
Transactions

This lecture assumes that you have watched videos (50 min) and answered
questions from DB10 Indexes and Transactions of Jennifer Widom’s (see link below)

Introduction to Transactions (13:43)
Transactions Properties (2:50 + 5:45 + 4:24)
Isolation Levels (7:47 + 1:44 + 4:55 + 3:15)

and done the Transactions Quiz

and/or read Chapter 7 of Ullman and Widom Intro to DB textbook

https://class.stanford.edu/courses/DB/Indexes/SelfPaced/courseware/ch-indexes/

Overview of Transaction Management

A unit of work called a transaction is a package of operations, which from the
standpoint of the user are:

Atomic – all or no operations of a transaction are carried out (definitional), and this
may necessitate “undoing” intermediate steps in the event of a crash or an abort

Consistent – when run on a consistent DB, a transaction should leave the DB
without constraint violations (responsibility of user) and integrity constraints

Isolated – a transaction can be understood and executed independent of any other
transaction (definitional)

Durable – when a transaction is reported as complete, its effects should persist
(even in the event of a crash)

https://lagunita.stanford.edu/courses/DB/Indexes/SelfPaced/courseware/ch-indexes/seq-vid-isolation_levels/

I/O and CPU activities can be and are overlapped to minimize (disk and
processor) idle time and to maximize throughput (units of “work” per time unit).
This motivates concurrent, interleaved execution of transactions.

Consider the following two transactions, T1 and T2:

T1: Read(A), Op11(A), Write(A), Read(B), Op12(B), Write(B), Commit

T2: Read(A), Op21(A), Write(A), Read(B), Op22(B), Write(B), Commit

Three interleaved schedules are (just showing disk reads and writes):

T1 T2
 R(A)
 W(A)
R(A)
 R(B)
 W(B)
W(A)
R(B)
W(B)
 Commit
Commit

T1 T2
R(A)
W(A)
 R(A)
 W(A)
R(B)
W(B)
 R(B)
 W(B)
 Commit
Commit

T1 T2
R(A)
W(A)
 R(A)
 W(A)
 R(B)
 W(B)
 Commit
R(B)
W(B)
Commit

S1 S2 S3

T1 T2
 R(A)
 W(A)
R(A)
 R(B)
 W(B)
W(A)
R(B)
W(B)
 Commit
Commit

T1 T2
R(A)
W(A)
 R(A)
 W(A)
R(B)
W(B)
 R(B)
 W(B)
 Commit
Commit

T1 T2
R(A)
W(A)
 R(A)
 W(A)
 R(B)
 W(B)
 Commit
R(B)
W(B)
Commit

S1 S2 S3

S1 is ‘serializable’: it yields
the same result as T1 run
to completion, followed
by T2 run to completion,
or T1 è T2 (under assumption
of no failures/rollbacks)

S2 is ‘serializable’:
T2 è T1 (under
assumption
of no failures/rollbacks)

S3 is not serializable: it
may yield different results
than either T1èT2 or
T2è T1

Each of these schedules has examples of a dirty read, which can sometimes lead
to anomolies (and which is why I write ‘serializable’ in quotes).

T1 T2
 R(A)
 W(A)
R(A)
 R(B)
 W(B)
W(A)
R(B)
W(B)
 Commit
Commit

T1 T2
R(A)
W(A)
 R(A)
 W(A)
R(B)
W(B)
 R(B)
 W(B)
 Commit
Commit

S1 S2

S1 is ‘serializable’:
T1 è T2

S2 is ‘serializable’:
T2 è T1

Different serializations, T1èT2 and T2èT1, need not lead to the same
DB instances.

Op11

Op12

Op21

Op22

Op11

Op12

Op21

Op22
Decrement $100
from record A

Add $100
to record B

transfer

Increment by 10%

Increment by 10%

transfer

Example above: incrementing accounts by 10% after transfer (S1) versus before
transfer (S2)

T1 T2
R(A)
W(A)
 R(A)
 W(A)
 R(B)
 W(B)
 Commit
R(B)
W(B)
Commit

S3

S3 is not serializable: it
may yield different results
than either T1èT2 or
T2è T1

Op21

Op22

Op11

Op12

Decrement $100
from record A

Add $100
to record B

transfer

Increment by 10%

Increment by 10%

10% increments are made on both tables at lowest value. In general,
this can be a problem (sometimes) with dirty reads (when one transaction
reads data that has been changed by another transaction prior to that
other transaction commiting).

Strict two-phase locking (2PL)

1.  If a transaction wants to read an “object”, it first obtains a shared lock on the “object”

2.  If a transaction wants to modify/write an “object”, it first obtains an exclusive lock on
the object

3. All locks held by a transaction are released when the transaction is complete (upon
Commit)

A shared lock on an object can be obtained in the absence of an exclusive
lock on the object by another transaction.

An exclusive lock can be obtained in the absence of any lock by another
transaction

Basically, locking is concerned with ensuring atomic and isolation properties
of individual transactions, while exploiting parallelism/interleaving.

What “objects” can be locked?

 Entire tables

 Individual records within a table

 A set of records that satisfy a condition (e.g., TransNumber = abc)

 An entire indexing structure on an attribute for a table

 Individual nodes (index pages) within the indexing structure

 Individual data pages

In general, we want exclusive locks on the smallest “objects” possible?

