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ABSTRACT 
A sharp interface model formulation is developed for 

simulating the electrochemical environment in crevices/pits due 
to galvanic corrosion in aqueous media. The concentration of 
ionic species and the electrical potential in the crevice is 
established using the non-dimensionalized Nernst-Planck 
equations along with the assumption of local electro-neutrality. 
The crevice/pit interface fluxes are defined in terms of the 
cathodic and anodic current densities using Butler-Volmer 
kinetics. The extended finite element method is used to 
discretize the governing equations and the level set function to 
describe the interface morphology independent of the 
underlying finite element mesh. The advantage of this 
formulation is that it eliminates the need for cumbersome mesh 
generation and remeshing when the interface morphology 
changes. Numerical investigations of steady-state intergranular 
crevice corrosion in idealized Al-Mg alloy microstructures in 
two-dimensions are conducted to establish the viability of the 
formulation. Simulation results predict large pH and chloride 
concentration within the crevice environment, which leads us to 
the conclusion that chemical reactions and precipitation play a 
prominent role during crevice corrosion.   

 
INTRODUCTION 
 Crevice and pitting corrosion are forms of localized 
corrosion in alloys of stainless steel and aluminum that are 
otherwise resistant to uniform corrosion. Pits and crevices 
formed by localized corrosion in structural components provide 
ideal locations for the nucleation of fatigue cracks [1] that can 
eventually lead to catastrophic failure of the component and or 
the entire structure; therefore, it is important that we investigate 
and understand the physical mechanisms of crevice and pit 
growth in corrosive environments. To this end, an extended 
finite element method (XFEM) based model formulation is 

developed in this paper for simulating the electrochemical 
environment in crevices and pits due to galvanic corrosion in 
aqueous media in two-dimensions (2-D). The proposed 
mechanistic (physics-based) model formulation is a first step 
towards simulating the propagation of corrosion crevices and 
pits in an accurate and computationally efficient manner.  

 
It is well known that corrosion of metals and alloys 

proceeds due to galvanic action [2], an extremely complex 
electrochemical process, that depends on compositional 
variables (e.g. alloying elements, intermetallic particles, oxide 
film, perforated cover), environmental variables of the pit 
solution (e.g. pH, Chloride concentration, dissolved ionic 
species, reaction products, temperature), and processing 
variables (e.g. grain structure, thermo-mechanical processing, 
surface wear). Due to the complexity and inherent 
unpredictability in the initiation and propagation events, 
localized corrosion is a very difficult phenomenon and 
continues to evade our understanding [3]. Mathematical and 
computational modeling of corrosion along with controlled or 
accelerated laboratory experiments can yield considerable 
insights into the roles of the various compositional, 
environmental and processing variables on the corrosion 
behavior of alloys. Such insights can then lead us towards  the 
development of better processing techniques or design of 
microstructure. In this context, mechanistic (physics-based) 
models of corrosion propagation based on mass and charge 
balance equations in multi-phase domains can provide great 
opportunity; however, they present significant mathematical 
and numerical challenges.  

 
The simplest formulation of the mechanistic models of 

corrosion propagation considers metal dissolution to be 
governed only by diffusive mass transport [4–6]. For the sake 
of corrosion propagation modeling, it is a common practice to 
assume that corrosion pit has already nucleated and that the 
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initial shape of the corrosion pit is semicircular in 2-D (or 
hemispherical in 3-D). In this model, corrosion propagation can 
be either activation-controlled (i.e., the corrosion current 
density determines the rate of propagation) or diffusion-
controlled (i.e., the saturation limit of dissolved metal ion 
concentration determines the rate of propagation). These two 
scenarios lead to widely different corrosion pit growth 
behaviors in that activation-controlled corrosion generally 
preserves the initial pit morphology giving rise to narrow deep 
pits, whereas, diffusion-controlled corrosion smoothens the 
initial shape giving rise to semi-circular or wide semi-elliptical 
pits [7, 8]. Despite the success of the Fickian diffusion based 
mass transport models in capturing pitting corrosion growth in 
stainless steel alloys; these models are not generally suitable 
because they ignore the electro-chemical aspects of galvanic 
corrosion in alloys.  

 
Perhaps, the first-ever comprehensive mechanistic model 

of crevice and pitting corrosion was proposed in [9]. This 
model considered not only the diffusion of ions due to 
concentration gradients but also electro-migration of dissolved 
ionic species in the aqueous solution environment within the pit 
or crevice and the rate of depletion or production of ions due to 
chemical reactions for investigating corrosion in stainless steel 
alloys. The electro-diffusion of ions was modeled based on 
dilute solution theory using the Nernst-Planck equations along 
with the assumption of local electro-neutrality. However, owing 
to its computational complexity, this class of models was only 
used to investigate 1-D crevice corrosion propagation [3, 9–11]. 
Due to the recent advances in computing platforms and the 
emergence of robust commercial software such as COMSOL, 
there has been a renewed interest in comprehensive mechanistic 
modeling of corrosion. Several recent studies followed the 
dilute solution theory approach to simulate and investigate 
corrosion in various aluminum and steel alloys [12–18].  

 
Despite the availability of advanced computing resources 

and software, simulating pit or crevice corrosion propagation 
persists to be an extremely challenging problem because it 
involves tracking a moving electrode-electrolyte boundary 
(interface) across which the concentrations of ions and their 
gradients are discontinuous (sharp-interface assumption). The 
need to solve non-linear second-order partial differential 
equations associated with electro-diffusive transport in the 
electrolyte domain and with propagating interfaces present 
formidable challenges for both sharp interface approaches [8, 
19, 20] and diffuse interface approaches [21]. One of the major 
computational challenges with sharp-interface models is that 
the standard finite element method cannot capture the 
interfacial discontinuities within a finite element and would 
necessitate remeshing every time the interface morphology 
changes, which can be cumbersome. Methods such as arbitrary 
Eulerian-Lagrangian, meshfree/meshless, or moving mesh for 
evolving sharp interfaces can be tedious and/or computationally 
expensive, especially, when Neumann and Dirichlet boundary 
conditions are prescribed on the interface.  

