Consider the following Bayesian Network structure and conditional distributions
$\mathrm{P}\left(\mathrm{R}_{0}=\mathrm{t}\right)=0.5$

R_{t-1}	$P\left(R_{t} \mid R_{t-1}\right)$
$R_{t-1}=t$	$P\left(R_{t}=t \mid R_{t-1}=t\right)=0.7$
$R_{t-1}=f$	$P\left(R_{t}=t \mid R_{t-1}=f\right)=0.3$

R_{t}	$\mathrm{P}\left(\mathrm{U}_{\mathrm{t}} \mid \mathrm{R}_{\mathrm{t}}\right)$
$\mathrm{R}_{\mathrm{t}}=\mathrm{t}$	$\mathrm{P}\left(\mathrm{U}_{\mathrm{t}}=\mathrm{t} \mid \mathrm{R}_{\mathrm{t}}=\mathrm{t}\right)=0.9$
$\mathrm{R}_{\mathrm{t}}=\mathrm{f}$	$\mathrm{P}\left(\mathrm{U}_{\mathrm{t}}=\mathrm{t} \mid \mathrm{R}_{\mathrm{t}}=\mathrm{f}\right)=0.2$

1) Compute $P\left(U_{0}=f \mid R_{0}=t\right)$
2) Compute $P\left(R_{1}=t\right)$
3) Compute $P\left(R_{1}=t \mid U_{1}=t\right)$
4) Compute $P\left(R_{1}=t \mid U_{1}=f\right)$
5) Compute $\mathrm{P}\left(\mathrm{R}_{2}=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{t}\right)$
6) Compute $\mathrm{P}\left(\mathrm{R}_{2}=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{f}\right)$
7) Compute $\mathrm{P}\left(\mathrm{R}_{2}=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{t}, \mathrm{U}_{2}=\mathrm{t}\right)$
8) Compute $\mathrm{P}\left(\mathrm{R}_{2}=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{t}, \mathrm{U}_{2}=\mathrm{f}\right)$

Use the FORW ARD update procedure. Show your work

Did you reference the textbook while solving these?
If so, did you feel you needed to do so, or did you do so just to check your work after you finished?
\qquad

1) Compute $\mathrm{P}\left(\mathrm{U}_{0}=\mathrm{f} \mid \mathrm{R}_{0}=\mathrm{t}\right)=1-\mathrm{P}\left(\mathrm{U}_{0}=\mathrm{t} \mid \mathrm{R}_{0}=\mathrm{t}\right)=1-0.9=0.1$
2) Compute $\mathrm{P}\left(\mathrm{R}_{1}=\mathrm{t}\right)=\mathrm{P}\left(\mathrm{R}_{1}=\mathrm{t} \mid \mathrm{R}_{0}=\mathrm{t}\right) \mathrm{P}\left(\mathrm{R}_{0}=\mathrm{f}\right)+\mathrm{P}\left(\mathrm{R}_{1}=\mathrm{t} \mid \mathrm{R}_{0}=\mathrm{f}\right) \mathrm{P}\left(\mathrm{R}_{0}=\mathrm{f}\right)=0.7 * 0.5+0.3 * 0.5=0.5$
3) Compute $\mathrm{P}\left(\mathrm{R}_{1}=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{t}\right)=\boldsymbol{\alpha} \mathrm{P}(\mathrm{U} 1=\mathrm{t} \mid \mathrm{R} 1=\mathrm{t}) \mathrm{P}(\mathrm{R} 1=\mathrm{t})=\boldsymbol{\alpha} 0.9 * 0.5=\boldsymbol{\alpha} 0.45$, where $\boldsymbol{\alpha}=1 /$ $\mathrm{P}(\mathrm{U} 1=\mathrm{t})$
a) Compute $\mathrm{P}\left(\mathrm{R}_{1}=\mathrm{f} \mid \mathrm{U}_{1}=\mathrm{t}\right)=\boldsymbol{\alpha P}(\mathrm{U} 1=\mathrm{t} \mid \mathrm{R} 1=\mathrm{f}) \mathrm{P}(\mathrm{R} 1=\mathrm{f})=\boldsymbol{\alpha} 0.2^{*} 0.5=\boldsymbol{\alpha} 0.1$, where $\boldsymbol{\alpha}=$ $1 / P(U 1=t)$

