW.Id, NEW.Name);
 INSERT INTO Student VALUES (NEW.Id, NEW.YearEntered);
 END;

CREATE TRIGGER InsertIntoWholeStudentView
INSTEAD OF INSERT ON WholeStudentView
FOR EACH ROW /* implied by SQLite */

Finish the trigger
+3 for one of these INSERTs; +5 for both

5 minutes

8. (5 points) Consider the relational schema, R(C S J D P Q V K) with functional dependencies (FDs)

J,P à C
S,D à P
J à S
C à S,J,D,P,Q,V

 Give all minimal keys for R.

JPK, CK, JDK

3 pt for one, 4 for two, 5 for all three
-1 for each of any others

Key(s): _______________________________

9. (5 points) Consider the relation P with 5 attributes, P(C D E F G) with FDs C,D à E and F,G à C,D.

Give a dependency-preserving decomposition of P, where each relation of the decomposition is in BCNF. Your decomposition should have as
few relations as possible, while still satisfying the specifications of the problem.

C D E F G

CD à E

C D E F G C D

All that is needed
in ellipse (5 pts)

C D E F G

FG à CD

F G C D F G E

Not dependency
preserving
(3 pt only)

F, G not on RHS of any FD.
So F,G must be part of any key.
Attribute closure of F,G is all
attrubtes, so F,G is the only key

K is not on RHS of any FD;
So K must be part of any key

10 minutes

Need not show the decomposition tree

10. (5 points) Consider the relational schema R(A, B, C, D, E, F) with functional dependencies

 A à F
 A,C à B
 D à E
 A à C
 B à F

Give a minimal set of FDs that is informationally equivalent to this set. If the set is already a minimal set, then say so. BE CLEAR!

5 points for {AàB, DàE, AàC, BàF } or {AàB,C; DàE; BàF }

1. Can LHS of any FD be simplified?
 A,C can be simplified because C can be inferred from A, so have both A,C on LHS is redundant. A,C à B can be replaced by AàB

2. Consider FDs in left-to-right order given: {A à F, A à B, D à E, A à C, B à F}.

Can F be inferred from A without AàF? YES {A} è {A,B} è {A,B,C} è {A,B,C,F} So, remove AàF
 obtaining {A à B, D à E, A à C, B à F}
Can B be inferred from A without AàB (and without AàF)? No, {A} è {A,C}, so keep AàB
Can E be inferred from D without DàE (and without AàF)? No, {D} è {D}, so keep DàE
Can C be inferred from A without AàC (and without AàF)? No, {A} è {A}, so keep AàC
Can F be inferred from B without BàF (and without BàF)? No, {B} è {B, F} keep BàF

-2 if A,C à B is still present
-2 if Aà F is still present

6 minutes

11. (10 points) Consider the relation R(A, B, C, D) with functional dependencies (FDs)

C à A

A à D

D à C

Circle all true statements.

a) R is in BCNF.

b) R has exactly 3 minimal keys.

c) R1(A, D) and R2 (A, B, C) is a lossless decomposition of R.

d) R1(A, D) and R2 (A, B, C) is a dependency preserving decomposition of R.

e) Each of R1(A, D) and R2(A, B, C) are in BCNF, where R1 and R2 are a decomposition of R.

f) The three FDs given in the statement of this problem are a minimal set (i.e., no proper subset of the three has the same FD closure).

g) Each of R3(A, D), R4(A, C), and R5(B, C) are in BCNF, where R3, R4, and R5 is a decomposition of R.

h) R3(A, D), R4(A, C), and R5(B, C) is a dependency preserving decomposition of R.

i) R6 (A, D), R7(A, C), R8(B, C), and R9(D, C) is a dependency preserving decomposition of R.

j) R10(A, D) and R11(B, C, D) is a lossless decomposition of R.

6 minutes

A,B and B,C and B,D

It uses the standard decomposition procedure that ensures lossless (videos, class), decomposing on
AàD (i.e., all attributes determinable: D from A in R1 and A,B and B,C are both keys of R2)

CàA, AàC, AàD, DàA is an alternative minimal set (of the closure of the
stated FDs in the problem), and all of these assignable to R1 or R2

all three FDs have left hand sides that aren’t keys of R

A,B and B,C are keys, and CàA violates BCNF condition

+3 for circling one right,
+4 for two right
+5 for three right,
+6 for four right
+7 for five right,
+8 for six right
+9 for seven right
+10 for seven right

CàA, AàC, AàD, DàA is an alternative minimal set, and all of
these assignable to R3 or R4

All FDs in the minimal set given are assignable

DàA follows from DàC and CàA. If we decompose using the standard procedure that
guarantees a lossless decomposition using DàA, we get R10 and R11

-2 for each incorrect circled