To address the above computational challenge, herein, a 
new extended finite element formulation is developed for 
describing the corrosion behavior of arbitrarily shaped 
crevices/pits using a simple structured finite element mesh. By 
enriching the standard finite element approximation space with 
the Heaviside function, the discontinuity or jump in the value of 
the concentration fields or their gradients can be incorporated 
across the embedded interface. The main advantage is that the 
XFEM eliminates the need for remeshing when the interface 
morphology changes. While, the XFEM was previously 
employed to simulate diffusion-controlled corrosion pit 
propagation [8, 20], the formulation proposed herein is novel in 
that it is based on the dilute solution theory for ion diffusion 
instead of Fickian diffusion. The variational formulation of the 
Nernst-Planck equations allows for the imposition of boundary 
conditions on an arbitrary sharp interface, without any 
difficulty. Numerical investigations of steady-state intergranular 
crevice corrosion in idealized Al-Mg alloy microstructures in 
two-dimensions, presented herein. Two different crevice 
interface morphologies are considered to establish the ability of 
the XFEM to investigate the physics of corrosion. 

 
 

NOMENCLATURE 
Roman 

𝑎𝑖𝐵 Enrichment degrees of freedom corresponding to 𝑖th 
ionic species concentration at an enriched node 𝐵 

𝐶𝑖 Concentration of the 𝑖th ionic species in aqueous 
solution [mol/m3] 

𝐶0 Reference concentration for normalization [mol/m3] 
𝑐𝑖 Non-dimensionalized concentration of 𝑖th ionic 

species in aqueous solution 
𝑐𝑖∞ Far-field concentration of the 𝑖th ionic species in 

aqueous solution [mol/m3] 
𝐷𝑖  Fickian diffusion coefficient of 𝑖th ionic species in 

aqueous solution [m2/s] 
𝐷0 Reference diffusion coefficient for normalization 
𝐹 Faraday’s constant [C/mol] 
𝑓 Phase volume fraction of aluminum in the alloy  
𝑖 Corrosion current density [A/m2] 
𝒋𝑖 Non-dimensionalized flux density corresponding to 

𝑖th ionic species concentration 
𝒋𝜓 Non-dimensionalized flux density corresponding to 

the electrical potential 
𝐾𝑠𝑠 Solubility product of Mg(OH)2

 at 25 ∘C 
𝐿0 Reference length scale for normalization [m] 
𝑁𝐴 Standard finite element shape function at node 𝐴 
𝒏 Unit normal vector to the solid-liquid interface 

pointing towards the liquid domain 
𝑛𝑒 Total number of enriched finite element nodes 
𝑛𝑠 Total number of finite element nodes in the mesh 
𝑅 Universal gas constant [J/mol/K] 
𝑟𝑖 Chemical reactions corresponding to the 𝑖th ionic 



This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for 
public release; distribution is unlimited. 3  

species in aqueous solution 
𝑆𝐵 Step enrichment function at node 𝐵 
𝑇 Temperature of the system [K] 
𝑡 Time [s] 
𝒙 Spatial Cartesian system of coordinates in 2-D 

{[m],[m]} 
𝑧𝑖 Charge number of the 𝑖th ionic species in aqueous 

solution 

Greek 

𝛽 Tafel constant for the electrode reaction 
𝛤𝑖𝑖𝑖  Solid-liquid (electrode-electrolyte) interface 
𝛤 Domain boundary or interface 
𝜑 Electrical potential in the solution domain [V] 
𝜙 Level set function  
𝜓 Non-dimensionalized electrical potential  
𝛺𝑙 Liquid (aqueous solution) domain 
𝛺𝑠 Solid alloy domain 

Subscripts 

𝑎 Anode 
𝑐 Cathode 
𝑒 External 
𝑓 Forward 
ℎ Finite element mesh (size) parameter  
𝑜 Open circuit  
𝑟 Reverse  

 
 

MODEL FORMULATION 
In this section, the governing equations of the 

mathematical model of intergranular crevice corrosion in 
aluminum alloys AA5083 are detailed. The procedure for the 
derivation of the strong form of the model follows closely the 
formulation of Sharland et al., [3]. The domain set up is similar 
to that described in Sarkar et al., [16]; however, the present 
model considers four ionic species including Cl−and Na+ as 
opposed to only two ionic species Mg2+ and OH−.  While the 
model is developed for crevice corrosion, it would also be 
applicable for studying pitting corrosion. As Sharland et al., 
[13] remarked, “From the electrochemical point of view, it has 
been suggested that both processes (i.e., crevice and pitting 
corrosion) are identical but crevice corrosion involves longer 
ionic diffusion path.”  

Domain Description 
Herein, the crevice corrosion problem is reduced to two-

dimensions (2-D) by considering uniformity in the out of plane 
direction. Let us consider a rectangular domain 𝛺 = 𝛺𝑠 ⋃ 𝛺𝑙  
that consists of two phases: the solid alloy domain 𝛺𝑠(𝑡) and 
the liquid solution domain 𝛺𝑙(𝑡) at all times 𝑡, as shown in 
Figure 1. The solid and liquid domains are separated by a sharp 
evolving interface 𝛤𝑖𝑖𝑖 = 𝛤𝑐  ⋃𝛤𝑎  that is the union of the 

cathode surface 𝛤𝑐(𝑡) and anode surface 𝛤𝑎(𝑡). The interface 
𝛤𝑖𝑖𝑖  is implicitly defined using a level set function 𝜙 as, 

𝛤𝑖𝑖𝑖 = {𝒙 ∈ 𝛺 | 𝜙(𝒙, 𝑡) = 0} (1)  

where 𝒙 denotes the spatial Cartesian system of coordinates and 
𝜙 > 0 in 𝛺𝑙 and 𝜙 < 0 in 𝛺𝑠, by definition. As corrosion 
progresses, 𝛤𝑎 moves downward and 𝛤𝑐  increases due to the 
exposed sidewalls. The solid domain is composed of a binary 
Aluminum-Magnesium (Al-Mg) alloy, wherein the Mg phase is 
anodic with respect to the Al phase. A volume fraction (phase) 
variable 𝑓(𝒙) is introduced to capture the spatial distribution of 
Al and Mg phases in the solid alloy domain, such that, 𝑓 = 1 in 
the Al phase and 𝑓 = 0 in the Mg phase. For the sake of this 
study, the microstructure of AA5083 is idealized to consist two 
square shaped grains of Al phase (light grey) separated by the 
grain boundary region consisting of Mg phase (dark grey), as 
shown in Figure 1. The alloy is immersed in 0.5M NaCl 
aqueous solution and the concentrations of four ionic species 
Mg2+, OH−, Na+ and Cl− in solution are tracked. 
 

