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Abstract
Conventional value-added assessment requires that
achievement be reported on an interval scale. While
many metrics do not have this property, application of
item response theory (IRT) is said to produce interval
scales. However, it is difficult to confirm that the requi-
site conditions are met. Even when they are, the proper-
ties of the data that make a test IRT scalable may not be
the properties we seek to represent in an achievement
scale, as shown by the lack of surface plausibility of many
scales resulting from the application of IRT. An alterna-
tive, ordinal data analysis, is presented. It is shown that
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confident of the metric properties of these scales that
they are willing to attribute differences to the superior-
ity of the latter.
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TEST SCALING AND VALUE-ADDED MEASUREMENT

1. INTRODUCTION
Models currently used for value-added assessment of schools and teachers
require that the scale on which achievement is measured be one of equal
units: the five-point difference between scores of fifteen and twenty must
represent the same gain as the five-point difference between twenty-five and
thirty. If it does not, we will end up drawing meaningless conclusions about
such matters as the average level of achievement, relative gains of different
groups of students, etc., in that the truth of these conclusions will depend on
arbitrary scaling decisions.

A scale that possesses this property is known as an interval scale. It is
clear that a simple number-right score is not an interval scale of achievement
when test questions are not of equal difficulty. The same is true of several
popular methods of standardizing raw test scores that also fail to account for
the difficulty of test items, such as percentiles, normal curve equivalents, or
grade-level equivalents normed to a nationally representative sample.1

The search for measures of achievement that are independent of the par-
ticular items included on a test led to the development in the 1950s of item
response theory (IRT). IRT is now used to score most of the best-known and
most widely administered achievement tests today, such as the CBT/McGraw-
Hill Terra Nova series, the Stanford Achievement Test (SAT), and the National
Assessment of Educational Progress. IRT was regarded as a significant advance
over earlier scaling methods for the following reasons: (1) the score of an ex-
aminee is not dependent on the difficulty of the items on the test, provided
the test is not so easy that the examinee answers all items correctly or so hard
that he or she misses them all; (2) an examinee’s score is not dependent on
the characteristics of the other students taking the same test; and (3) according
to some psychometricians, an examinee’s score is an interval scaled measure
of ability.2 This last claim makes IRT scaling particularly appealing to those
practicing value-added assessment.

However, not all psychometricians share these views, and the literature
contains many confusing and contradictory statements about the properties
of IRT scales. Because many social scientists using test scores to evaluate
educational institutions and policies have little or no training in measurement
theory, the first objective of this article is to review the issues. The next section
describes IRT. It is followed by a summary of the controversy over scale type in
section 3. While under the right conditions IRT yields interval scaled measures

1. These last methods also have the disadvantage of being dependent on the distribution of ability in
the tested population or must rely on arbitrary assumptions about this distribution.

2. The psychometric literature uses the term ability. Other social scientists might prefer achievement.
It represents the student’s mastery of the domain of the test and should not be confused with innate
ability as opposed to knowledge and skills acquired through education.
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of achievement, these conditions are difficult to verify. Moreover, IRT scales
are often at odds with common sense notions about the effects of schooling
and the distribution of ability as students advance through school. I argue in
section 4 that we are rightly suspicious of IRT scales when we see such results.
Section 5 takes up the implications for value-added assessment, with particular
attention to methods of ordinal data analysis. Concluding remarks appear in
section 6.

2. ITEM RESPONSE THEORY AND ABILITY SCALES
In IRT, the probability that student i correctly answers test item j is a function
of an examinee trait (conventionally termed ability) and one or more item
parameters.3 Thus

Pij = Prob[h(θi, δj) > uij] = F(θi, δj), (1)

where θi is ability of person i, δj is a characteristic (possibly vector valued) of
item j, and uij is an idiosyncratic person-item interaction, as a result of which
individuals of the same level of ability need not answer a given item alike. The
uij are taken to be independent and identically distributed random errors. The
function h expresses how ability and item parameters interact. F is derived
from h and assumptions about the distribution of uij. Common assumptions
are that the uij are normal or logistic. θi and δj are estimated by maximum
likelihood methods.

When there is a single item parameter, the assumption that the uij are
logistic gives rise to the one-parameter logistic model (also known as the
Rasch model):

Pij = [1 + exp(−D(θi − δj))]−1, (2a)

in which D is an arbitrary scaling parameter, invariant over items, that can be
chosen by the practitioner. (If D = 1.7 it makes essentially no difference whether
the model is estimated as a logistic or normal ogive model. Alternatively, D
is set to 1.) The estimate of θ is known as the scale score. The scale score is
the principal measure of performance on the exam, although other measures
derived from it, such as percentile ranks, may also be reported.4 The item
parameter is conventionally termed difficulty. The functional form of equation
2a implies that it is measured on the same scale as ability.

