Data Mining Constructing test sets for individual project

and

bettering your grade

Select approximate FDs that vary in domain cardinality and in degree of support $X \rightarrow Y$, where

- |X| = 0, |X| = 1, |X| = 2, |X| = 3, ... (Depth = 0, Depth = 1, Depth = 2, Depth = 3, ...)
- Min-sup = 1.0, Min-sup >= 0.95, Min-sup >= 0.90, Min-sup = 0.85, ...

98	a1	b3	c2	d2		9	
99	a1	b2	c2	d2			
100	a1	b2	c1	d2			
101	a1	b2	c1	d2	15		
102	{}>A 1.0	{}>B 0.94	{}>C 0.88	{}>0.6			
103	{A}>B 0.94	{A}>C 0.88	{A}>D 0.6				
104	{B}>A 1.0	{B}>C 0.91	{B}>D 0.54				
105	{C}>A 1.0	{C}>B 0.95	{C}>D 0.6				
106	{D}>A 1.0	{D}>B 0.94	{D}>C 0.88		2.		
107	{A,B}>C 0.91	{A,B}>D 0.54	{A,C}>B 0.95	{A,C}>D 0.6	{A,D}>B 0.9	{A,D}>C 0.88	3
108	{B,C}>A 1.0	{B,D}>C 0.88				n de la contra de la Contra de la contra d	
109	{A,B,C}>D 1.0	{A,B,D}>C 0.88	{A,C,D}>B 0.97		12		

$B \rightarrow C 0.91$ There are

- 86 rows with B=b1 and C=c1,
- 6 rows with B=b1 and C=c3,
- 2 rows with B=b1 and C=c2,
- 3 rows with B=b3 and C=c2,
- 2 rows with B=b2 and C=c1,
- 1 row with B=b2 and C=c2

(86+3+2)/100 = 0.91

Select approximate FDs that vary in domain cardinality and in degree of support $X \rightarrow Y$, where

- |X| = 0, |X| = 1, |X| = 2, |X| = 3, ... (Depth = 0, Depth = 1, Depth = 2, Depth = 3, ...)
- Min-sup = 1.0, Min-sup >= 0.95, Min-sup >= 0.90, Min-sup = 0.85, ...

If you

- correctly implement find-approximate-functional-dependencies and all your auxiliary functions, for both on data sets you will be given ahead of time and those we use to grade;
- nicely format and comment your code with comprehensible and informative function header comments;

then you will receive an A- score (90%).

If, in addition,

- you implement some efficiency enhancement (such as pruning), and explain it clearly in comments at the top of the submission file (perhaps comparing runtime before and after enhancement); or
- simply instrument the code (top level function find_fds) and report runtime results as depth-limit varies for a fixed data set and minimal-support, and as minimal-support varies for a fixed data set and depth-limit; or
- Give a short write-up (e.g., one page) on results on an additional "real-world" data set, such as the "happiness" data set (already formatted for you +5%) or translate, test, and write up results with another real-world data set, such as Congressional Voting Records https://www.congress.gov/roll-call-votes, which has not been translated for you +10%);

then you can receive up to 100%.