 
Figure 1. Schematic diagram of the intergranular crevice 
corrosion problem in the Al-Mg (AA5083) alloy system. The 
union of the cathodic (blue) and anodic (red) surfaces 
defines the sharp interface between the solid domain and the 
liquid (aqueous) domain. Beyond the external boundary 
(green) far field concentrations are assumed.   

Corrosion kinetics 

Intergranular crevice corrosion in AA5083 alloys occurs 
due to galvanic action at the interface 𝛤𝑖𝑖𝑖, wherein the surface 
of the Mg phase exposed to NaCl solution acts as the anode and 
exposed surface of the Al phase acts as the cathode. As an 
electric current is established between the anode and cathode 
regions, corrosion quickly progresses due to the dissolution of 
Mg into aqueous solution as Mg2+ ions at the anode boundary 
𝛤𝑎. Thus, the anodic reaction involves oxidation of Mg as, 
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Mg 
𝛽𝑎𝑎��

𝛽𝑎𝑎
�� Mg2+ + 2𝑒− (2)  

and the cathodic reaction involves reduction of water as,  

2H20 + O2 + 4𝑒− 
𝛽𝑐𝑎��

𝛽𝑐𝑎
�� 4OH− (3)  

where 𝛽𝑎𝑎, 𝛽𝑎𝑎 , 𝛽𝑐𝑎 and 𝛽𝑐𝑎  are the forward and reverse Tafel 
constants for the anodic and cathodic reactions, respectively. 
The current densities at the anode and cathode surfaces are 
defined in accordance with Bulter-Volmer kinetics as [18],  

𝑖𝑎 = 𝑖𝑜𝑎 �10
�𝜑−𝜑𝑜𝑎𝛽𝑎𝑎

�
− 10�

𝜑−𝜑𝑜𝑎
𝛽𝑎𝑎

��  on 𝛤𝑎 (4)  

𝑖𝑐 = 𝑖𝑜𝑐 �10
�𝜑−𝜑𝑜𝑐𝛽𝑐𝑎

�
− 10�

𝜑−𝜑𝑜𝑐
𝛽𝑐𝑎

��  on 𝛤𝑐  (5)  

where 𝑖𝑜𝑎 and 𝑖𝑜𝑐  are the anodic and cathodic open-circuit 
current densities, and 𝜑𝑜𝑎 and 𝜑𝑜𝑐 are the corresponding open-
circuit electrical potentials.  

Strong form of governing equations 

The steady-state concentrations of ionic species in aqueous 
solution along with the local electro-neutrality condition for 
electrical potential 𝜓 in 𝛺𝑙(𝑡) are given by the Nernst-Planck 
equations in the non-dimensionalized form as [3],   

𝛻 ⋅ (𝛻𝑐𝑖 + 𝑧𝑖𝑐𝑖𝛻𝜓) = 𝑟𝑖     𝑖 = {1,2, 3,4} (6)  

�
𝐷0𝑐𝑖𝑧𝑖
𝐷𝑖

4

𝑖=1

= 0 (7)  

where 𝑐𝑖 = 𝐷𝑖𝐶𝑖
𝐷0𝐶0

 is the non-dimensionalized concentration, 𝐷𝑖  
[m2/s] is the Fickian diffusion coefficient, 𝐶𝑖 [mol/m3] is the 
concentration, 𝑧𝑖 is the charge number,  and 𝑟𝑖 is the chemical 
reaction term associated with the 𝑖th species in the aqueous 
solution; 𝐷0 [m2/s] and 𝐶0 [mol/m3] are chosen constants for 
non-dimensionalization, 𝜓 = 𝐹𝜑

𝑅𝑅
 is the non-dimensionalized 

electrical potential, 𝜑 [V] is the electrical potential, 𝐹 [C/mol] 
is the Faraday’s constant, 𝑅 [J/mol/K] is the universal gas 
constant and 𝑇 [K] is the temperature.  
 

For this study, we consider four ionic species, 𝑐1, 𝑐2, 𝑐3, 𝑐4 
denoting the concentrations of Mg2+, OH−, Cl−and Na+, 
respectively. The chemical reaction occurring between Mg2+ 
and OH− that leads to the formation of magnesium hydroxide 
Mg(OH)2 is ignored, that is, 𝑟𝑖 = 0, which is a very critical and 
significant assumption. While, it should be relatively 
straightforward to incorporate reactions terms into the present 
formulation, the forward and backward reaction rate constants 
for the precipitation and dissolution of Mg(OH)2 are not 

adequately reported in the literature. Alternatively, the ion 
diffusion equation corresponding to OH− concentration can be 
replaced with the equilibrium (solubility product) calculation 
taking 𝐾𝑠𝑠 = 1.8 × 10−11 for Mg(OH)2, similar to the model 
in [9]; however, such a model cannot be implemented in 
COMSOL, so validation is difficult. Since the aim of this study 
is to establish the validity of the proposed extended finite 
element model formulation, chemical reactions associated with 
the precipitation of Mg(OH)2 are ignored.  
 

Notice that while equation (7) establishes the electrical 
potential 𝜓, it does not contain a 𝜓 term; so this leads to zero 
values on the diagonal of the system tangent matrix. Thus, the 
discretization of the above equations (6) and (7) could lead to 
numerical convergence issues due to poor conditioning of the 
matrix. In order to alleviate this ill-conditioning, the linear 
system of equations can rearranged as follows: 

𝛻 ⋅ (𝛻𝑐𝑖 + 𝑧𝑖𝑐𝑖𝛻𝜓) = 0 in 𝛺𝑙   𝑖 = {1,2, 3} (8)  

�
𝐷0𝑐𝑖𝑧𝑖
𝐷𝑖

4

𝑖=1

= 0 in 𝛺𝑙 (9)  

�𝛻 ⋅ (𝑧𝑖𝛻𝑐𝑖 + 𝑧𝑖2𝑐𝑖𝛻𝜓)
4

𝑖=1

= 0 in 𝛺𝑙 (10)  

The above equation (10) is obtained by summing the four 
equations defined by equation (6) with 𝑟𝑖 = 0. Thus, the 
concentration of Na+ (c4) is evaluated using the electro-
neutrality equation (9) rather than the Nernst-Planck equation 
(6), whereas, equation (10) is used to establish 𝜓. This 
rearrangement of the equations leads to improved numerical 
convergence due to a better conditioning of the tangent matrix.  
 