3. There are many lucid expositions of IRT, including Hambleton and Swaminathan (1985) and
Hambleton, Swaminathan, and Rogers (1991).

4. Another measure is the so-called true score, which is simply the expected number right = �Pij(θ )
on a test comprising the universe of items. This suffers from the usual defect of a number-right
score: the metric depends on the composition of the universe.
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Figure 1. Item Characteristic Curves

More elaborate models introduce additional item parameters, as in the two-
and three-parameter logistic models:

Pij = [1 + exp(−αj(θi − δj))]−1 (2b)

Pij = cj + (1 − cj)[1 + exp(−αj(θi − δj))]−1. (2c)

Equation 2b contains a second item parameter, αj, known as the item dis-
crimination parameter because it enters the derivative of Pij with respect to θi

(thereby determining how well the item discriminates between examinees of
different abilities). In both equations 2a and 2b, the limit of Pij as θi → −∞ is
0. This is not appropriate for tests where a student who knows nothing at all
can answer an item correctly by guessing. Accordingly, cj allows for a nonzero
asymptote and is conventionally termed the guessing parameter.

The plot of Pij against θi is known as the item characteristic curve (ICC).
Three item characteristic curves using the two-parameter logistic IRT model
are depicted in figure 1. Curve II differs from curve I by an increase in the
difficulty parameter, holding constant item discrimination. Curve III corre-
sponds to an item with the same level of difficulty as II but a doubling of
the discrimination parameter. All three curves have a lower asymptote of 0.
Observe that all three curves are steepest where Pij = .5 and θ = δ.5 At this
point the slope equals αj.

5. Because these models are additive in θ and δ, ability and difficulty are expressed on the same scale.

354



Dale Ballou

In the IRT models in equations 2a–2c, θ and δ are underidentified. Mod-
ification of each by an additive constant obviously leaves Pij unchanged.
Multiplicative constants can be offset by changes to (or absorbed in) the dis-
crimination parameter. Because an additive constant corresponds to a change
in the origin of the scale while a multiplicative constant represents a change
in the scale’s units (e.g., from meters to yards), many psychometricians have
concluded that θ and δ are measured on interval scales, which are charac-
terized by the same conventional choice of origin and unit (see section 3).
However, this opinion is by no means universal, nor is it firmly held. Many
psychometricians, including some who state that these are interval scales, also
regard the θ scale as arbitrary. Others caution that ability scales should be
accorded no more than ordinal significance. These conclusions appear to be
derived from the following considerations: (1) Because ability is a latent trait,
it is impossible to verify by physical means that all one-unit increments in
θ represent the same increase in ability. This (the argument goes) confers
an inherent indeterminacy on the scaling of any latent trait.6 (2) Replacing θ

with a monotonic transformation g(θ ) while making offsetting changes to the
function F yields a model that fits the data just as well.7 Thus the θ scale rests
on arbitrary assumptions regarding functional form.8 (3) The notion that θ

measures the amount of something misconceives the entire enterprise. There
is no single trait (call it ability, achievement, or what have you) to be quantified

6. “When the characteristic to be measured cannot be directly observed, claims of equal-interval
properties with respect to that characteristic are not testable and are therefore meaningless” (Zwick
1992, p. 209).

7. An example is Lord’s (1975) transformation of the θ scale to eliminate correlation between item
difficulty and item discrimination, in which θi was replaced by the regression of αj on δj and higher
powers of δj evaluated at δj = θi. The result was a modification of the three-parameter logistic model:

P∗
ij = F∗

ij(ω) = cj + (1 − cj)[1 + exp(−αj(ω−1(ω(θi))) − δj)]−1,

where ω(θ ) is proportional to −.27 + 1.1694θ + .2252θ2 + .0286θ 3. As a nonlinear transformation
of the original ability scale, the ω scale differs from the θ scale by more than a change of origin and
unit. Lord (1975, p. 205) saw this as no drawback: “There seems to be no firm basis for preferring
the θ scale to the ω scale for measuring ability.”

