
Final Exam (CS 265) Name: ___________KEY__________________________

I will not use a source other than my brain on this exam: _________________________________ (please sign)

Explain why the following statement would generate an error (or exception) – BTW: your answer should NOT be “a missing ‘;’ ”

 INSERT INTO Transaction
 SELECT DISTINCT ProdID, NULL, NULL, NULL
 FROM Product
 WHERE ProdID NOT IN (SELECT ProdID FROM Transaction)

1. (2 pts) Consider CAREFULLY the following table definitions. Remember that these definitions may not reflect the constraints that you think,
 intuitively, should be true of the database. Nonetheless, you are to assume these definitions, as given, for this question and several
 subsequent questions.

The PK for Transactions includes AccntNo,
which can therefore not be NULL, but this INSERT
statement would attempt to set AccntNo to NULL

CREATE TABLE Customer (
 SSN Integer,
 Name CHAR[25] NOT NULL,
 Address CHAR[25] NOT NULL,
 City CHAR[25] NOT NULL,
 PRIMARY KEY (SSN))

CREATE TABLE Product (
 ProdID Integer,
 ProdName CHAR[15],
 Cost Integer,
 PRIMARY KEY (ProdID))

CREATE TABLE Account (
 SSN Integer,
 AccntNo Integer,
 Balance Float NOT NULL,
 PRIMARY KEY (AccntNo),
 FOREIGN KEY (SSN)
 REFERENCES Customer
 ON DELETE CASCADE)

CREATE TABLE Transaction (
 ProdID Integer,
 AccntNo Integer,
 Date CHAR[6],
 NumberOfProduct Integer,
 PRIMARY KEY (AccntNo, ProdID),
 FOREIGN KEY (AccntNo)
 REFERENCES Account
 ON DELETE NO ACTION,
 FOREIGN KEY (ProdID)
 REFERENCES Product
 ON DELETE CASCADE)

3 minutes

47 points

2. (4 pts) Consider CAREFULLY the following table definitions (same as previous problem).

(a)  A Customer tuple can be associated with more than one Account tuples

(b)  A Customer tuple can be associated with zero Account tuples

(c)  An Account tuple can be associated with more than one Customer tuples

(d)  An Account tuple can be associated with zero Customer tuples

(e)  An Account tuple can be associated with more than one Transaction tuples

(f)  An Account tuple can be associated with zero Transaction tuples

(g)  A Transaction tuple can be associated with more than one Product tuples

(h)  A Transaction tuple can be associated with zero Product tuples

Using these definitions, circle all true statements.

CREATE TABLE Customer (
 SSN Integer,
 Name CHAR[25] NOT NULL,
 Address CHAR[25] NOT NULL,
 City CHAR[25] NOT NULL,
 PRIMARY KEY (SSN))

CREATE TABLE Product (
 ProdID Integer,
 ProdName CHAR[15],
 Cost Integer,
 PRIMARY KEY (ProdID))

CREATE TABLE Account (
 SSN Integer,
 AccntNo Integer,
 Balance Float NOT NULL,
 PRIMARY KEY (AccntNo),
 FOREIGN KEY (SSN)
 REFERENCES Customer
 ON DELETE CASCADE)

CREATE TABLE Transaction (
 ProdID Integer,
 AccntNo Integer,
 Date CHAR[6],
 NumberOfProduct Integer,
 PRIMARY KEY (AccntNo, ProdID),
 FOREIGN KEY (AccntNo)
 REFERENCES Account
 ON DELETE NO ACTION,
 FOREIGN KEY (ProdID)
 REFERENCES Product
 ON DELETE CASCADE)

3 minutes

multiple Account tuples can be paired with a SSN

There need be NO Account tuple that is paired with a given SSN

SSN can be NULL in Account

Similar to (a)

Similar to (b)

3. (4 pts) Consider CAREFULLY the following table definitions (same as previous problem).