Equations (8) and (10) are subject to boundary conditions, 
which will complete the description of the strong form of the 
governing equations. The three equations described by (8) are 
constrained by Dirichlet conditions on the external boundary 𝛤𝑒  
(green) and Neumann conditions on the anodic (red) and 
cathodic (green) boundaries as given by,  

𝑐𝑖 = 𝑐𝑖∞ on 𝛤𝑒   

𝒋1 ⋅ 𝒏 =
𝑖𝑎𝐿0

𝑧1𝐹𝐷0𝐶0
and 𝒋2 ⋅ 𝒏 = 𝒋3 ⋅ 𝒏 = 0  on 𝛤𝑎 

𝒋1 ⋅ 𝒏 = 𝒋3 ⋅ 𝒏 = 0 and 𝒋2 ⋅ 𝒏 =
𝑖𝑐𝐿0

𝑧2𝐹𝐷0𝐶0
 on Γ𝑐 

(11)  

In the above equation (11), 𝒏 denotes the unit normal to the 
interface 𝛤𝑖𝑖𝑖 pointing towards 𝛺𝑙, 𝐿0 is a reference length scale 
for normalizing the molar flux, 𝑐𝑖∞ denotes the bulk or far field 
concentration of the 𝑖th ionic species and 𝒋𝑖 denotes the flux 
corresponding to 𝑐𝑖 defined as, 

𝒋𝑖 = −(𝛻𝑐𝑖 + 𝑧𝑖𝑐𝑖𝛻𝜓)𝐿0  (12)  
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Equation (9) is the electro-neutrality constraint that should be 
enforced everywhere in the domain including the boundaries. 
Equation (10) is subject to Neumann (flux) boundary 
conditions on the anode and cathode boundaries as given by,  

𝒋𝜓 ⋅ 𝒏 =
𝑖𝑎/𝑐𝐿0
𝐹𝐶0𝐷0

 on 𝛤𝑎/𝑐 (13)  

where the flux corresponding to the potential 𝜓 is defined as,  

𝒋𝜓 = �(𝑧𝑖𝛻𝑐𝑖 + 𝑧𝑖2𝑐𝑖𝛻𝜓)𝐿0

4

𝑖=1

 (14)  

Equations (8)–(10) along with boundary conditions described in 
equations (11) and (13) and corrosion kinetic relations in 
equations (4) and (5) establish the strong form of the governing 
equations of the crevice corrosion problem.    

Weak form of governing equations 
The variational or weak form corresponding to equation (8) can 
be stated as:  

Find 𝑐𝑖 ∈ 𝒞 (𝑖 = {1,2,3}) for all 𝑤 ∈ 𝒲 such that, 

� 𝑤 𝛻𝑐𝑖 ⋅ 𝒏 d𝛺
𝛤𝑖𝑖𝑖

+ � 𝑤𝑧𝑖𝑐𝑖𝛻𝜓 ⋅ 𝒏 d𝛺
𝛤𝑖𝑖𝑖

 

−� 𝛻𝑤 ⋅ 𝛻𝑐𝑖  d𝛺
𝛺𝑙

− � 𝛻𝑤 ⋅ (𝛻𝜓𝑧𝑖𝑐𝑖) d𝛺
𝛺𝑙

= 0  
(15)  

Substituting the relations for the flux in (12) and the boundary 
conditions in (11) into the above equation, the final form the 
weak form can be obtained as,   

� 𝑤
1
𝐿0
𝒋𝑖 ⋅ 𝒏 d𝛺

𝛤𝑖𝑖𝑖
− � 𝛻𝑤 ⋅ (𝛻𝑐𝑖 + 𝛻𝜓𝑧𝑖𝑐𝑖)d𝛺

𝛺𝑙
 (16)  

The weak form corresponding to equation (9) is given by, 

Find 𝑐4 ∈ 𝒞 such that,  

� 𝑤�
𝐷0𝑐𝑖𝑧𝑖
𝐷𝑖

4

𝑖=1

= 0 
𝛺𝑙⋃𝛤𝑖𝑖𝑖

 (17)  

Finally, the weak form of corresponding to equation (10) is,  

Find 𝜓 ∈ 𝛹 for all 𝑢 ∈ 𝒰 such that,  

� 𝑢
1
𝐿0
𝒋𝜓 ⋅ 𝒏 d𝛺

𝛤𝑖𝑖𝑖
 

−� 𝛻𝑢 ⋅�(𝑧𝑖𝛻𝑐𝑖 + 𝑧𝑖2𝑐𝑖𝛻𝜓)
4

𝑖=1

= 0 
𝛺𝑙

 

(18)  

Note that in above three equations the 𝒞,𝛹,𝒰 and 𝒲 are 
spaces of sufficiently smooth functions for the respective bulk 
fields and their variations, and 𝑤, 𝑢 denote the test functions. 
 
 
NUMERICAL IMPLEMENTATION 

In this section, the extended finite element method 
(XFEM) and its implementation are detailed for the crevice 
corrosion problem. Belytschko and co-workers [22,23] 
originally proposed the XFEM so as to simulate crack 
propagation with minimal remeshing. The XFEM is generally 
coupled with the level set method [24] to represent the 
embedded interface, independent of the underlying finite 
element mesh.  