Scale to sum to $1.0: \alpha(0.45+0.1)=1.0 \rightarrow \alpha=1.0 / 0.55=1.82$
$\mathrm{P}\left(\mathrm{R}_{1}=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{t}\right)=1.82 * 0.45=0.818$;
$\mathrm{P}\left(\mathrm{R}_{1}=\mathrm{f} \mid \mathrm{U}_{1}=\mathrm{t}\right)=1.82 * 0.1=0.182$
4) Compute $\mathrm{P}\left(\mathrm{R}_{1}=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{f}\right)=\boldsymbol{\alpha} \mathrm{P}(\mathrm{U} 1=\mathrm{f} \mid \mathrm{R} 1=\mathrm{t}) \mathrm{P}(\mathrm{R} 1=\mathrm{t})=\boldsymbol{\alpha} 0.1 * 0.5=\boldsymbol{\alpha} 0.05$, where $\boldsymbol{\alpha}=1 / \mathrm{P}(\mathrm{U} 1=\mathrm{f})$
a) Compute $P\left(R_{1}=f \mid U_{1}=f\right)=\alpha P(U 1=f \mid R 1=f) P(R 1=f)=\alpha 0.8^{*} 0.5=\boldsymbol{\alpha} 0.4$, where $\boldsymbol{\alpha}=1 / \mathrm{P}(\mathrm{U} 1=\mathrm{f})$

Scale to sum to $1.0: \alpha(0.05+0.4)=1.0 \rightarrow \alpha=1.0 / 0.45=2.22$
$\mathrm{P}\left(\mathrm{R}_{1}=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{f}\right)=2.22 * 0.05=0.11$;
$\mathrm{P}\left(\mathrm{R}_{1}=\mathrm{f} \mid \mathrm{U}_{1}=\mathrm{f}\right)=2.22 * 0.4=0.89$
5) One formulation that stems from definition of Bayesian Network (not the FORWARD formulation illustration)

$$
\begin{aligned}
& \text { Compute } \mathrm{P}\left(\mathrm{R}_{2}=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{t}\right)=\alpha\left(\mathrm{P}\left(\mathrm{U}_{1}=\mathrm{t}, \mathrm{R}_{2}=\mathrm{t}, \mathrm{R}_{1}=\mathrm{t}\right)+\mathrm{P}\left(\mathrm{U}_{1}=\mathrm{t}, \mathrm{R}_{2}=\mathrm{t}, \mathrm{R}_{1}=\mathrm{f}\right)\right) \\
& =\alpha\left(\mathrm{P}\left(\mathrm{U}_{1}=\mathrm{t}, \mathrm{R}_{2}=\mathrm{t} \mid \mathrm{R}_{1}=\mathrm{t}\right) \mathrm{P}\left(\mathrm{R}_{1}=\mathrm{t}\right)+\mathrm{P}\left(\mathrm{U}_{1}=\mathrm{t}, \mathrm{R}_{2}=\mathrm{t} \mid \mathrm{R}_{1}=\mathrm{f}\right) \mathrm{P}\left(\mathrm{R}_{1}=\mathrm{f}\right)\right) \\
& =\alpha\left(P\left(U_{1}=t \mid R_{1}=t\right) P\left(R_{2}=t \mid R_{1}=t\right) P\left(R_{1}=t\right)\right. \\
& \left.+\mathrm{P}\left(\mathrm{U}_{1}=\mathrm{t} \mid \mathrm{R}_{1}=\mathrm{f}\right) \mathrm{P}\left(\mathrm{R}_{2}=\mathrm{t} \mid \mathrm{R}_{1}=\mathrm{f}\right) \mathrm{P}\left(\mathrm{R}_{1}=\mathrm{f}\right)\right) \\
& =\alpha(0.9 * 0.7 * 0.5+0.2 * 0.3 * 0.5)=\alpha * 0.345 \\
& \text { Compute } \mathrm{P}\left(\mathrm{R}_{2}=\mathrm{f} \mid \mathrm{U}_{1}=\mathrm{t}\right)=\alpha\left(\mathrm{P}\left(\mathrm{U}_{1}=\mathrm{t}, \mathrm{R}_{2}=\mathrm{f}, \mathrm{R}_{1}=\mathrm{t}\right)+\mathrm{P}\left(\mathrm{U}_{1}=\mathrm{t}, \mathrm{R}_{2}=\mathrm{f}, \mathrm{R}_{1}=\mathrm{f}\right)\right) \\
& =\alpha\left(\mathrm{P}\left(\mathrm{U}_{1}=\mathrm{t}, \mathrm{R}_{2}=\mathrm{f} \mid \mathrm{R}_{1}=\mathrm{t}\right) \mathrm{P}\left(\mathrm{R}_{1}=\mathrm{t}\right)+\mathrm{P}\left(\mathrm{U}_{1}=\mathrm{t}, \mathrm{R}_{2}=\mathrm{f} \mid \mathrm{R}_{1}=\mathrm{f}\right) \mathrm{P}\left(\mathrm{R}_{1}=\mathrm{f}\right)\right) \\
& =\alpha\left(P\left(U_{1}=t \mid R_{1}=t\right) P\left(R_{2}=f \mid R_{1}=t\right) P\left(R_{1}=t\right)\right. \\
& \left.+\mathrm{P}\left(\mathrm{U}_{1}=\mathrm{t} \mid \mathrm{R}_{1}=\mathrm{f}\right) \mathrm{P}\left(\mathrm{R}_{2}=\mathrm{f} \mid \mathrm{R}_{1}=\mathrm{f}\right) \mathrm{P}\left(\mathrm{R}_{1}=\mathrm{f}\right)\right) \\
& =\alpha(0.9 * 0.3 * 0.5+0.2 * 0.7 * 0.5)=\alpha * 0.205
\end{aligned}
$$

