Suppose that we added an additional table to the Books DB:

CREATE TABLE CoBought (
Bookl INTEGER,
Book2 INTEGER,
Copurchased# INTEGER,
PRIMARY KEY (Book1, Book2),
FOREIGN KEY (Book1) REFERENCES Book (Isbn)
FOREIGN KEY (Book2) REFERENCES Book (Isbn)
CHECK (Book1 < Book2)

)

The CoBought relation lists the total number of times that each pair of
books (pair of Isbns) has been bought by a same customer, though not
necessarily (or typically) on the same transaction. Write a query that lists
the top 100 co-purchased pairs of books (i.e., list the pairs of Isbns). Also
list the number of copurchases for each pair. Thus, your query should
produce a table of three fields

(Book1, Book2, Copurchased#).
Your result may actually be greater than 100 rows in the case where
there are ties between pairs of co-purchases. For example, if we were
interested in the top 5, then we might get a result like this

Bookl Book2 Copurchased#

Abc cde 10230
Der fgc 10230
Dve plu 10195
Wqi zpf 10180
Tgh uvw 10074
Ghj mnv 10074

This would be a start, but incomplete:

SELECT C.Book1, C.Book2, C.Copurchased#
FROM CoBought C
ORDER BY C.CoPurchased# DESC



The query below retains all rows of CoBought that have fewer than 100 other rows
ranked above them. This query does not rely on GROUP BY, and my guess is that
even if the nested SELECT evaluates to the empty relation, that 0 will be returned
(whereas an empty GROUP would not be considered at all).

SELECT C.Book1, C.Book2, C.Copurchased#
FROM CoBought C
WHERE 100 > (SELECT COUNT (*)
FROM CoBought C2
WHERE C.Copurchased# < C2.Copurchased#)
ORDER BY C.Copurchased# DESC

If you wanted to label the ranks of each row as well, consider:

SELECT 1 AS RowNum, C.Book1, C.Book2, C.Copurchased
FROM CoBought C
WHERE C.Copurchased# = (SELECT MAX(Copurchased#) FROM CoBought
UNION
SELECT Temp.RowNum, Temp.Book1, Temp.Book2, Temp.Copurchased#
FROM (SELECT COUNT(*)+1 AS RowNum, C1.Book1, C1.Book2, C1.Copurchased#
FROM CoBought C1, CoBought C2
WHERE C1.Copurchased# < TempZ2.Copurchased#
GROUP BY C1.Book1, C1.Book?2, C1.Copurchased#) AS Temp
WHERE Temp.RowNum <= 100

[ could have written this as well - note that the top-level SELECT (and its WHERE
clause) after UNION is gone, and has been replaced by a HAVING clause.

SELECT 1 AS RowNum, C.Book1, C.Book2, C.Copurchased

FROM CoBought C

WHERE C.Copurchased# = (SELECT MAX(Copurchased#) FROM CoBought
UNION

SELECT COUNT(*)+1 AS RowNum, C1.Book1, C1.Book2, C1.Copurchased#
FROM CoBought C1, CoBought C2

WHERE C1.Copurchased# < C2.Copurchased#

GROUP BY C1.Book1, C1.Book?2, C1.Copurchased#

HAVING COUNT(*)+1 <=100

The queries above will return possibly more than 100 rows, as the example below
illustrates. In particular, if the 100 row participates in a tie, then all tied cobought
books will be included too.