Extended finite element approximation 

Let 𝛺ℎ represent the discretization of the entire 
computational domain 𝛺, wherein the physical domain is 
divided into finite elements and the superscript ℎ denotes the 
mesh parameter. In this problem, there are five unknown fields 
to be described on 𝛺ℎ: the non-dimensionalized ionic species 
concentrations 𝑐1 (Mg2+), 𝑐2 (OH−), 𝑐3 (Cl−), 𝑐4 (Na+) and 
the electrical potential 𝜓. Since these unknown fields are only 
defined in the liquid (aqueous solution) domain, from a 
mathematical perspective, these unknown fields can be defined 
as zero valued in the solid (alloy) domain; consequently, there 
exists a jump or discontinuity in the value of these unknown 
fields at the interface 𝛤𝑖𝑖𝑖 . Thus, in the proposed extended finite 
element formulation the unknown fields are approximated as, 

𝑐𝑖ℎ(𝒙, 𝑡) = �𝑁𝐴(𝒙) 𝑐𝑖𝐴(𝑡) +  �𝑆𝐵(𝒙, 𝑡) 𝑎𝑖𝐵(𝑡)
𝑖𝑒

𝐵=1

𝑖𝑠

𝐴=1

 (19)  

𝜓ℎ(𝒙, 𝑡) = �𝑁𝐴(𝒙) 𝜓𝐴(𝑡) + �𝑆𝐵(𝒙, 𝑡) 𝜉𝐵(𝑡)
𝑖𝑒

𝐵=1

𝑖𝑠

𝐴=1

 (20)  

where 𝑁𝐴 denotes the standard finite element shape functions, 
𝑐𝑖𝐴 and 𝜓𝐴 denoted the nodal degrees of freedom (DOFs) 
corresponding to the non-dimensionalized concentration of the 
𝑖th ionic species and electrical potential at node 𝐴, respectively, 
𝑛𝑠 is the total number of nodes in the mesh, 𝑎𝑖𝐵 and 𝜉𝐵 are the 
nodal enrichment DOFs (which are additional DOFs at the 
enriched nodes) corresponding to 𝑐𝑖𝐴 and 𝜓𝐴 at enriched node 
𝐵, 𝑛𝑒(𝑡) is the total number of enriched nodes in the mesh at 
time 𝑡, and the step enrichment function corresponding to 
enriched node 𝐵 is defined as, 

𝑆𝐵(𝒙, 𝑡) = 𝑁𝐵(𝒙)(𝐻(𝜙(𝒙, 𝑡) − 𝐻(−𝜙(𝒙, 𝑡))) (21)  

In the above equation, the Heaviside function is defined as 
𝐻(𝜙) =  1 if 𝜙 > 0 and 𝐻(𝜙) =  0 if 𝜙 < 0. The enrichment 
function 𝑆𝐵(𝒙, 𝑡) allows for the discontinuity in the unknown 
fields at the interface 𝛤𝑖𝑖𝑖 . Since the level set function 𝜙 is not 
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discontinuous across the interface, it can be approximated 
according to the standard finite element approximation as, 

𝜙ℎ(𝒙, 𝑡) = �𝑁𝐴(𝒙) 𝜙𝐴(𝑡)
𝑖𝑠

𝐴=1

 (22)  

Discretization of governing equations 
The spatially discretized form of the variational or weak 

form for establishing the unknown fields 𝑐𝑖ℎ ∈ 𝒞ℎ (𝑖 =
{1,2,3,4}) and 𝜓ℎ ∈ 𝛹ℎ are given as: 

� 𝑤ℎ 1
𝐿0
𝒋𝑖ℎ ⋅ 𝒏 d𝛺

𝛤𝑖𝑖𝑖
 

−� 𝛻𝑤ℎ ⋅ �𝛻𝑐𝑖ℎ + 𝛻𝜓ℎ𝑧𝑖𝑐𝑖ℎ� d𝛺
𝛺𝑙

= 0 
(23)  

� 𝑤ℎ�
𝐷0𝑐𝑖ℎ𝑧𝑖
𝐷𝑖

4

𝑖=1

 d𝛺 = 0 
𝛺𝑙⋃𝛤𝑖𝑖𝑖

 (24)  

� 𝑢ℎ
1
𝐿0
𝒋𝜓ℎ ⋅ 𝒏 d𝛺

𝛤𝑖𝑖𝑖
 

−� 𝛻𝑢ℎ ⋅��𝑧𝑖𝛻𝑐𝑖ℎ + 𝑧𝑖2𝑐𝑖ℎ𝛻𝜓ℎ� d𝛺
4

𝑖=1

= 0 
𝛺𝑙

 

(25)  

where the weighting functions 𝑤ℎ   and 𝑢ℎ are also discretized 
according to the extended finite element approximation,  𝒞ℎ 
and 𝛹ℎ  are discretized finite element functional spaces. The 
residual vector 𝑹𝐴 = {𝑅𝑖𝐴}, 𝑖 = {1,2, 3,4, 5} at a standard finite 
element node 𝐴 corresponding to the five equations (23)–(25) 
in five unknowns is given as,  

𝑅𝑖𝐴 =  −� 𝛻𝑁𝐴 ⋅ 𝛻𝑐𝑖ℎ  d𝛺
𝛺𝑙

− � 𝛻𝑁𝐴 ⋅ �𝛻𝜓ℎ𝑧𝑖𝑐𝑖ℎ� d𝛺
𝛺𝑙

 

+� 𝑁𝐴 1
𝐿0
𝒋𝑖ℎ ⋅ 𝒏 d𝛺

𝛤𝑖𝑖𝑖
, 𝑖 = {1,2,3} 

(26)  

𝑅4𝐴 =  � 𝑁𝐴�
𝐷0𝑐𝑖ℎ𝑧𝑖
𝐷𝑖

4

𝑖=1

 d𝛺 
𝛺𝑙⋃𝛤𝑖𝑖𝑖

 (27)  

𝑅5𝐴 =  −�� 𝛻𝑁𝐴 ⋅ 𝑧𝑖𝛻𝑐𝑖ℎ d𝛺
𝛺𝑙

4

𝑖=1

 

−�� 𝛻𝑁𝐴 ⋅ 𝑧𝑖2𝑐𝑖ℎ𝛻𝜓ℎd𝛺
𝛺𝑙

4

𝑖=1

+ � 𝑁𝐴 1
𝐿0
𝒋𝜓ℎ ⋅ 𝒏 d𝛺

𝛤𝑖𝑖𝑖
 

(28)  

 

