Belief networks
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Outline

¢ Conditional independence

> Bayesian networks: syntax and semantics

> Exact inference

¢ Approximate inference
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Independence

Two random variables A B are (absolutely) independent iff
P(A|B) = P(A)
or P(A,B) = P(A|B)P(B) = P(A)P(B)
e.g., A and B are two coin tosses

If n Boolean variables are independent, the full joint is
P(X,,....X,) =1LP(X);)
hence can be specified by just n numbers

Absolute independence is a very strong requirement, seldom met
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Conditional independence

Consider the dentist problem with three random variables:
Toothache, Cavity, Catch (steel probe catches in my tooth)

The full joint distribution has 2° — 1 = 7 independent entries

If 1 have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:

(1) P(Catch|Toothache, Cavity) = P(Catch|Cavity)
i.e., C'atch is conditionally independent of T'oothache given Cavity

The same independence holds if | haven't got a cavity:
(2) P(Catch|Toothache, =Cavity) = P(Catch|-Cavity)
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Conditional independence contd.

Equivalent statements to (1)

(1a) P(Toothache|Catch,Cavity) = P(Toothache|Cavity) Why??

(1b) P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
Why??

Full joint distribution can now be written as
P(Toothache, Catch, Cavity) = P(Toothache, Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)
i.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)
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Conditional independence contd.

Equ alent statements to (1)
(1a) P(Toothache|Catch,Cavity) = P(Toothache|Cavity) Why??

P(Toothache|Catch,Cavity)
= P(Catch|Toothache, Cavity)P(Toothache|Cavity)/P(Catch|Cavity)
= P(Catch|Cavity)P(Toothache|Cavity)/ P(Catch|Cavity) (from 1)
= P(Toothache|Cavity)

(1b) P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
Why??

P(Toothache, Catch|Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity) (product rule)
= P(Toothache|Cavity)P(Catch|Cavity) (from la)
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Belief networks

A simple, graphical notation for conditional independence assertions

and hence for compact specification of full joint distributions

Syntax:

a set of nodes, one per variable

a directed, acyclic graph (link = “directly influences™)
a conditional distribution for each node given its parents:

P(X;|Parents(X;))

In the simplest case, conditional distribution represented as

a conditional probability table (CPT)
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Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it's set off by minor earthquakes. Is there

a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:
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Note: < k parents = O(d*n) numbers vs. O(d")
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Semantics

“Global” semantics defines the full joint distribution as
the product of the local conditional distributions:

P(X,,...,X,) =1I_,P(X;|Parents(X;))
e.g., P(LJANMANAN-BA-E) is given by??
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Semantics

“Global” semantics defines the full joint distribution as
the product of the local conditional distributions:

P(X,,...,X,) =1I_,P(X;|Parents(X;))

e.g., P(LJANMANAN-BA-E) is given by??
= P(-B)P(-E)P(A|-BAN-E)P(J|A)P(M|A)

“Local” semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics < global semantics
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Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Constructing belief networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X;,..., X,
2. Fort =1ton

add X, to the network

select parents from Xy,...,.X,;_; such that

P(XAPCLTGTLtS(XZ)) = P<X1|X1, P X@'—l)

This choice of parents guarantees the global semantics:
P(X,,...,X,) =1I_,P(X;| X1, ..., X;_1) (chain rule)
= II'_ ,P(X;|Parents(X;)) by construction
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Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)?
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Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No
P(A|J, M) = P(A|J)? P(A|J,M) = P(A)?
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Example

Suppose we choose the ordering M, J, A, B, E

CED

NP

Burglary

J|M) = P(J)? No
A|J, M) = P(A|J)? P(A|J,M) = P(4)? No
B|A, J, M) = P(B|A)?

P(
P(
P(
P(B|A, J,M) = P(B)?
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Example

Suppose we choose the ordering M, J, A, B, E

Burglary

Earthquake

P(J|M)=P(J)? No

P(A|J, M) = P(A|J)? P(A|J,M) = P(A)? No
P(B|A,J, M) = P(B|A)? Yes

P(B|A,J,M)= P(B)? No

P(E|B, A,.J, M) = P(E|A)?

P(E|B, A, J, M) = P(E|A, B)?
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Example

Suppose we choose the ordering M, J, A, B, E

Earthquake

Burga

P(J|M)=P(J)? No

P(A|J, M) = P(A|J)? P(A|J,M) = P(A)? No
P(B|A,J, M) = P(B|A)? Yes

P(B|A,J,M)= P(B)? No
P(F|B,A,J,M)=P(E|A)? No

P(E|B, A, J, M) = P(E|A,B)? Yes
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Example: Car diagnosis

Initial evidence: engine won't start
Testable variables (thin ovals), diagnosis variables (thick ovals)
Hidden variables (shaded) ensure sparse structure, reduce parameters

arging

starter
broken
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Example: Car insurance

Predict claim costs (medical, liability, property)
given data on application form (other unshaded nodes)
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Compact conditional distributions

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican < Canadian VvV US YV Mexican

E.g., numerical relationships among continuous variables

OLevel

T inflow + precipation - outflow - evaporation
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Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes
1) Parents U; ... Uy include all causes (can add leak node)
2) Independent failure probability ¢; for each cause alone

= P(X|Uy...U;,~Up...2U) =1-11_q

Cold Flu Malaria| P(Fever)| P(—-Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=0.2 x 0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=0.6 x 0.2

T T T 0.988 0.012=0.6 x 0.2 x 0.1

Number of parameters linear in number of parents
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Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete4continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)
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Continuous child variables

Need one conditional density function for child variable given continuous

parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:
P(Cost =c|Harvest =h, Subsidy? = true)
= N(ath + b, 04)(c)

1 . ( 1 (c — (ath + bt))Q)

O't\/ 2T o

Mean Cost varies linearly with Harvest, variance is fixed
Linear variation is unreasonable over the full range
but works OK if the likely range of Harwvest is narrow
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Continuous child variables
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All-continuous network with LG distributions
= full joint is a multivariate Gaussian

Discrete+4-continuous LG network is a conditional Gaussian network i.e.,

a multivariate Gaussian over all continuous variables for each combina-
tion of discrete variable values
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