(a)  An Account tuple can be associated with a given Product tuple at most once in this DB

(b)  A Customer tuple can be associated with more than one Product tuple in this DB

(c)  If a delete command is issued for a tuple of Customer, it will always cause one or more deletes in Account

(d)  If a delete command is issued for a tuple of Customer, it will never cause a delete in Transaction

(e)  If a delete command is issued for a tuple of Product, it will always cause a delete in Transaction

Using these definitions, circle all true statements.

CREATE TABLE Customer (
 SSN Integer,
 Name CHAR[25] NOT NULL,
 Address CHAR[25] NOT NULL,
 City CHAR[25] NOT NULL,
 PRIMARY KEY (SSN))

CREATE TABLE Product (
 ProdID Integer,
 ProdName CHAR[15],
 Cost Integer,
 PRIMARY KEY (ProdID))

CREATE TABLE Account (
 SSN Integer,
 AccntNo Integer,
 Balance Float NOT NULL,
 PRIMARY KEY (AccntNo),
 FOREIGN KEY (SSN)
 REFERENCES Customer
 ON DELETE CASCADE)

CREATE TABLE Transaction (
 ProdID Integer,
 AccntNo Integer,
 Date CHAR[6],
 NumberOfProduct Integer,
 PRIMARY KEY (AccntNo, ProdID),
 FOREIGN KEY (AccntNo)
 REFERENCES Account
 ON DELETE NO ACTION,
 FOREIGN KEY (ProdID)
 REFERENCES Product
 ON DELETE CASCADE)

4. (5 pts) Write a query in relational algebra that returns the names of all customers with City = ‘Nashville’ who have ever purchased a product that
Costs more than 100 (Cost > 100), together with the ProdName of that product. So, the result will be tuples of the form (Name, ProdName)

6 minutes

Not all Products need participate
in Transaction

Either Customer has no Account in
Transaction, or NO ACTION blocks

Not all Customers need
participate in Account

See 2(a) option, +
Customer join Account join Transaction join Product

(AccntNo, ProdID) is PK of Trasnaction

2 pts for one, 3 pts for two, 4 pts for four; -1 for each incorrect circled

πName, ProdName (σCity=‘Nashville’ and Cost > 100 (Customer Account Transaction Product))

πName, ProdName ((σCity=‘Nashville’ Customer) Account Transaction (σCost>100 Product))

3 pts for otherwise correct
SQL query

5. (5 pts) Consider CAREFULLY the following table definitions (same as previous problem).

Give a UML that is consistent with all the constraints of these table definitions (i.e., the UML would translate to these tables,
without attention to attribute types).

CREATE TABLE Customer (
 SSN Integer,
 Name CHAR[25] NOT NULL,
 Address CHAR[25] NOT NULL,
 City CHAR[25] NOT NULL,
 PRIMARY KEY (SSN))

CREATE TABLE Product (
 ProdID Integer,
 ProdName CHAR[15],
 Cost Integer,
 PRIMARY KEY (ProdID))

CREATE TABLE Account (
 SSN Integer,
 AccntNo Integer,
 Balance Float NOT NULL,
 PRIMARY KEY (AccntNo),
 FOREIGN KEY (SSN)
 REFERENCES Customer
 ON DELETE CASCADE)

CREATE TABLE Transaction (
 ProdID Integer,
 AccntNo Integer,
 Date CHAR[6],
 NumberOfProduct Integer,
 PRIMARY KEY (AccntNo, ProdID),
 FOREIGN KEY (AccntNo)
 REFERENCES Account
 ON DELETE NO ACTION,
 FOREIGN KEY (ProdID)
 REFERENCES Product
 ON DELETE CASCADE)

Customer

SSN PK
Name
Address
City

Product

ProdID PK
ProdName
Cost

Account

AccntNo PK
Balance

0..1 0..*

Transaction

Date
NumberOf

0..* 0..*

6 minutes

Customer

SSN PK
Name
Address
City

Product

ProdID PK
ProdName
Cost

Account

AccntNo PK
Balance

0..1 0..*

Transaction

Date
NumberOf

0..* 0..*
PK PK 1..1 1..1

One of these two is correct;
the second enables easy
“upgrade” to collect historical
data by making Date a PK
attribute

-1 if not 0..1
-1 if one or more
not 0..*

-1 if not 1..1 -2.5 if missing PK box

6. (5 pts) Consider CAREFULLY the following table definitions (same as previous problem).