Let us assume that, at a given time 𝑡 all the five unknown 
fields are known at iteration 𝑘 and sought at the next iteration 
𝑘 + 1 at any finite element node 𝐴 as given by,  

 𝑘+1𝑐𝑖𝐴 =  𝑘𝑐𝑖𝐴 + 𝛥𝑐𝑖𝐴 

 𝑘+1𝜓𝐴 =  𝑘𝜓𝐴 + 𝛥𝜓𝐴 
(29)  

where 𝛥𝑐𝑖𝐴 and 𝛥𝜓𝐴 are the corresponding increments. 
Assuming that the residual vector 𝑹𝐴can be linearized for small 
increments in the unknown field vector 𝒚 = {𝑐1, 𝑐2, 𝑐3, 𝑐4,𝜓}, 
the expression for the residual at the next iteration 𝑘 + 1 is 
written using Taylor’s expansion as,  

0 =  𝑘+1𝑅𝑖𝐴 =  𝑘𝑅𝑖𝐴 + �
𝜕𝑅𝑖𝐴

𝜕𝑦𝑗𝐵
� 𝛥𝑦𝑗𝐵 (30)  

Rewriting the above equation into a fully discretized and 
linearized system of equations, one obtains,   

  𝐾𝑖𝑗𝐴𝐵𝛥𝑦𝑗𝐵 = − 𝑘𝑅𝑖𝐴 (31)  

where 𝐾𝑖𝑗𝐴𝐵 is the numerical approximation of the consistent 
tangent matrix defined as,  

𝐾𝑖𝑖𝐴𝐵 = �
𝜕𝑅𝑖𝐴

𝜕𝑐𝑖𝐵
� = � 𝛻𝑁𝐴 ⋅ 𝛻𝑁𝐵 d𝛺

𝛺𝑙
 

+� 𝛻𝑁𝐴 ⋅ (𝛻𝜓ℎ𝑧𝑖) 𝑁𝐵d𝛺,
𝛺𝑙

 𝑖 = {1,2,3}  
(32)  

𝐾𝑖5𝐴𝐵 = �
𝜕𝑅𝑖𝐴

𝜕𝜓𝐵� = � 𝛻𝑁𝐴 ⋅ �𝑐𝑖ℎ𝑧𝑖� 𝛻𝑁𝐵d𝛺 
𝛺𝑙

, 

  𝑖 = {1,2,3}   

(33)  

𝐾4𝑖𝐴𝐵 = �
𝜕𝑅4𝐴

𝜕𝑐𝑖𝐵
� = −� 𝑁𝐴 ⋅

𝐷0𝑧𝑖
𝐷𝑖

𝑁𝐵 d𝛺
𝛺𝑙

 (34)  

𝐾5𝑖𝐴𝐵 = �
𝜕𝑅5𝐴

𝜕𝑐𝑖𝐵
� = � 𝛻𝑁𝐴 ⋅ 𝑧𝑖𝛻𝑁𝐵  d𝛺

𝛺𝑙
 

+� 𝛻𝑁𝐴 ⋅ 𝑧𝑖2𝑁𝐵𝛻𝜓ℎd𝛺, 𝑖 = {1,2,3,4} 
𝛺𝑙

 
(35)  

𝐾55𝐴𝐵 = �
𝜕𝑅5𝐴

𝜕𝜓𝐵� = �� 𝛻𝑁𝐴 ⋅ 𝑧𝑖2𝑐𝑖ℎ𝛻𝑁𝐵 d𝛺
𝛺𝑙

4

𝑖=1

 (36)  

 
The procedure to derive the system tangent is similar even 

for an enriched element, except that the unknown vector field 
vector 𝒚 = {𝑐1, 𝑐2, 𝑐3, 𝑐4,𝜓, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝜉} contains additional 
enriched degrees of freedom and the corresponding residual 
vector is defined as, 𝑹𝐵 = {𝑅𝑖𝐵}, 𝑖 = {1,2 … , 10}, where the 
additional terms at enriched node 𝐵 are given by, 
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𝑅𝑖𝐵 =  −� 𝛻𝑆𝐵 ⋅ 𝛻𝑐𝑖ℎ d𝛺
𝛺𝑙

− � 𝛻𝑆𝐵 ⋅ �𝛻𝜓ℎ𝑧𝑖𝑐𝑖ℎ� d𝛺
𝛺𝑙

 

+� 𝑆𝐵
1
𝐿0
𝒋𝑖ℎ ⋅ 𝒏 d𝛺

𝛤𝑖𝑖𝑖
, 𝑖 = {6,7,8} 

(37)  

𝑅9𝐵 =  � 𝑆𝐵�
𝐷0𝑐𝑖ℎ𝑧𝑖
𝐷𝑖

4

𝑖=1

 d𝛺 
𝛺𝑙⋃𝛤𝑖𝑖𝑖

 (38)  

𝑅10𝐵 =  −� 𝛻𝑆𝐵 ⋅ 𝑧𝑖𝛻𝑐𝑖ℎ d𝛺
𝛺𝑙

− � 𝛻𝑆𝐵 ⋅ 𝑧𝑖2𝑐𝑖ℎ𝛻𝜓ℎ  d𝛺
𝛺𝑙

 

+� 𝑆𝐴
1
𝐿0
𝒋𝜓ℎ ⋅ 𝒏 d𝛺

𝛤𝑖𝑖𝑖
 

(39)  

For more details on obtaining the specific expression of the 
consistent tangent 𝐾𝑖𝑗𝐴𝐵 for the standard and enriched finite 
element approximations, the reader is referred to [8].  
 
 
NUMERICAL RESULTS 

In this section, the viability of the extended finite element 
formulation is demonstrated for simulating intergranular 
crevice corrosion in AA5083 alloys. Two numerical examples 
are set up with domain configurations corresponding to: (1) 
crevice corrosion at time 𝑡 = 0+, wherein the Mg phase begins 
to dissolve into aqueous solution; and (2) crevice corrosion at 
time 𝑡 > 0+, wherein a significant portion of the Mg phase in 
the intergranular crevice has dissolved and the side walls of the 
crevice expose the Al phase in the grains (see Figure 1).   