8. “A long-standing source of dissatisfaction with number-right and percent-correct scores is that
their distribution depends on item reliabilities and difficulties. Radically different distributions of
true scores (expected percents correct) can be obtained for the same sample of examinees when
they take different tests. The obvious restriction of such scores to their ordinal properties casts
doubt upon their use for problems that require interval scale measurement, such as comparing
individuals’ gains. . . . Item response theory appeared to offer a general solution, since the same
underlying θ scale could explain the different true-score distributions corresponding to any subset
of items from a domain. But this line of reasoning runs from model to data, not from data
to model as must be done in practice. Suppose that a given dataset can be explained in terms
of a unidimensional IRT model with response curves of the form Fj(θ ). Corresponding to any
continuous, strictly increasing function h there is an alternative model with curves F∗

j (θ ) = Fj(h(θ ))
that fits the data in precisely the same manner (Lord, 1975). That a particular IRT model fits a dataset,
therefore, is not sufficient grounds to claim scale properties stronger than ordinal” (Mislevy 1987,
p. 248).
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by this or any other means.9 As such, the question of scale type is essentially
meaningless: there are just various models for reducing the dimensionality of
the data, some more convenient than others.10 I will refer to this view of IRT
scales in the ensuing discussion as the operational perspective.

To summarize, there are some psychometricians who consider θ to be
interval scaled, others who think it is ordinal, still others who regard the choice
of scale as arbitrary, even if it is an interval scale, and finally some who are
unsure what it is. Clearly it is disconcerting to find this divergence of views on
a question of fundamental importance to value-added assessment. Is the IRT
ability trait measured on an interval scale or not? Indeed, how does one tell?

3. IRT MODELS AND SCALE TYPE
In the natural sciences, measurement is the assignment of numbers to phe-
nomena in such a way that relations among the numbers represent empirically
given relations among the phenomena. Technically, there is a homomorphism
between the empirical relations among objects in the world and numerical re-
lations on the scale. One such relation is order: if objects can be ordered with
respect to the amount of some attribute, that order needs to be reflected in
increasing (or decreasing) scale values. However, order is not the only attribute
to matter. If objects A and B can be combined (or concatenated) in such a way
that in combination they possess the same amount of some attribute (length,
mass) as object C, a scale for that attribute needs to reflect the results of that
operation. Thus, in an additive representation, the scaled value of the attribute
in A plus the scaled value of the attribute in B equals the scaled value assigned
to C.

The importance of convention relative to empirical phenomena turns out
to be the key to scale type. At one end of the spectrum are scales in which there

9. “The claim that a particular unidimensional scaling method is right must be based on the as-
sumption that achievement is unidimensional, that it can be linearly ordered, and that students
can be located in this linear ordering independently of performance on a particular achievement
test. However, no one has succeeded in identifying or defining a linearly ordered psychological
trait in educational achievement, and no one has demonstrated that a particular measurement
scale is linearly related to such a trait. A serious obstacle to the establishment of truly (externally
verifiable) equal-interval achievement scales is the fact that achievement is multidimensional and
qualitatively changing. The nature of what is being learned is constantly being modified. Use of an
objective-based approach to achievement highlights the difficulties in hypothesizing and verifying a
continuous achievement trait. The student is learning the names of letters of the alphabet one day,
associating sounds to those letters another day, and attaching meaning to groups of letters a third
day. How can such qualitative changes be hypothesized to fall so many units apart on one particular
trait?” (Yen 1986, p. 311–12).

10. “It is important for educators and test developers to acknowledge that until the achievement traits
are much more adequately defined, it is not possible to develop measurement scales that are linearly
related to such traits. In fact, it appears impossible to provide such trait definition. Test users are
therefore left to use other criteria to choose the best scale for a particular application; choosing the
right scale is not an option” (Yen 1986, p. 314).

356



Dale Ballou

is no role for convention; at the other are scales that are entirely conventional.
Scales of the first type are called absolute. An example is counting: one is not
free to change units if the information to be conveyed by the scale is the number
of discrete objects under observation.11 At the other end of the spectrum are
nominal scales, where the number assigned to an object is no more than a
label and the information conveyed could just as well be represented by a
nonnumerical symbol. Scales for most physical quantities, such as length and
mass, have a degree of freedom for the conventional choice of a unit. Such
scales are known as ratio scales because the ratio of two lengths or two weights
is invariant to the choice of unit: ratios are convention free. If there is no
natural zero, so the origin of a scale is also determined conventionally, ratios
are no longer convention-free magnitudes. However, ratios of intervals are
invariant under change of unit and change of origin. Such scales are therefore
known as interval scales: they are characterized by two degrees of freedom.
Between interval scales and nominal scales lie ordinal scales. Any increasing
function of an ordinal scale conveys the same information.12