Scale to sum to 1: $\alpha(0.345+0.205)=1.0 \rightarrow \alpha=1.0 / 0.55=1.82$
$\mathrm{P}\left(\mathrm{R}_{2}=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{t}\right)=1.82 * 0.345=0.627$
$\mathrm{P}\left(\mathrm{R}_{2}=\mathrm{f} \mid \mathrm{U}_{1}=\mathrm{t}\right)=1.82 * 0.205=0.373$

Compute $\mathrm{P}\left(\mathrm{R}_{2}=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{t}\right)=\boldsymbol{\alpha}\left(\mathrm{P}\left(\mathrm{U}_{1}=\mathrm{t}, \mathrm{R}_{2}=\mathrm{t}, \mathrm{R}_{1}=\mathrm{t}\right)+\mathrm{P}\left(\mathrm{U}_{1}=\mathrm{t}, \mathrm{R}_{2}=\mathrm{t}, \mathrm{R}_{1}=\mathrm{f}\right)\right)$

$$
\begin{aligned}
& =\alpha\left(P\left(R_{1}=t, R_{2}=t \mid U_{1}=t\right) P\left(U_{1}=t\right)+P\left(R_{1}=f, R_{2}=t \mid U_{1}=t\right) P\left(U_{1}=t\right)\right) \\
& =\alpha\left(P\left(R_{1}=t \mid U_{1}=t\right) P\left(R_{2}=t \mid R_{1}=t\right) P\left(U_{1}=t\right)\right. \\
& \left.\quad+P\left(R_{1}=f \mid U_{1}=t\right) P\left(R_{2}=t \mid R_{1}=f\right) P\left(U_{1}=t\right)\right) \text {, where } \alpha=1 / P\left(U_{1}=t\right) \\
& =P\left(R_{1}=t \mid U_{1}=t\right) P\left(R_{2}=t \mid R_{1}=t\right)+P(R 1=f \mid U 1=t) P\left(R_{2}=t \mid R_{1}=f\right) \\
& =0.818 * 0.7+0.182 * 0.3=0.627
\end{aligned}
$$