Model parameters 

The Nernst-Planck model parameters including the Fickian 
diffusion coefficients and the far field concentrations of the 
ionic species in aqueous solution, and the universal constants 
are given in Table 1. The electrochemical properties for 
AA5083 corrosion in 0.5M NaCl solution are listed in Table 2. 
The forward Tafel slopes for the electrode reactions are 
obtained from [25] and then the reverse Tafel slopes are 
calculated assuming Butler-Volmer kinetic relations as [26],  

  𝛼𝑎 = 2.303
𝑅𝑇

𝑧1𝐹𝛽𝑎𝑎
;𝛽𝑎𝑎 = 2.303

𝑅𝑇
𝑧1𝐹(1 − 𝛼𝑎)

 

  𝛼𝑐 = 2.303
𝑅𝑇

𝑧2𝐹𝛽𝑐𝑎
;𝛽𝑎𝑎 = 2.303

𝑅𝑇
𝑧2𝐹(1 − 𝛼𝑐)

 
(40)  

where 𝛼𝑎 and 𝛼𝑐 are the so-called anodic and cathodic charge 
transfer coefficients.  
 

Parameter  Value (units) 
𝐹 96485.3 C/mol 
𝑅 8.314 J/mol/K 

𝑇 25 ∘C 
𝑧1 +2 
𝑧2 −1 
𝑧3 −1 
𝑧4 +1 
𝐷1 7.05 × 10−10 m2/s 
𝐷2 5.27 × 10−9 m2/s 
𝐷3 1.33 × 10−9 m2/s 
𝐷4 2.03 × 10−9 m2/s 
𝐶1∞ 3 × 10−4 mol/m3 

𝐶2∞ 6 × 10−4 mol/m3 

𝐶3∞ 500 mol/m3 

𝐶4∞ 500 mol/m3 

𝐷0 5.27 × 10−9 m2/s 
𝐶0 6 × 10−4 mol/m3 

Table 1. Model parameters for ion diffusion in aqueous 
solution. The Fickian diffusion coefficients 𝐷𝑖  of ions at infinite 
dilution at 25 ∘C in seawater are obtained from [27]. The far 
field concentrations 𝑐𝑖∞ are assumed from [18] and [25].  
 

 𝛤𝑎 𝛤𝑐 
𝜙𝑜 −1.25 V −0.7 V 
𝑖𝑜 10−5 A/m2 10−5 A/m2 
𝛽𝑎 0.137 V/dec −0.234 V/dec 
𝛽𝑎 −0.0377 V/dec 0.0792 V/dec 

Table 2. Electrochemical properties for AA5083 corrosion. The 
open-circuit potentials and corrosion current densities are taken 
from [18]. The forward and reverse Tafel slopes obtained from 
electrochemical frequency modulation (EFM) technique at 0.01 
Hz are taken from [25]. The reverse Tafel constants are 
calculated according to equation (40). 

Example 1: Crevice corrosion at time 𝒕 =  𝟎+ 
Let us consider the intergranular crevice corrosion problem 

at time 𝑡 = 0+. A key assumption is that interface evolution due 
to corrosive dissolution is much slower compared to ion 
transport, so the ionic concentrations 𝑐𝑖 are assumed to be at 
steady state at time 𝑡 = 0+; this assumption is reasonable given 
the timescales of ion diffusion and corrosive dissolution [18]. 
The rectangular domain is 0.042 mm × 42 mm (width × 
height) and consists of two Al grains 0.020 mm × 0.021mm 
with an intergranular crevice 0.002 mm × 0.021 mm, similar to 
that in Sarkar et al., [18]. The interface 𝛤𝑖𝑖𝑖  divides the domain 
into two halves and is initialized as, 

  𝜙(𝒙, 0) = 𝑥2 − 0.021 mm   ∀  𝒙 ∈ 𝛺 (41)  

where 𝒙 = (𝑥1, 𝑥2) are the Cartesian coordinates. The interface 
𝛤𝑖𝑖𝑖  can now be captured by the zero contour of the level set 
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function 𝜙(𝒙, 𝑡) at anytime. The cathode and anode segments 
of the interface are determined depending on whether a 
particular interface segment corresponds to the exposed surface 
of the Al phase or Mg phase as,  

  𝛤𝑎(𝑡) = {𝒙 ∈ 𝛺| 𝜙(𝒙, 𝑡) = 0 & 𝑓𝑠(𝒙) = 0} (42)  

𝛤𝑐(𝑡) = {𝒙 ∈ 𝛺| 𝜙(𝒙, 𝑡) = 0 & 𝑓𝑠(𝒙) = 1} (43)  

where 𝑓𝑠(𝒙) denotes the value of the volume fraction variable 
when the interface is approached from the solid domain 𝛺𝑠.   
The configuration of the alloy-electrolyte domain and domain 
boundaries is shown below in Figure 2.  

 
Figure 2. Schematic diagram of the intergranular crevice 
corrosion problem in AA5083 at initial time 𝑡 = 0. The 
interface described by the level set function is partitioned 
into the cathodic (blue) and anodic (red) segments depending 
on whether it corresponds to the Al phase or Mg phase.  

The domain 𝛺 is discretized using a square bilinear finite 
element mesh containing 101 × 101 elements. About 4 to 8 
Netwon-Raphson iterations were required by the solver to 
obtain convergence. The simulation results for the 
concentrations of Mg2+, Cl−, Na+ along with the pH (= 14 +
log10[OH−]) of the solution are shown in Figure 3. Notice the 
discontinuity in concentration and its flux across the interface at 
𝑥2 = 0.021 mm in Figures 3(a)–3(d). The XFEM allows for the 
incorporation these discontinuities via the step enrichment of 
the standard finite element shape functions. These results have 
been compared with those obtained from commercial software 
COMSOL Version 4.2 using the chemical engineering module 
and the error was within acceptable tolerance (less than 3–4%) 
for a similar number of degrees of freedom. However, it is to be 
noted that an unstructured finite element mesh with triangular 
elements was employed in COMSOL analysis; whereas, a 
structured mesh with square-shaped bilinear elements was used 
in XFEM analysis. This benchmark investigation establishes 
the validity and viability of the proposed extended finite 
element formulation. 