With respect to psychological variables, there is less agreement about the
nature of measurement. There appear to be three prevalent views (Hand 1996).
In one view (sometimes called classical measurement), it is simply assumed
that the psychological variable of interest exists and that there is a ratio (or at
least interval) scale on which it is measurable. The task of measurement is to
discover those values. This appears to be the view of some psychometricians
with respect to IRT scales. In the second view, a psychological variable exists
only by virtue of its presence in some model. The model effectively defines the
variable and, when the model is fit to data, provides a means of determining the
scaled value of the variable. This has been called operational measurement and
is compatible with the operational perspective on IRT scales described above,
in which IRT models are devices for reducing the dimensionality of data. Two
different models may both contain the term ability. There is no basis for decid-
ing between them on grounds that one better represents “true ability”—each

11. It should be clear that scale type is as much a matter of how numbers are interpreted as of formal
relations among the items being scaled. For example, considered from a purely technical standpoint,
number right on a test can be regarded as an absolute scale. Like any scale that counts items (e.g.,
the score of a football game), number right does not admit of a change of units without a loss of
information. However, when test items are not of equal difficulty, number right cannot be regarded
as a measure of achievement that generalizes beyond performance on the particular test in question,
and as such is not an absolute scale, a ratio scale, or an interval scale. Except in special circumstances
it is not even an ordinal scale.

12. Scale type is therefore closely related to the notion of an admissible scale transformation (Stevens
1946). An admissible transformation preserves the empirical information in the original scale by
altering only those elements that are purely conventional. For ratio scales, these are the similarity
transformations, corresponding to a choice of unit (for example, substituting centimeters for me-
ters). In the case of interval scales, the admissible transformations consist of affine transformations,
g = α·f(a) + β.
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is just more or less useful for the purposes to which they are put. Finally, there
is a third view that holds that measurement of psychological variables is essen-
tially the same as measurement in the physical sciences—the view sketched at
the start of this section, known as representational measurement. Psychological
attributes are postulated to explain empirically given relationships (such as the
pattern of examinees’ responses to the items on a test). It is the structure of
those relationships that determines the properties of scales that measure these
attributes. Some relationships are so lacking in structure that the attributes
may not be scalable at all—the most we can do is to name them. In other cases
it may be possible to say that there is a larger quantity of some attribute in one
person than another, supporting ordinal scaling. In still other cases there may
be sufficient structure to permit interval scaled comparisons: the difference in
the amount of the attribute between A and B equals the difference between C
and D.

We can aspire to resolve disputes about scale type only if the third of
these views is correct. Classical measurement simply assumes an answer,
whereas the question of scale type is either meaningless or of no importance
in operational measurement. Virtually all discussions of scale type nod in the
direction of representational measurement by invoking Stevens’s classification
of admissible transformations. To the extent that a case can be made that
IRT scales are interval scales, it has to be made in terms of representational
measurement theory.

The argument that θ and δ are interval scaled is found in the analysis of
conjoint additive structures. We begin by assuming that the Pij are given—or,
more precisely, that we are given the equivalence classes comprising exam-
inees and items with the same Pij. Let A1 = {a, b, . . . } denote the set of
examinees and A2 = {p, q, . . . } the set of test items, and let � represent the
order induced on A1× A2 by Pij. That is, (a,p) � (b,q) if Pap ≥ Pbq. The sets
A1 and A2 and the relation � are known as an empirical relational system. If
several exacting conditions are met, requiring that the relations between A1

and A2 exhibit still more structure than the ordering of equivalence classes,
the resulting empirical relational system is called a conjoint additive structure

and the following can be proved: (1) there are functions ϕ1 and ϕ2 mapping the
elements of these sets into the real numbers (i.e., examinees and items can
be scaled); (2) the relation ordering examinee-item pairs can be represented
by an additive function of their scaled values; that is, (a,p) � (b,q) ⇔ ϕ1(a)
+ϕ2(p) ≥ ϕ1(b) +ϕ2(q); (3) only affine transformations of ϕ1 and ϕ2 preserve
this representation. These transformations correspond to a change of origin
and a change of units; hence ϕ1 and ϕ2 are interval scales (Krantz et al. 1971).

There are two critical steps in the proof. First, from the relation ordering
examinee-item pairs we must be able to derive relations ordering the elements
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Figure 2. Equiprobability Curves, Conjoint Additive Structure before Scaling

of each set separately. For this we require a monotonicity condition (also known
as independence): if Paq > Pbq for some item q, then Par > Pbr for all r. An
analogous condition holds for items: if item q is harder for one examinee to
answer, it is harder for all examinees. Monotonicity establishes orderings of
A1 and A2 separately. Without it, not even ordinal scales could be established
for examinees and items.

