
Consider the following Bayesian Network structure and conditional distributions 

Rt-1 Rt Rt+1 

Ut-1 Ut Ut+1 

Rt-1 
Rt-1=t 
Rt-1=f  

P(Rt|Rt-1) 
P(Rt=t|Rt-1=t)=0.7 
P(Rt=t|Rt-1=f)=0.3 

Rt 
Rt=t 
Rt=f  

P(Ut|Rt) 
P(Ut=t|Rt=t)=0.9 
P(Ut=t|Rt=f)=0.2 

P(R0 = t) = 0.5 

1)  Compute P(U0=f|R0=t) 
2)  Compute P(R1=t) 
3)  Compute P(R1=t | U1 = t) 
4)  Compute P(R1=t | U1 = f) 
5)  Compute P(R2=t | U1 = t) 
6)  Compute P(R2=t | U1 = f) 
7)  Compute P(R2=t | U1 = t, U2 = t) 
8)  Compute P(R2=t | U1 = t, U2 = f) 

Use the FORWARD update procedure. Show your work 

Did you reference the textbook while solving these? 
 
If  so, did you feel you needed to do so, or did you do so 
just to check your work after you finished? 



Answer here Name: _________________________________ 

1)  Compute P(U0=f|R0=t) = 1 - P(U0=t|R0=t) = 1- 0.9 = 0.1 

2)  Compute P(R1=t) = P(R1=t|R0=t) P(R0=f) + P(R1=t|R0=f)P(R0=f)= 0.7*0.5 + 0.3*0.5 = 0.5 

3)  Compute P(R1=t | U1 = t) = αP(U1=t | R1=t)P(R1=t) = α0.9*0.5 = α0.45, where α = 1/
P(U1=t) 
a) Compute P(R1=f  | U1 = t) = αP(U1=t | R1=f)P(R1=f) = α0.2*0.5 = α0.1, where α = 
1/P(U1=t) 
 
Scale to sum to 1.0 : α(0.45 + 0.1) = 1.0 à α = 1.0 /0.55 = 1.82 
P(R1=t | U1 = t)  = 1.82 * 0.45 = 0.818  ;  
P(R1=f  | U1 = t)  = 1.82 * 0.1 = 0.182 

 
4)  Compute P(R1=t | U1 = f) = αP(U1=f  | R1=t)P(R1=t) = α0.1*0.5 = α0.05,  
      where α = 1/P(U1=f) 

 a) Compute P(R1=f  | U1 = f) = αP(U1=f  | R1=f)P(R1=f) = α0.8*0.5 = α0.4,  
            where α = 1/P(U1=f) 
 

Scale to sum to 1.0 : α(0.05 + 0.4) = 1.0 à α = 1.0 /0.45 = 2.22 
P(R1=t | U1 = f)  = 2.22 * 0.05 = 0.11  ;  
P(R1=f  | U1 = f)  = 2.22 * 0.4 = 0.89 



5) One formulation that stems from definition of  Bayesian Network (not the FORWARD 
formulation illustration) 
 
       Compute P(R2=t | U1 = t) = α (P(U1=t, R2=t, R1=t)+P(U1=t, R2=t, R1=f)) 
                        = α (P(U1=t, R2=t |R1=t)P(R1=t)+P(U1=t, R2=t |R1=f)P(R1=f)) 
                        = α (P(U1=t|R1=t)P(R2=t |R1=t)P(R1=t) 
                                  +P(U1=t |R1=f) P(R2=t |R1=f)P(R1=f)) 
                        = α (0.9*0.7*0.5 + 0.2*0.3*0.5) = α*0.345 
        Compute P(R2=f  | U1 = t) = α (P(U1=t, R2=f, R1=t)+P(U1=t, R2=f, R1=f)) 
                        = α (P(U1=t, R2=f  |R1=t)P(R1=t)+P(U1=t, R2=f  |R1=f)P(R1=f)) 
                        = α (P(U1=t|R1=t)P(R2=f  |R1=t)P(R1=t) 
                                  +P(U1=t |R1=f) P(R2=f  |R1=f)P(R1=f)) 
                        = α (0.9*0.3*0.5 + 0.2*0.7*0.5) = α*0.205 
Scale to sum to 1: α(0.345 + 0.205) = 1.0 à α = 1.0 /0.55 = 1.82 
P(R2=t | U1 = t) = 1.82 * 0.345 = 0.627 
P(R2=f  | U1 = t) = 1.82 * 0.205 = 0.373 
 