Compute $P\left(R_{2}=f \mid U_{1}=t\right)=\alpha(P(U 1-t, R 2=f, R 1-t)+P(U 1-t, R 2=f, R 1-f))$
$=\alpha(P(U 1-t, R 2=f \mid R 1-t) P(R 1-t)+P(U 1-t, R 2=f \mid R 1-f) P(R 1-f))$ $-\alpha(P(\mathrm{U} 1-t \mid R 1-t) P(R 2-f \mid R 1-t) P(R 1-t)$
$-\quad+P(U 1-t \mid R 1-f) P(R 2-f \mid R 1-f) P(R 1-f)) \alpha-1 / P(U 1-t)$

$$
=\mathrm{P}\left(\mathrm{R}_{1}=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{t}\right) \mathrm{P}\left(\mathrm{R}_{2}=\mathrm{f} \mid \mathrm{R}_{1}=\mathrm{t}\right)+\mathrm{P}\left(\mathrm{R}_{1}=\mathrm{f} \mid \mathrm{U}_{1}=\mathrm{t}\right) \mathrm{P}\left(\mathrm{R}_{2}=\mathrm{f} \mid \mathrm{R}_{1}=\mathrm{f}\right)
$$

$$
=0.818 * 0.3+0.182 * 0.7=0.373
$$

6) Compute $\mathrm{P}\left(\mathrm{R}_{2}=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{f}\right)$ - on your own
7) Compute $P\left(R_{2}=t \mid U_{1}=t, U_{2}=t\right)$ - next slide (and top of page 573)
8) Compute $P\left(R_{2}=t \mid U_{1}=t, U_{2}=f\right)$ - on your own
9) Alternate formulation consistent with the FORWARD algorithm illustration (pp. 572-573)

$$
\begin{aligned}
\text { Compute } \mathrm{P}\left(\mathrm{R}_{2}\right. & \left.=\mathrm{t} \mid \mathrm{U}_{1}=\mathrm{t}, \mathrm{U}_{2}=\mathrm{t}\right) \\
& =\alpha(\mathrm{P}(\mathrm{U} 2=\mathrm{t} \mid \mathrm{R} 2=\mathrm{t}, \mathrm{U} 1=\mathrm{t}) \mathrm{P}(\mathrm{R} 2=\mathrm{t} \mid \mathrm{U} 1=\mathrm{t})) \\
& =\alpha(\mathrm{P}(\mathrm{U} 2=\mathrm{t} \mid \mathrm{R} 2=\mathrm{t}) \mathrm{P}(\mathrm{R} 2=\mathrm{t} \mid \mathrm{U} 1=\mathrm{t})) \text { eq } 15.4 \mathrm{p} .572 \text { sensor Markov assumption } \\
& =\alpha\left(0.9^{*} 0.627\right) \\
& =\alpha(0.564) \\
& =1.565 * 0.564=0.883 \\
\text { Compute } \mathrm{P}\left(\mathrm{R}_{2}\right. & \left.=\mathrm{f} \mid \mathrm{U}_{1}=\mathrm{t}, \mathrm{U}_{2}=\mathrm{t}\right) \\
& =\alpha(\mathrm{P}(\mathrm{U} 2=\mathrm{t} \mid \mathrm{R} 2=\mathrm{f}, \mathrm{U} 1=\mathrm{t}) \mathrm{P}(\mathrm{R} 2=\mathrm{f} \mid \mathrm{U} 1=\mathrm{t})) \\
& =\alpha(\mathrm{P}(\mathrm{U} 2=\mathrm{t} \mid \mathrm{R} 2=\mathrm{f}) \mathrm{P}(\mathrm{R} 2=\mathrm{f} \mid \mathrm{U} 1=\mathrm{t})) \text { eq } 15.4 \mathrm{p} .572 \text { sensor Markov assumption } \\
& =\alpha\left(0.2^{*} 0.373\right) \\
& =\alpha(0.075) \\
& =1.565 * 0.075=0.117
\end{aligned}
$$

Scale to sum to $1: \alpha(0.564+0.075)=1 \boldsymbol{\rightarrow}=1 / 0.639=1.565$

Show that any second-order Markov process can be rewritten as a first-order Markov process with an augmented set of state variables. Can this always be done parsimoniously, i.e., without increasing the number of parameters needed to specify the transition model? (problem 15.1 of text)

Each X_{i} is a set of the same state variables, but at different times (p. 567)

Parsimonious? Yes - same number of conditioning state variables in each $P\left(X_{t} \mid X_{t-1}, X_{t-2}\right)$ and $P\left(X_{t, t-1} \mid X_{t-1, t-2}\right)$, with t-1 variable values shared