To obtain interval scales we need further conditions, as illustrated in figure
2, which depicts three “indifference curves” (literally, isoprobability curves)
over examinees and items: that is, three equivalence classes determined by the
Pij. Examinees and items are arrayed along their respective axes according to
the induced order on each set, but no significance should be attached to the
distance between a pair of examinees or a pair of items: the axes are unscaled
apart from the ordering of examinees and items. However, note that there is
an additional structure to the equivalence classes in figure 2. They exhibit a
property known as equal spacing: as we move over one examinee and down one
item, we remain on the same indifference curve. Equal spacing is probably the
simplest of all conjoint additive structures, but it is not a necessary condition
for conjoint additivity.

To derive an equal interval metric, we establish that the distance between
one pair of examinees is equal to the distance between another pair by relating
both to a common interval on the item axis. As shown in figure 3, the interval
between examinees a and b can be said to equal the interval between examinees
c and d in that it takes the same increase on the item scale (from q to r) to
offset both. Thus the item interval qr functions as a common benchmark for
defining a sequence of equal-unit intervals on the examinee axis. The scaled
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Figure 3. Equiprobability Curves, Conjoint Additive Structure after Scaling

value of any individual i is then obtained by counting the number of such
intervals in a sequence from some arbitrarily chosen origin to person i: ab, bc,
cd. . . . This scaling of the heretofore unscaled axes renders the equiprobability
contours linear (and, of course, parallel).

In order that the conclusion ab = bc = cd = . . . not be contradicted by other
relations in the data, it must be the case that the same conclusion follows no
matter which interval on the item axis is selected as the benchmark. A like
condition must hold for intervals on the examinee axis to serve as a metric for
items. In addition to these consistency conditions, other technical conditions
must be met when equal spacing does not obtain.

To summarize, conjoint measurement scales a sequence of intervals in
one factor by using differences of the complementary factor as a metric. By
moving across indifference curves, these sequences can be concatenated to
measure the difference between any two examinees (or items) with respect to
the latent factor they embody. Because the measurement of intervals reduces
to counting steps in a sequence, there is an essential additivity to this empirical
structure, on the basis of which we obtain additive representations of examinee
and item traits.

Conjoint additivity uses only the Pij equivalence classes and not the values
of Pij to determine the ϕ1 and ϕ2 scales. The final step from conjoint additivity
to IRT requires a positive increasing transformation F from the positive reals
to the interval [0, 1], such that F(ϕ1(a) + ϕ2(p)) = Pap. Because any increasing
transformation of ϕ1(a) +ϕ2(p) preserves the representation of A1 × A2 by ϕ1

and ϕ2, it is clear that a function F satisfying this condition can be found.
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Of the three IRT models, only the one-parameter model is consistent with
this simple conjoint additive structure. The two- and three-parameter IRT mod-
els, in which item discrimination varies, violate the monotonicity assumption.
This is easily seen with the aid of figure 1. The ICC labeled II represents an
item with discrimination parameter = 1, while the curve labeled III has a dis-
crimination of 2. The ICC crosses where θ equals the common value of the
difficulty parameter. An individual whose θ lies to the left of this intersection
finds item II more difficult than item III; an individual whose θ is to the right
of the intersection ranks the items the other way around. Because different
individuals produce inconsistent rankings of items, the ranking of examinee-
item pairs on the basis of Pij does not yield orderings of examinees and items,
and the derivation of the ϕ scales breaks down. Indeed, it is alleged that be-
cause only the one-parameter IRT model produces a consistent ordering of
items for all examinees (ICCs in the Rasch model never cross), only the θ in a
one-parameter model can be considered an interval scaled measure of ability
(Wright 1999).

This goes too far. A straightforward modification of conjoint additivity
accommodates structures with a third factor that enters multiplicatively, such
as the IRT discrimination parameter. The relevant theorem appears in Krantz
et al. (1971, p. 348). The empirical relations between examinees and items are
termed a polynomial conjoint structure. The extra conditions on examinees and
items ensure that we can obtain separate representations by discrimination
classes in the manner just described. When these conditions are met, we find
that there are functions ϕ1, ϕ2, and ϕ3 such that (a,p) � (b,q) ⇔ ϕ3(p)[ϕ1(a)
+ϕ2(p)] ≥ ϕ3(q)[ϕ1(b) +ϕ2(q)]. ϕ1 and ϕ2 are unique to linear transformations,
and ϕ3 is unique to a similarity transformation. Obviously this representation
has the structure of the two-parameter IRT model.13