Define a VIEW called AllPurchases with a schema that contains 5 attributes: a Customer Name and Address; ProdID and ProdName
of a Product purchased by the Customer; and the sum of Cost for that Product, by that Customer (i.e., the sum of Product Cost multiplied by
the Transaction NumberOfProduct). A final constraint is that the view should only list entries (Name, Address, ProdID, ProdName, Total) in
cases where the sum of NumberOfProduct exceeds 100. Do not use JOIN keywords.

CREATE TABLE Customer (
 SSN Integer,
 Name CHAR[25] NOT NULL,
 Address CHAR[25] NOT NULL,
 City CHAR[25] NOT NULL,
 PRIMARY KEY (SSN))

CREATE TABLE Product (
 ProdID Integer,
 ProdName CHAR[15],
 Cost Integer,
 PRIMARY KEY (ProdID))

CREATE TABLE Account (
 SSN Integer,
 AccntNo Integer,
 Balance Float NOT NULL,
 PRIMARY KEY (AccntNo),
 FOREIGN KEY (SSN)
 REFERENCES Customer
 ON DELETE CASCADE)

CREATE TABLE Transaction (
 ProdID Integer,
 AccntNo Integer,
 Date CHAR[6],
 NumberOfProduct Integer,
 PRIMARY KEY (AccntNo, ProdID),
 FOREIGN KEY (AccntNo)
 REFERENCES Account
 ON DELETE NO ACTION,
 FOREIGN KEY (ProdID)
 REFERENCES Product
 ON DELETE CASCADE)

CREATE VIEW AllPurchases AS
SELECT C.Name, C.Address, P.ProdID, ProdName, P.Cost * SUM(T.NumberOfProduct)
FROM Customer C, Account A, Product P, Transaction T
WHERE C.SSN = A.SSN AND A.AccntNo = T.AccntNo AND T.ProdID = P.ProdID
GROUP BY C.SSN, C.Name, C.Address, P.ProdID, P.ProdName, P.Cost
HAVING SUM(T.NumberOfProduct) > 100

6 minutes

Include all attributes that are used in SELECT and that
don’t appear in an aggregate operator (SQL standard); include
C.SSN because C.Name and C.Address not identified as
key of Customer. Should include C.SSN and P.ProdID at
minimum in GROUP BY

While there can be only one pairing of an Account and a
Product, there can be multiple pairings of a Customer and a
Product (through multiple Accounts)

or SUM(P.Cost * T.NumberOfProduct)

-0.5 for not including C.SSN in GROUP BY (or ProdID)
-1 if missing HAVING (or incorrect -0.5) HAVING clause

-0.5 if SUM missing

or SUM(P.Cost * T.NumberOfProduct)

7. (5 pts) Consider CAREFULLY the following table definitions (same as previous problem).

Write a CREATE TRIGGER statement that deletes an Account tuple when the only Transaction tuple involving that Account is deleted

CREATE TRIGGER DeleteAccountWithNoTransactions
AFTER DELETE on Transaction
WHEN NOT EXISTS (SELECT *
 FROM Transaction T
 WHERE T.AccntNo = old.AccntNo)
BEGIN
DELETE FROM Account A WHERE A.AccntNo = old.AccntNo;
END;

CREATE TABLE Customer (
 SSN Integer,
 Name CHAR[25] NOT NULL,
 Address CHAR[25] NOT NULL,
 City CHAR[25] NOT NULL,
 PRIMARY KEY (SSN))

CREATE TABLE Product (
 ProdID Integer,
 ProdName CHAR[15],
 Cost Integer,
 PRIMARY KEY (ProdID))

CREATE TABLE Account (
 SSN Integer,
 AccntNo Integer,
 Balance Float NOT NULL,
 PRIMARY KEY (AccntNo),
 FOREIGN KEY (SSN)
 REFERENCES Customer
 ON DELETE CASCADE)

