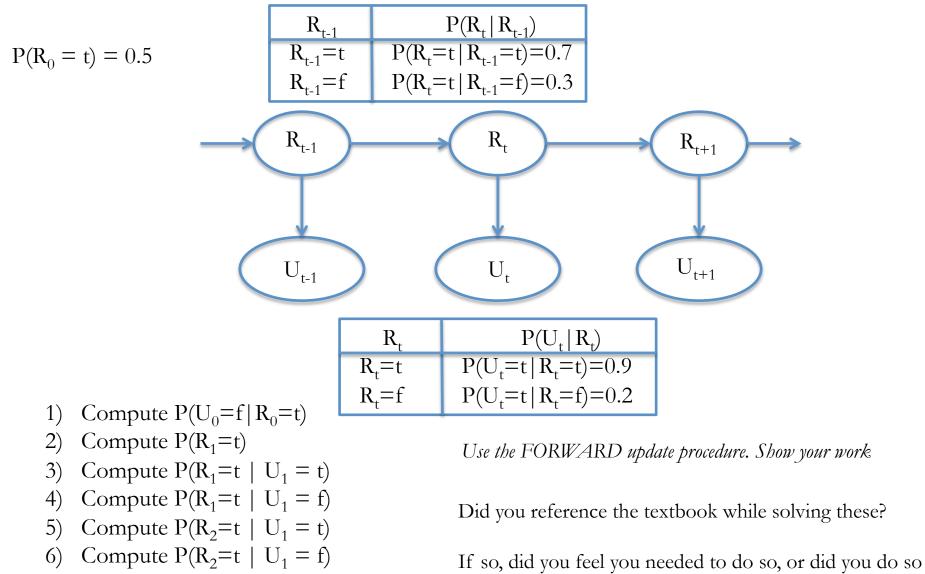
Consider the following Bayesian Network structure and conditional distributions



just to check your work after you finished?

- 7) Compute $P(R_2 = t | U_1 = t, U_2 = t)$
- 8) Compute $P(R_2 = t | U_1 = t, U_2 = f)$

Answer here

Name:

1) Compute $P(U_0=f|R_0=t) = 1 - P(U_0=t|R_0=t) = 1 - 0.9 = 0.1$

2) Compute $P(R_1=t) = P(R_1=t | R_0=t) P(R_0=t) + P(R_1=t | R_0=t) P(R_0=t) = 0.7*0.5 + 0.3*0.5 = 0.5$

3) Compute $P(R_1=t | U_1 = t) = \alpha P(U1=t | R1=t)P(R1=t) = \alpha 0.9*0.5 = \alpha 0.45$, where $\alpha = 1/P(U1=t)$ a) Compute $P(R_1=t | U_1 = t) = \alpha P(U1=t | R1=t)P(R1=t) = \alpha 0.2*0.5 = \alpha 0.1$, where $\alpha = 1/P(U1=t)$

Scale to sum to $1.0: \alpha(0.45 + 0.1) = 1.0 \rightarrow \alpha = 1.0 / 0.55 = 1.82$ $P(R_1 = t | U_1 = t) = 1.82 * 0.45 = 0.818$; $P(R_1 = f | U_1 = t) = 1.82 * 0.1 = 0.182$

4) Compute $P(R_1 = t | U_1 = f) = \alpha P(U1 = f | R1 = t)P(R1 = t) = \alpha 0.1 * 0.5 = \alpha 0.05$, where $\alpha = 1/P(U1 = f)$ a) Compute $P(R_1 = f | U_1 = f) = \alpha P(U1 = f | R1 = f)P(R1 = f) = \alpha 0.8 * 0.5 = \alpha 0.4$, where $\alpha = 1/P(U1 = f)$

Scale to sum to $1.0: \alpha(0.05 + 0.4) = 1.0 \rightarrow \alpha = 1.0 / 0.45 = 2.22$ $P(R_1=t | U_1 = f) = 2.22 * 0.05 = 0.11$; $P(R_1=f | U_1 = f) = 2.22 * 0.4 = 0.89$ 5) One formulation that stems from definition of Bayesian Network (not the FORWARD formulation illustration)

Compute
$$P(R_2=t \mid U_1 = t) = \alpha$$
 (P(U_1=t, R_2=t, R_1=t)+P(U_1=t, R_2=t, R_1=f))
 $= \alpha$ (P(U_1=t, R_2=t \mid R_1=t)P(R_1=t)+P(U_1=t, R_2=t \mid R_1=f)P(R_1=f))
 $= \alpha$ (P(U_1=t \mid R_1=t)P(R_2=t \mid R_1=f)P(R_1=f))
 $= \alpha$ (0.9*0.7*0.5 + 0.2*0.3*0.5) = α *0.345
Compute P(R_2=f \mid U_1 = t) = \alpha (P(U_1=t, R_2=f, R_1=t)+P(U_1=t, R_2=f, R_1=f))
 $= \alpha$ (P(U_1=t, R_2=f \mid R_1=t)P(R_1=t)+P(U_1=t, R_2=f, R_1=f))
 $= \alpha$ (P(U_1=t \mid R_1=f)P(R_2=f \mid R_1=t)P(R_1=t)
 $+P(U_1=t \mid R_1=f)P(R_2=f \mid R_1=f)P(R_1=f))$
 $= \alpha$ (0.9*0.3*0.5 + 0.2*0.7*0.5) = α *0.205
Scale to sum to 1: α (0.345 + 0.205) = 1.0 $\rightarrow \alpha$ = 1.0 /0.55 = 1.82
 $P(R_2=t \mid U_1 = t) = 1.82 * 0.345 = 0.627$
 $P(R_2=f \mid U_1 = t) = 1.82 * 0.205 = 0.373$