Can individual attribute fields of an individual record be locked?
 Check it out….

T1 T2
X(A)
R(A)
W(A)
X(B)
R(B)
W(B)
Commit
 X(A)
 R(A)
 W(A)
 X(B)
 R(B)
 W(B)
 Commit

S4

T1 T2
S(A)
R(A)
 S(A)
 R(A)
X(A)
W(A)
X(B)
R(B)
W(B)
Commit
 X(A)
 W(A)
 X(B)
 R(B)
 W(B)
 Commit

S5

T1 T2
X(A)
R(A)
W(A)
 X(A)
 R(A)
 W(A)
 X(B)
 R(B)
 W(B)
Commit
 X(B)
 R(B)
 W(B)
 Commit

S6

Remember, in 2PL, locks are only
released upon commit, but can be
changed
(Shared -> Exclusive) during transaction

Which of these are legal schedules (that interleave transactions
T1 and T2) under 2PL?
 These schedules only show the locks (X: exclusive lock; S:
shared lock), reads (R) and writes (W). Between a read and write
of an object (resource), there would also be an operation
on the object (e.g., update a tuple, an index, etc), which I don’t
show.

T1 T2
X(A)
R(A)
W(A)
X(B)
R(B)
W(B)
Commit
 X(A)
 R(A)
 W(A)
 X(B)
 R(B)
 W(B)
 Commit

S4

T1 T2
S(A)
R(A)
 S(A)
 R(A)
X(A)
W(A)
X(B)
R(B)
W(B)
Commit
 X(A)
 W(A)
 X(B)
 R(B)
 W(B)
 Commit

S5

T1 T2
X(A)
R(A)
W(A)
 X(A)
 R(A)
 W(A)
 X(B)
 R(B)
 W(B)
Commit
 X(B)
 R(B)
 W(B)
 Commit

S6

OK NO NO

Illegal under
Strict 2PL

Can you do any interleaving of T1 and T2 under strict 2PL at all?

deadlock
Lock released
so doesn’t block

Lock released
so doesn’t block

In cases where transactions involve the same objects, Strict 2PL can radically
limit opportunities for parallelism/interleaving

…. But Strict 2PL makes interleaving safe, and the good news is that

in practice, there are many transactions that do not involve the same objects and
that can be interleaved to improve throughput

and even transactions that share objects (through reads) can be interleaved
with strict 2PL (and shared locks)

Th
ro

ug
hp

ut

active transactions

Thrashing region: as number of
active transactions increase, so does
likelihood of shared objects and thus
blocks (and aborts – due to waiting too
long and to resolve deadlocks)

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 16..3 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

SELECT T.C FROM T WHERE T.A > 14 AND T.B <= 10

S1 (shared lock)

S2

S3

S4 S5

S6

S41

An example: what happens
when query at bottom
executed.

What locks and in what order?

Attribute A
Value of
tuple

Attribute B
Value of
tuple

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 16..3 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

UPDATE T SET T.C = T.C+1 WHERE T.A > 14 AND T.B <= 10

S1 (shared lock)

S2

S3

X4 X5

X6

Do these individual record locks
make sense given the exclusive
page locks? Probably not, but a
shared lock of the node, and an
exclusive lock of a tuple would
make sense. The granularity of
objects that can be locked will
vary with SQL platform

Second example: see update below

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 16..3 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

INSERT INTO T (A, B, C) VALUES (18, 12, …) What locks and in what order?

Third example: see insert below

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 16..3 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

S1

S2

S3

X4

INSERT INTO T (A, B, C) VALUES (18, 12, …) Continued on next page

If this data page is not
full, then write record to
it and exit/Commit

Continuing third example:
see insert below

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

S1

S2

X4

INSERT INTO T (A, B, C) VALUES (18, 12, …)

If this data page is
full, then split it putting
some of its tuples (and
new tuple) on new page

16..3 18..12

18*

X5

We must write this modified page
back to disk (and if this node is not
full, then we need not split any
other nodes)

Continued on next page: must update B
index too

Continuing third example:
see insert below

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

S1

S2

X4

X7

INSERT INTO T (A, B, C) VALUES (18, 12, …)

16..3 18..12

18*

X5

Continued on next page:

S6

X8

Continuing third example:
see insert below

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 19..17 20..10 22..14 24..8

4 9 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *13 *14 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

S1

S2

X4

X7

INSERT INTO T (A, B, C) VALUES (18, 12, …)

16..3 18..12

18*

X5

Continued on next page

S6

X8

is full…so split…

Continuing third example:
see insert below

19

5 13 24 30

2* 3* 5* 7*8*10* 14*16* 19*20*22* 24*27*29* 33*34*

2..8 3..1 5..20 7..1 8..15 10..6 14..4 19..17 20..10 22..14 24..8

4 9 12 15

*1*1 *2*3 *4*6 *8*8 *9 *10 *15*17*19 *20

B+ tree for attribute A of
table T (clustered)

B+ tree for attribute B of
table T (unclustered)

“Table T”

S1

S2

X4

X9

X7

INSERT INTO T (A, B, C) VALUES (18, 12, …)

16..3 18..12

18*

X5

X8 *12*13*14
X10

Because of
2 way pointers?

Continuing third example:
see insert below