5)  Alternate formulation consistent with the FORWARD algorithm (top of  page 573) 
 
 
Compute P(R2=t | U1 = t) = α (P(U1=t, R2=t, R1=t)+P(U1=t, R2=t, R1=f)) 
                        = α (P(R1=t, R2=t |U1=t)P(U1=t)+P(R1=f, R2=t |U1=t)P(U1=t)) 
                        = α (P(R1=t|U1=t)P(R2=t |R1=t)P(U1=t) 
                                  +P(R1=f  |U1=t) P(R2=t |R1=f)P(U1=t)), where α = 1/P(U1=t) 
                        = P(R1=t|U1=t)P(R2=t |R1=t) + P(R1=f  |U1=t) P(R2=t |R1=f) 
                        = 0.818 * 0.7 + 0.182 * 0.3 = 0.627 
 
        Compute P(R2=f  | U1 = t) = α (P(U1=t, R2=f, R1=t)+P(U1=t, R2=f, R1=f)) 
                        = α (P(U1=t, R2=f  |R1=t)P(R1=t)+P(U1=t, R2=f  |R1=f)P(R1=f)) 
                        = α (P(U1=t|R1=t)P(R2=f  |R1=t)P(R1=t) 
                                  +P(U1=t |R1=f) P(R2=f  |R1=f)P(R1=f)) α = 1/P(U1=t) 
                        = P(R1=t|U1=t)P(R2=f  |R1=t) + P(R1=f  |U1=t) P(R2=f  |R1=f) 
                        = 0.818 * 0.3 + 0.182 * 0.7 = 0.373 
 
6)   Compute P(R2=t | U1 = f) – on your own 
7)   Compute P(R2=t | U1 = t, U2 = t) – next slide (and top of  page 573) 
8)   Compute P(R2=t | U1 = t, U2 = f) – on your own 
	



7)  Alternate formulation consistent with the FORWARD algorithm illustration (pp. 572-573) 
 
Compute P(R2=t | U1 = t, U2 = t) 
                        = α (P(U2=t|R2=t, U1=t)P(R2=t|U1=t)) 
                        = α (P(U2=t|R2=t)P(R2=t|U1=t))   eq 15.4 p. 572 sensor Markov assumption  
                        = α(0.9*0.627) 
                        = α(0.564) 
                        = 1.565 * 0.564  = 0.883 
 
Compute P(R2=f  | U1 = t, U2 = t) 
                        = α (P(U2=t|R2=f, U1=t)P(R2=f|U1=t)) 
                        = α (P(U2=t|R2=f)P(R2=f|U1=t))   eq 15.4 p. 572 sensor Markov assumption  
                        = α(0.2*0.373) 
                        = α(0.075) 
                        = 1.565 * 0.075 = 0.117 
 
Scale to sum to 1: α(0.564+0.075) = 1 è α = 1/0.639 = 1.565 
 
 
	



Show that any second-order Markov process can be rewritten as a first-order Markov 
process with an augmented set of  state variables. Can this always be done 
parsimoniously, i.e., without increasing the number of  parameters needed to specify the 
transition model? (problem 15.1 of  text) 

Xt Xt+2 Xt+1 Xt-1 Xt-2 

Each Xi is a set of  the same state variables , but at different times (p. 567) 

Xt Xt+2 Xt+1 Xt-1 Xt-2 

New states, each with suitably labeled state variables (Xi-1 union Xi) = Xi-1,i 

Parsimonious? Yes – same number of  conditioning state variables in each P(Xt|Xt-1,Xt-2) and P(Xt,t-1|Xt-1,t-2), 
with t-1 variable values shared   	