13. This representation does not include anything that corresponds to the guessing parameter in the
three-parameter IRT. While I have not seen an analysis of such a conjoint measurement structure,
extending polynomial conjoint measurement to include the three-parameter IRT model would
proceed similarly to the extension of conjoint additivity to cover the two-parameter IRT model. For
sets of items with the same discrimination parameter, the two-parameter IRT model reduces to the
one-parameter model. Proof of scale properties for the two-parameter model involves selecting one
such set of items and scaling examinees with respect to it. Because the choice of items is arbitrary,
the resulting scale is unique only up to the change of units that would result from the selection of
an alternative set with a different value of the discrimination parameter. (For details, see Krantz
et al. 1971, chapter 7.) Incorporating a guessing parameter in the structure would involve following
the same logic. Examinees would be scaled using a subset of the data (i.e., for a particular choice
of discrimination and guessing parameters). As with the polynomial conjoint structure, the fact
that another choice could have been made introduces a degree of freedom into the representation,
though in the case of the guessing parameter this degree of freedom affects only the function
mapping (ϕ3(q)[ϕ1(b) + ϕ2(q)]) to Pij and not the relations among ϕ1, ϕ2, and ϕ3. The properties of
the ϕ1 and ϕ2 would therefore be precisely those established for the polynomial conjoint structure,
inasmuch as these properties depend on relations between examinees and items and not on the
function mapping equivalence classes to numerical values of Pij.
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To summarize: If the empirical relational system is one of conjoint additiv-
ity and the function F correctly specifies the relationship between θI − δi and
the Pij, the IRT measure of latent ability, θ , and the IRT difficulty parameter, δ,
are interval scaled variables. If the empirical relational system is a polynomial
conjoint structure and F is again correct (e.g., the two-parameter logistic IRT
model, or possibly the three-parameter model, if extra conditions entailing a
lower asymptote on Pij are met), θ and δ are again interval scaled.

Notwithstanding the fact that these propositions were proved in the 1960s,
one continues to find a wide range of opinions about the properties of IRT
scales in the psychometric community (as we have seen). At least some of that
diversity of opinion is due to the following three misconceptions about scales:
(1) because arbitrary monotonic transformations of θ and δ can be shown to fit
the data equally well, θ and δ cannot be interval scaled. At best they are ordinal
variables; (2) because θ is interval scaled, no scale of achievement related to
θ by anything other than an affine transformation can be an interval scale. In
particular, if ψ = g(θ ), where g is monotonic but not affine, the ψ scale is
ordinal; and (3) using an IRT model (or specifically the Rasch model) to scale a
test produces an interval scale of ability. Each of these beliefs is wrong. Before
quitting this discussion of representational measurement theory, we need to
understand why.

The first of these views derives from Stevens’s (1946) stress on the role
of admissible transformations in determining scale type. The problem is that
Stevens’s formulation of the matter fails to make clear just what makes a
transformation “admissible.” There is a sense that information must not be
lost when a scale is transformed—but precisely what information? All trans-
formations rest on the implicit assumption that there is something we can
alter freely—something, in other words, that is not “information,” at least
not information we care about. Stevens’s criterion for determining scale type
remains empty until this something is specified.

Misconception (1) rests on the following argument: we can replace θ with
g(θ ) for arbitrary monotonic function g and still fit the data (the Pij) equally
well, provided we make an offsetting change to the function F relating θ and δ

to P. An example appeared in footnote 7, in Lord’s (1975) modification of the
three-parameter logistic model:

P∗
ij = F∗

ij(ω) = cj + (1 − cj)[1 + exp(−αj(ω−1(ω(θi))) − δj)]−1.

Because this model fits the data as well as the original three-parameter logistic
model (as it must, being mathematically equivalent), it is argued that θ and
ω(θ ) contain the same information about ability. Because the ω function is not
affine but an arbitrary monotonic function, the conclusion is drawn that θ and
ω must both be ordinal scales.
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The flaw in this argument is the supposition that the only information that
matters is the order over equivalence classes of examinees and items induced
by the Pij. But the proof from conjoint additivity does not conclude that θ and δ

are interval scales merely because these mappings from examinees and items
to real numbers preserve order among the Pij. The empirical relational system
between classes of examinees and items contains more structure than the
ordering of equivalence classes. It is this additional structure, as illustrated by
the example of the equally spaced conjoint structure above, that underlies the
claim that certain mappings from examinees and items are interval scales. An
arbitrary monotonic transformation of these scales no longer reflects the rela-
tions holding among the scaled items and examinees shown in figure 3. Such
a transformation loses the information that the distance between examinees a
and b equals the distance between b and c in the sense that both offset the same
substitution of one pair of test items for another. Preserving that information
restricts the class of admissible transformations to affine functions.

