
9.	(4	points)	Consider	the	following	two	transac2ons,	T1	and	T2:	
										T1:	Read(A),	Op11(A),	Write(A),	Read(B),	Op12(B),	Write(B),	Commit	

										T2:	Read(A),	Op21(A),	Write(A),	Read(B),	Op22(B),	Write(B),	Commit	

	
Circle	all	schedules	(just	showing	disk	reads	and	writes)	that	clearly	result	in	serializable	behavior	even	without	
knowing	when	the	Ops	are	performed.	A	and	B	are	dis3nct	(but	are	shared	across	transac3ons).	

			T1															T2	
	
																			R(A)	
																			W(A)	
R(A)					
																			R(B)	
																			W(B)	
W(A)	
R(B)	
W(B)		
																		Commit	
Commit	

				T1												T2	
	
R(A)	
W(A)	
																		R(A)	
																		W(A)					
R(B)	
W(B)	
																		R(B)	
																		W(B)		
Commit	
																Commit	

			T1															T2	
	
R(A)	
W(A)	
																			R(A)	
																			W(A)					
																			R(B)	
																			W(B)	
																		Commit	
R(B)	
W(B)		
Commit	

(A)	 (B)	 (C)	

			T1															T2	
	
																			R(A)	
																			W(A)	
																			R(B)	
R(A)	
W(A)	
																		W(B)	
R(B)	
W(B)		
																		Commit	
Commit	

			T1															T2	
	
																			R(A)	
																			W(A)	
R(A)	
W(A)					
R(B)	
W(B)	
Commit	
																			R(B)	
																			W(B)		
																		Commit	
	

			T1															T2	
	
R(A)	
																		R(A)	
W(A)	
																		W(A)	
																			R(B)	
R(B)	
																			W(B)	
W(B))	
																			Commit		
Commit	

(D)	 (E)	 (F)	

(G)			NONE	OF	THE	ABOVE	

+2	for	one,	+	3	for	two,	+4	for	three	
-1	for	one	incorrect	circled,	-2	for	two,	
					-4	for	three	
0	min,	4	max		

0	total	for	ques2on	if	this	circled		

In	this	ques2on,	do	not	assume	that	strict	2	phase	locking	is	used.	Rather	you	can	assume	that	locks	are	released	as	
when	they	are	no	longer	absolutely	needed			(aWer	a	read	for	shared,	and	aWer	a	write	for	exclusive)	

9.	(4	points)	Consider	the	following	two	transac2ons,	T1	and	T2:	
										T1:	Read(A),	Op11(A),	Write(A),	Read(B),	Op12(B),	Write(B),	Commit	

										T2:	Read(A),	Op21(A),	Write(A),	Read(B),	Op22(B),	Write(B),	Commit	

	

										T1:	Read(A),	A+1,	Write(A),	Read(B),	B*2,	Write(B),	Commit	

										T2:	Read(A),	2*A,	Write(A),	Read(B),	1+B,	Write(B),	Commit	

	

	
Circle	all	schedules	(just	showing	disk	reads	and	writes)	that	clearly	result	in	serializable	behavior	even	without	
knowing	when	the	Ops	are	performed.	A	and	B	are	dis3nct.	

+2	for	one,	+	3	for	two,	+4	for	three	
-1	for	one	incorrect	circled,	-2	for	two,	
					-4	for	three	
0	min,	4	max		

Suppose	that	A=5	and	B=2	before	T1	and	T2;	suppose	Op11(A)	=	A+1;	Op12(B)=B*2;	Op21(A)=2*A;	Op22(B)=1+B	

All of T1 followed by all of T2:

A=5, B=2 è T1 è A=6, B=4 è T2 è A=12, B=5

All of T2 followed by all of T1:

A=5, B=2 è T2 è A=10, B=3 è T1 è A=11, B=6

9.	(4	points)	Consider	the	following	two	transac2ons,	T1	and	T2:	
										T1:	Read(A),	Op11(A),	Write(A),	Read(B),	Op12(B),	Write(B),	Commit	

										T2:	Read(A),	Op21(A),	Write(A),	Read(B),	Op22(B),	Write(B),	Commit	

	
Circle	all	schedules	(just	showing	disk	reads	and	writes)	that	clearly	result	in	serializable	behavior	even	without	
knowing	when	the	Ops	are	performed.	A	and	B	are	dis3nct	(but	are	shared	across	transac3ons).	