 

 

 

 
Figure 3. Model predicted concentration of ionic species in 
solution at time 𝑡 = 0+. These results were validated with 
those obtained from COMSOL Version 4.2.  Notice the 
discontinuity in concentration and the corresponding fluxes 
across the interface at 𝑥2 = 0.021 m. 
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The results shown in Figure 3 indicate that, since Mg phase is 
anodic with respect to the Al phase, Mg dissolves into solution 
as Mg2+ ions causing a spike in its concentration locally around 
the anode boundary 𝛤𝑎. To maintain electro-neutrality Cl− ions 
migrate towards 𝛤𝑎 and Na+ ions migrate away from 𝛤𝑎. The 
pH of the solution reaches a value of 13 in the vicinity of the 
interface, indicating that the solution becomes highly alkaline 
as soon as dissolution begins. However, this may not be an 
accurate description of the crevice environment as the 
concentration of OH− and Mg2+ ions is regulated by the 
precipitation of Mg(OH)2. This suggests it is essential to 
account for chemical reactions (precipitation), which will be 
studied in a future modeling focused paper. It is evident from 
Figure 4 that the model predicted electrolyte potential 𝜑 is on 
the order of millivolts and is much smaller than the open circuit 
potentials 𝜑𝑜𝑎 and 𝜑𝑜𝑐. However, the trends of a positive 
voltage near the anode and negative voltage near the cathode in 
Figure 4 seem to be in general agreement with theory. 

 
Figure 4. Model predicted electrical potential 𝜑 in the solution 
at time 𝑡 = 0+ 

Example 2: Crevice corrosion at time 𝒕 > 0+ 

Let us now consider the intergranular crevice corrosion 
problem at a later time 𝑡 > 0+ when the Mg phase in the grain 
boundary has dissolved to a depth of 𝑥2 = 10 𝜇m. 
Consequently, the cathode boundary is now larger than before 
due to the creation of the newly exposed crevice sidewalls; 
whereas, the anode boundary length is the same. The 
configuration of the alloy-electrolyte domain and domain 
boundaries are schematically illustrated in Figure 1. Since in 
the current XFEM and level set based sharp-interface model 
formulation the interface can be represented independent of the 
underlying finite element mesh, the same finite mesh can be 
used at all times, as shown in Figure 5. The results for this 
configuration are shown in Figures 6 and 7.  

The results indicate similar trends in concentrations and 
electrical potential as in the previous example. As expected, the 

concentration of Mg2+ ions is significantly larger in the crevice 
environment because the ion diffusion path is longer, which 
turn causes a more aggressive migration of Cl− ions into the 
intergranular crevice in order to maintain electro-neutrality. The 
maximum value of pH in the solution seems to be more than 13 
indicating that the crevice environment is highly alkaline. We 
again note that this may not be the realistic case because 
chemical reactions and precipitation was neglected in this 
preliminary model. The electrical potential in the crevice still 
seems to be generally small (about a few millivolts). While this 
study establishes the computational prowess of the proposed 
formulation, an improved mathematical model would be 
necessary to simulate the electrochemistry of galvanic 
corrosion in AA5083 alloys. 

 
Figure 5. Finite element mesh containing 101 × 101 square 
bilinear elements can be used for analysis at all times. The 
initial interface (red) and the interface at a subsequent time 
(black) are defined by the zero contour of the level set 
function. Thus, the proposed formulation entirely eliminates 
the need for remeshing or mesh moving procedures.  

 
 

CONCLUSION 
In this paper, a new extended finite element model 

formulation was developed for investigating crevice and pitting 
corrosion in alloys. The non-dimensionalization scheme for the 
governing equations of the model, namely, the Nernst-Planck 
equations along with the electro-neutrality condition for ion 
diffusion in dilute electrolyte solution, improves numerical 
convergence. The level set representation of the interface and 
the step enrichment of the finite element basis allow the 
simulation of arbitrary crevice geometries using a structured 
finite element mesh without needing remeshing; this would be a 
significant advantage, especially, when the interface is evolved 
in time during a corrosion propagation simulation. Numerical 
results are in good agreement with those obtained from 
COMSOL Version 4.2 chemical engineering module, which 
demonstrates the viability of the proposed formulation.  
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Figure 6. Model predicted concentration of ionic species in 
solution at time 𝑡 > 0+, when the intergranular crevice is 
about 0.011 mm long. Notice the discontinuity in 
concentrations and the corresponding fluxes across the 
arbitrary crevice interface.  

 

 
Figure 7. Model predicted electrical potential 𝜑 in the solution 
at time 𝑡 > 0+. The potential is on the order of millivolts and 
is positive in the intergranular crevice and is negative at the 
cathodic boundaries at 𝑥2 = 0.021 mm.  

 
Since the model is based on the dilute solution theory for ion 
diffusion it is able to predict the qualitative behavior of ion 
migration in the liquid domain, such as, the migration of 
chloride ions into crevices and pits from the bulk solution [28]. 
The increased presence of chloride ions near the Mg (anode) 
surface can accelerate the corrosion process, as noted by Song 
and Atrens [28]. The model also predicts an increase in the pH 
(i.e., alkalinity) of the solution environment, which would 
reduce the rate of dissolution since magnesium is very resistant 
to corrosion by alkalis, especially, when the pH > 10.5 [28]. 
However, since the reaction associated with Mg(OH)2 
formation is ignored, the model may not be representing the 
chemical environment in the crevice, quantitatively, as evident 
from the is unrealistically high pH predicted in the solution 
domain. Moreover, it seems like the assumptions of the dilute 
solution theory may not be valid everywhere in the domain. In 
conclusion, while this model is an improvement over the too 
simplistic Fickian diffusion model, it has some major 
limitations in its current form.  
 
Model validation using experimental data in the literature is 
currently difficult due to the lack of high-resolution in situ 
techniques [29] that can provide microscale information 
comparable to simulation results; however, a detailed review of 
experimental and modeling studies on magnesium corrosion 
can be found in [30]. Our future work will focus on formulating 
models for corrosion in concentrated solutions, incorporating 
the chemical reaction associated with Mg(OH)2 formation, the 
time evolution of the anode and cathode interfaces, validating 
with experimental data, and uncertainty quantification of 
corrosion rates.   
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