CREATE TABLE Transaction (
 ProdID Integer,
 AccntNo Integer,
 Date CHAR[6],
 NumberOfProduct Integer,
 PRIMARY KEY (AccntNo, ProdID),
 FOREIGN KEY (AccntNo)
 REFERENCES Account
 ON DELETE NO ACTION,
 FOREIGN KEY (ProdID)
 REFERENCES Product
 ON DELETE CASCADE)

6 minutes

Or WHEN old.AccntNo NOT IN (SELECT AccntNo FROM Transactions)

Including “FOR EACH ROW” is optional in SQLite, which I expect most of
you will assume, because all triggers in SQLite are row level triggers

CREATE TRIGGER DeleteAccountWithNoTransactions
AFTER DELETE on Transaction
BEGIN
DELETE FROM Account A WHERE A.AccntNo = old.AccntNo AND
 A.AccntNo NOT IN (SELECT T.AccntNo FROM Transaction T);
END;

8. (5 pts) Consider the UML fragment to the right and identify (circle) all equivalent table translations
(i.e., those translations that faithfully enforce the constraints implied by the UML without regard to elegance)
from those given below. You might receive partial credit for a brief explanation of your
choices. Assume that UNIQUE(y) implies that y NOT NULL, but not vice versa.
PK stands for PRIMARY KEY. FK stands for FOREIGN KEY.

CREATE TABLE XR (
 x1, r1, z1,
 PK(x1),
 FK (z1) refs Z
)

CREATE TABLE Z (
 z1,
 PK(z1)
)

CREATE TABLE X (
 x1,
 PK (x1)
)

CREATE TABLE R (
 x1, r1,
 z1 NOT NULL,
 PK(x1),
 FK (z1) refs Z,
 FK (x1) refs X
)

CREATE TABLE Z (
 z1
 PK (z1)
)

CREATE TABLE X (
 x1,
 PK (x1),
 FK (x1) refs R
)

CREATE TABLE R (
 x1, r1,
 z1 NOT NULL,
 PK(x1),
 FK (z1) refs Z,
 FK (x1) refs X
)

CREATE TABLE Z (
 z1,
 PK (z1)
)

(a) (b) (c)

(f) None of the above

CREATE TABLE XR (
 x1, r1,
 z1 NOT NULL,
 PK(x1),
 FK (z1) refs Z
)

CREATE TABLE Z (
 z1,
 PK(z1)
)

(d) (e)

CREATE TABLE XR (
 x1, r1, z1,
 PK(x1),
 UNIQUE(z1),
 FK (z1) refs Z
)

CREATE TABLE Z (
 z1,
 PK(z1)
)

X Z
x1 PK z1 PK

r1

R

0..1 0..*

3 points for one, 5 points for two

-2 points

0 points if circled, with or
without other choices

-1 points

-1 points

6 minutes

9. (5 pts) Consider the UML fragment to the right and identify (circle) all equivalent table translations
(i.e., those translations that faithfully enforce the constraints implied by the UML without regard to elegance)
from those given below. You might receive partial credit for a brief explanation of your
choices. UNIQUE(y) implies that y NOT NULL, but not vice versa.
PK stands for PRIMARY KEY. FK stands for FOREIGN KEY.

CREATE TABLE X (
 x1,
 PK (x1))

CREATE TABLE Z (
 x1, r1, z1
 PK(z1),
 FK (x1) refs X)

CREATE TABLE X (
 x1,
 PK (x1))

CREATE TABLE R (
 x1, r1, z1,
 PK(x1, z1),
 FK (z1) refs Z,
 FK (x1) refs X)

CREATE TABLE Z (
 z1,
 PK (z1))

CREATE ASSERTION
 XparticipatesZ
CHECK
 (NOT EXISTS
 (SELECT * FROM X
 WHERE
 X.x1 NOT IN
 (SELECT R.x1 FROM R)))

(a) (b) (c) (e)
None of the
others

(d)

X Z
x1 PK z1 PK

r1

R

1..* 0..1

3 points for one, 5 points for two

0 points
if circled,
with or
without
other
choices

CREATE TABLE X (
 x1,
 PK (x1))