				T1												T2	
	
R(A)	
W(A)	
																		R(A)	
																		W(A)					
R(B)	
W(B)	
																		R(B)	
																		W(B)		
Commit	
																Commit	

(A)	

+2	for	one,	+	3	for	two,	+4	for	three	
-1	for	one	incorrect	circled,	-2	for	two,	
					-4	for	three	
0	min,	4	max		

A=5, B=2

è T1(A) è Read(A), A+1, Write(A) è A=6

è T2(A) è Read(A), 2*A, Write(A) è A=12

è T1(B) è Read(B), B*2, Write(B) è B=4

è T2(B) è Read(B), 1+B, Write(B) è B=5

Suppose	that	A=5	and	B=2	before	T1	and	T2;	suppose	Op11(A)	=	A+1;	Op12(B)=B*2;	Op21(A)=2*A;	Op22(B)=1+B	

Same	as	T1,	T2	

Generally,	consider	T1	and	T2	simplified	into	two	transac9ons,	T(A)	and	T(B),	
based	on	each	shared	object,	A	and	B.	If	simplified,	but	s9ll	dependent,		
transac9ons	follow	same	serial	order,	such	as	T1(A),T2(A)	and	T1(B),T2(B),	
then	the	schedule	is	serializable	.	

9.	(4	points)	Consider	the	following	two	transac2ons,	T1	and	T2:	
										T1:	Read(A),	Op11(A),	Write(A),	Read(B),	Op12(B),	Write(B),	Commit	

										T2:	Read(A),	Op21(A),	Write(A),	Read(B),	Op22(B),	Write(B),	Commit	

	
Circle	all	schedules	(just	showing	disk	reads	and	writes)	that	clearly	result	in	serializable	behavior	even	without	
knowing	when	the	Ops	are	performed.	A	and	B	are	dis3nct	(but	are	shared	across	transac3ons).	

			T1															T2	
	
R(A)	
W(A)	
																			R(A)	
																			W(A)					
																			R(B)	
																			W(B)	
																		Commit	
R(B)	
W(B)		
Commit	

(C)	

+2	for	one,	+	3	for	two,	+4	for	three	
-1	for	one	incorrect	circled,	-2	for	two,	
					-4	for	three	
0	min,	4	max		

Suppose	that	A=5	and	B=2	before	T1	and	T2;	suppose	Op11(A)	=	A+1;	Op12(B)=B*2;	Op21(A)=2*A;	Op22(B)=1+B	

A=5, B=2

è T1(A) è A=6, B=2

è T2(A) è A=12
è T2(B) è B=3

è T1(B) è B=6

21.	(4	pts)	Consider	the	B+	tree	index	for	a]ribute	A	of	table	T.	Above	each	node	is	a	numeric		
label	for	the	node	(1	through	11),	which	you	will	use	in	answering	this	ques2on.		

37*	 41*	 45*	 53*	 61*	 68*	 73*	 81*	 89*	 94*	22*	 29*	

25	

40	 74	

47	 67	 85	

1	

2	 3	 4	

5	 6	 7	 8	 9	 10	 11	

For	each	of	the	following	opera2ons,	list	the	nodes	(by	label),	in	proper	order,	that	would	be	locked	(shared	or	exclusive)	in	strict	two-phase	
locking	(2PL)	when	performing	the	respec2ve	opera2on.	If	no	nodes	need	be	locked,	then	write	None.	Ignore	data	nodes,	which	are	not	shown,	
and	do	not	list	new	nodes	that	might	be	introduced.	Assume	that	this	index	for	a]ribute	A	is	used	in	evalua2ng	each	opera2on	below.	Write	
S(label)	for	a	shared	lock,	and	X(label)	for	an	exclusive	lock.	Note	that	the	same	node,	A,	may	be	listed	twice,	first	as	S(A)	then	as	X(A),	for	the	
same	opera2on.	Do	not	show	order	of	lock	release	(we’ll	assume	all	locks	released	at	end	of	opera2on,	upon	commit).	Treat		
each	opera2on	as	independent,	and	not	as	a	sequence	of	ac2ons.	Assume	that	redistribu2on	is	never	used.		
	
(a)	SELECT	T.A	FROM	T	WHERE	T.A	>	75																					:										S(1),	S(4),	S(10),	S(11)	
	
(b)	UPDATE	T	SET	T.B	=	T.B	+	100	WHERE	T.A	=	37				:										S(1),	S(2),	S(6)				
	
(c)	UPDATE	T	SET	T.A	=	T.A	+	5	WHERE	T.A	=	29								:										S(1),	S(2),	S(6),	X(6)				
	
(d)	INSERT	INTO	T	(A,	B,	C)	VALUES	(70,	20,	10)										:									S(1),	S(3),	S(9),	X(9),	X(3),	X(1)		
																																																																																																									subtle:	X(8)and/or	X(10)	too	so	as	to	update	ptr	to	9		

In	most	cases,	probably	full	
credit	for	selected	varia3ons,	
notably	skipping	over	S(k)		
straight	to	X(k)	