5) Alternate formulation consistent with the FORWARD algorithm (top of page 573)

Compute
$$P(R_2=t | U_1 = t) = \alpha$$
 (P(U₁=t, R₂=t, R₁=t)+P(U₁=t, R₂=t, R₁=f))
= α (P(R₁=t, R₂=t | U₁=t)P(U₁=t)+P(R₁=f, R₂=t | U₁=t)P(U₁=t))
= α (P(R₁=t | U₁=t)P(R₂=t | R₁=t)P(U₁=t)
+P(R₁=f | U₁=t)P(R₂=t | R₁=f)P(U₁=t)), where $\alpha = 1/P(U_1=t)$
= P(R₁=t | U₁=t)P(R₂=t | R₁=t) + P(R1=f | U1=t)P(R₂=t | R₁=f)
= 0.818 * 0.7 + 0.182 * 0.3 = 0.627

Compute
$$P(R_2=f | U_1 = t) = \alpha$$
 (P(U1=t, R2=f, R1=t)+P(U1=t, R2=f, R1=f))
= α (P(U1=t, R2=f | R1=t)P(R1=t)+P(U1=t, R2=f | R1=f)P(R1=f))
= α (P(U1=t | R1=t)P(R2=f | R1=t)P(R1=t)
+P(U1=t | R1=f) P(R2=f | R1=f)P(R1=f)) α = 1/P(U1=t)
= P(R_1=t | U_1=t)P(R_2=f | R_1=t) + P(R_1=f | U_1=t) P(R_2=f | R_1=f)
= 0.818 * 0.3 + 0.182 * 0.7 = 0.373

6) Compute $P(R_2=t | U_1 = f)$ – on your own

7) Compute $P(R_2=t | U_1 = t, U_2 = t) - next slide (and top of page 573)$

8) Compute $P(R_2=t | U_1 = t, U_2 = f)$ – on your own

7) Alternate formulation consistent with the FORWARD algorithm illustration (pp. 572-573)

Compute
$$P(R_2=t | U_1 = t, U_2 = t)$$

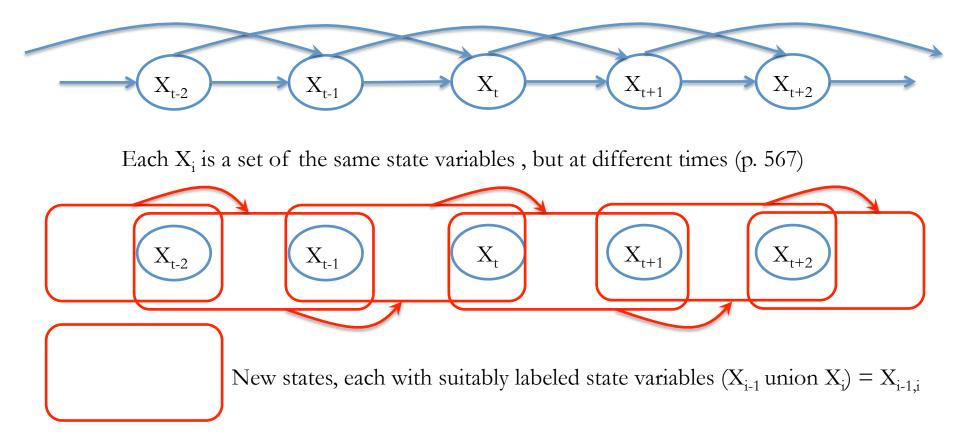
= α (P(U2=t | R2=t, U1=t)P(R2=t | U1=t))
= α (P(U2=t | R2=t)P(R2=t | U1=t)) eq 15.4 p. 572 sensor Markov assumption
= $\alpha(0.9*0.627)$
= $\alpha(0.564)$
= 1.565 * 0.564 = 0.883

Compute
$$P(R_2=f | U_1 = t, U_2 = t)$$

 $= \alpha (P(U2=t | R2=f, U1=t)P(R2=f | U1=t))$
 $= \alpha (P(U2=t | R2=f)P(R2=f | U1=t))$ eq 15.4 p. 572 sensor Markov assumption
 $= \alpha (0.2*0.373)$
 $= \alpha (0.075)$
 $= 1.565 * 0.075 = 0.117$

Scale to sum to 1: $\alpha(0.564+0.075) = 1 \rightarrow \alpha = 1/0.639 = 1.565$

Show that any second-order Markov process can be rewritten as a first-order Markov process with an augmented set of state variables. Can this always be done *parsimoniously*, i.e., without increasing the number of parameters needed to specify the transition model? (problem 15.1 of text)



Parsimonious? Yes – same number of conditioning state variables in each $P(X_t | X_{t-1}, X_{t-2})$ and $P(X_{t,t-1} | X_{t-1,t-2})$, with t-1 variable values shared