CREATE TABLE R (
 x1 NOT NULL, r1, z1,
 PK(z1),
 FK (z1) refs Z,
 FK (x1) refs X)

CREATE TABLE Z (
 z1,
 PK (z1))

CREATE ASSERTION
 XparticipatesZ
CHECK
 (NOT EXISTS
 (SELECT * FROM X
 WHERE
 X.x1 NOT IN
 (SELECT R.x1 FROM R)))

CREATE TABLE X (
 x1,
 PK (x1))

CREATE TABLE Z (
 x1, r1, z1,
 PK(z1),
 FK (x1) refs X)

CREATE ASSERTION
 XparticipatesZ
CHECK
 (NOT EXISTS
 (SELECT * FROM X
 WHERE X.x1 NOT IN
 (SELECT Z.x1 FROM Z)))

-1 points (a Z can participate
with more than one X, through R)

-2 points (an X need
not participate with a Z)

6 minutes

 Z
 z1
 z2

10. (2 pts) Consider the following UML diagram. Make minimal changes to the translation below, so that the
translation is consistent with the constraints indicated by the UML diagram. You will not change the number
of tables of the translation. Assume that all attributes are integers and do not indicate the attribute types, for
reasons of convenience, on the translation. Note that all relationships are qualified by participation and keys
constraints.

 Y
 y1 PK
 y2

 X
x1 PK
x2

CREATE TABLE W (
 W1,
 W2,
 PRIMARY KEY (W1)
)

Make minimal changes to this two-table translation so that it is consistent with the UML diagram.

CREATE TABLE XRYPZ (
 W1 NOT NULL,
 Z1,
 Z2,
 P1,
 Y1 NOT NULL,
 Y2,
 R1,
 X1,
 X2,
 PRIMARY KEY (X1) ,
 FOREIGN KEY (W1) REFERENCES W
)

Add UNIQUE(W1), UNIQUE(Y1) to table XRYPZ
(1 pts for one, 2 points for two) or some other rearrangement
that makes EACH of W1, Y1, and X1 a key (primary or
candidate)

R
r1

P
p1

 Partial coverage

1..1 1..1 1..1 1..1

 W
 w1 PK
 w2

3 minutes

1 pt for UNIQUE(W1, Y1)

11. (5 pts) Consider the following table definitions:
 CREATE TABLE RelA (Akey integer, a1 integer, a2 integer, a3 integer, PRIMARY KEY (Akey))
 CREATE TABLE RelB (Bkey1 integer, Bkey2 integer, b1 integer,
 PRIMARY KEY (Bkey1, Bkey2),
 FOREIGN KEY (Bkey1) REFERENCES RelA (Akey))

Circle all queries below that are equivalent to the query: SELECT A.a2, A.a3
 FROM RelA A
 WHERE A.Akey IN (SELECT B.Bkey1
 FROM RelB B
 WHERE A.a2 = B.Bkey2 AND A.a1 = B.b1)

(b) SELECT A.a2, A.a3
 FROM RelA A, RelB B
 WHERE A.Akey = B.Bkey1 AND A.a1 = B.b1 AND A.a2 = B.Bkey2

(d) SELECT Temp.t1, Temp.t2
 FROM (SELECT Bkey2 AS t1, a3 AS t2
 FROM RelA, RelB
 WHERE Akey = Bkey1 AND a1 = b1
 AND a2 = Bkey2)
 AS Temp

(a) SELECT A.a2, A.a3
 FROM RelA A
 WHERE EXISTS (SELECT *
 FROM RelB B
 WHERE A.Akey = B.Bkey1
 AND A.a1 = B.b1
 AND A.a2 = B.Bkey2)

(c) SELECT Temp.t1, Temp.t2
 FROM (SELECT Bkey1 AS t1, a3 AS t2
 FROM RelA, RelB
 WHERE Akey = Bkey1 AND a1 = b1
 AND a2 = Bkey2)
 AS Temp

(e) None of the others

3 pts for one,
4 pts for two,
5 pts for three

- 2pts

0 total Look particularly carefully for the small difference between
(c) and (d)

8 minutes