The preceding comment notwithstanding, it does not follow that there
cannot be another way of assigning numbers to examinees, on the basis of
some other property, producing a new scale ξ = h(θ ) for a non-affine function
h that can also be regarded as an interval scaled measure of ability. Clearly
ξ and θ cannot be interval scales of the same property of examinees. (In the
language of representational measurement theory, they cannot represent the
same empirical relational system.) That we might have reason to regard both
as measures of achievement is due to the vagueness and imprecision with
which the term achievement is used, not just in ordinary discourse but in social
science research.

I illustrate with an example from economics. Consider a firm that employs
thirty workers on thirty machines. Workers are rotated among machines on
a daily basis. The only information the firm has on the productivity of either
factor of production is the daily output of each worker-machine combination.
Suppose, for purposes of rewarding employees or scheduling machines for
replacement, the firm decides it needs measures of the productivity of individ-
ual workers and machines. In other words, it wants to scale these heretofore
unscaled entities. (The parallel with testing should be obvious.) A measure-
ment theorist is called in who observes that the data satisfy the conditions of a
conjoint additive structure, inasmuch as workers and machines can be scaled
such that the resulting isoquants in worker-machine space are linear and paral-
lel. The measurement theorist confidently announces that these scaled values
represent worker and machine productivity, up to an arbitrary choice of unit
of measurement and origin.

Some time later the firm calls in a production engineer, who prowls around
the shop floor with a stopwatch for a week and then reports the following
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discovery: the output of a worker-machine pair is a simple function of the
downtime of the machine (beyond a worker’s control) and the amount of
time the worker is goofing off. That is, output Qwm = πwπm, where πw is the
proportion of time worker w is attending to his work and πm is the proportion of
time machine m is running properly. There is no difference between workers
otherwise: during their time on task with a functioning machine, all are equally
productive. The engineer therefore proposes πw as the natural (and ratio scaled)
measure of employee productivity.

It is then noted that the engineer’s productivity measure is not a linear
transformation of the measurement theorist’s measure in that the two vari-
ables differ by more than a choice of origin and unit. (Indeed, the measurement
theorist’s θw = ln πw.) Yet each expert swears that his measure has at least
interval scale properties, and each is right. The two measures capture differ-
ent properties of the relations between workers and machines. The engineer
doesn’t care that his metric ignores the information in the conjoint additive
structure because he relies on an alternative empirical relational system (one
that includes the position of hands on a stopwatch) to scale the entities on the
shop floor. Both experts have produced interval scales, and it is up to the firm
to decide which scale captures properties of the relations between workers and
machines that most matter to it.

This example shows why the second of the three misconceptions cited
above is false. The parallel with testing is maintained if there is some other
empirical relational system into which examinees and test items fit, affording
an alternative metric. Suggestive examples are found in the education pro-
duction function literature, in the form of back-of-the-envelope calculations
of the benefits of various educational interventions (e.g., the dollar value of
higher achievement associated with smaller class sizes). Whether this can be
done with sufficient rigor to provide an interval scale for measuring student
achievement (and whether it is desirable to construct one along these lines, if
feasible) is a question to which I return in section 5.

Finally, the notion that the use of an IRT model (or a particular IRT model,
such as the Rasch model) confers interval scale status on the resulting θ places
the cart before the horse: it overlooks the requirement that the empirical rela-
tional system be a conjoint additive or polynomial conjoint structure. Applying
an IRT model willy-nilly to achievement test data does not of itself confer any
particular properties on the scale score metric.14

14. Though an obvious point, this is not always appreciated by researchers. Consider the following
statement in a report of the Consortium on Chicago School Research. Having rescaled the Iowa
Test of Basic Skills using a Rasch IRT model, the authors claim to have produced a metric with
interval scale properties: “A third major advantage of the Rasch equating is that, in theory, it
produces a ‘linear test score metric.’ This is an important prerequisite in studies of quantitative
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4. ACHIEVEMENT SCALES IN PRACTICE
To summarize the argument of the preceding section, under stringent condi-
tions an IRT measure of ability can be shown to be an interval scaled variable.
But there are two important caveats. First, do the data meet these stringent con-
ditions? Second, might there be some other set of relations holding between
examinees and test items that provides an alternative, and perhaps more satis-
factory, basis for constructing an achievement measure with interval (or even
ratio) scale properties? I take up these questions in turn.

It is highly unlikely that real test data meet the exacting definition of a
conjoint structure. At best they come close, though it is not easy to say how
close. The theory places restrictions on the equivalence classes of A1 × A2

(examinees crossed with items), but these classes are not given to us. Instead,
the data consist of answers to test items, often binary indicators of whether the
answer was correct or not. From these data the membership of the equivalence
classes must be inferred before one can ascertain whether these classes can
be represented by a set of linear, parallel isoprobability curves. Because the
theory stipulates restrictions that hold for every examinee, while the amount
of data per examinee is small, there is little power to reject these hypotheses
despite anomalies in the data. Many restrictions might be accepted that would
be deemed invalid if the actual Pij were revealed.

IRT assumes that conditional on θ and δ, the Pij are independent across
items and examinees. Although correlated response probabilities attest to the
existence of additional latent traits that affect performance, unidimensional
models are fit to the data anyway. Sometimes it is clear even without statistical
tests that the model does not fit the data. Consider multiple-choice exams,
where the lower asymptote on the probability of a correct response is not
zero. The lower asymptote is more important for low-ability than high-ability
examinees. A conjoint structure for these data must take into account the lower
asymptote as another factor determining Pij or the scaled values of examinee
ability will be wrong. Indeed, if responses to a multiple-choice exam are tested
to see whether the definition of conjoint additivity is met, data that appear to
meet this definition will no longer do so once guessing is factored in unless
all items are equally “guessable.”

Even when the data do fit the model, the extent to which they have been
selected for just this reason should be kept in mind. Indeed, it is not clear that
the word data is the right one in this context because the tests are designed by
test makers who first decide on a scaling model and then strive to ensure that

change. This allows us to compare directly the gains of individual students or schools that start at
different places on the test score metric” (Bryk et al. 1998, p. 46).
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their test items meet the assumptions of that model.15 Even if they are wholly
successful in this endeavor, the data represent a selected, even massaged, slice
of reality and not a world of brute facts.

Thus, notwithstanding the support given by representational measurement
theory to IRT methods, IRT can fail to produce satisfactory interval scales.
Verifying that the conditions of the theory are met is difficult even for test
makers, let alone statisticians and behavioral scientists who use test scores for
value-added assessments.

As the worker-machine example shows, even if test data satisfy the condi-
tions of a conjoint structure, there might be some other scale with a claim to
measure what we mean by achievement. IRT scales have the peculiarity that
the increase in ability required to raise the probability of a correct response
by any fixed amount is independent of the difficulty of the question. That is,
raising the probability of answering a very difficult question from .1 to .9 takes
the same additional knowledge as it does to raise the probability of answering
a very simple item from .1 to .9. (Observe that in this argument, .1 and .9 can
be replaced by any other numbers one likes, for example .0001 and .9999.)
That it takes the same increase in ability to master a hard task as an easy one
follows directly from conjoint additivity (specifically, the parallel equiproba-
bility contours that result when items and examinees are scaled to represent
conjointness), but it may be difficult for many readers to square this notion
with other ideas they entertain about achievement, based on the use of the
term in other contexts: how long it takes to accomplish these two tasks, how
hard instructors must work, the extent to which a student who has mastered
the more difficult item is in a position to tackle a variety of other tasks and
problems compared with the student who has mastered the easier item, and
so forth. In short, we may find ourselves in the position of the production
engineer in the worker-machine example: taking into account the other infor-
mation we possess, we might find the scale derived from conjoint additivity
lacking, notwithstanding its impeccable pedigree on purely formal grounds as
an interval scale.

At this point it may be useful to examine some of the scales that have been
produced using IRT methods. If larger increments of ability (as measured by an
alternative metric grounded in some of the aforementioned phenomena) are
in fact required to produce the same change in Pij as questions become more

15. For example, in the Rasch model, items have a common discrimination parameter (their item
characteristic curves do not cross). Test makers using the Rasch model plot ICCs and discard items
that violate this assumption. IRT also assumes that conditional on θ , probabilities of a correct
response are independent over examinees. Violations of this assumption lead items to be discarded
on grounds of potential bias. This is probably a good idea, but it further weakens the sense in which
we are dealing here with the fit between a model and “data.”
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Table 1. Scale Scores for Comprehensive Test of Basic Skills, 1981 Norming Sample

Reading/Vocabulary Mathematics Computation

Mean Std. Mean Between- Mean Std. Mean Between-
Grades Score Dev. Grade Change Score Dev. Grade Change

1 488 85 – 390 158 –

2 579 78 91 576 77 186

3 622 65 43 643 44 67

4 652 60 30 676 35 33

5 678 59 26 699 24 23

6 697 59 19 713 20 14

7 711 57 14 721 23 6

8 724 54 13 728 23 7

9 741 52 17 736 17 8

10 758 52 17 739 16 3

11 768 53 10 741 18 2

12 773 55 5 741 20 0

Source: Yen 1986. Reprinted with permission of Blackwell Publishing Ltd.

difficult, IRT scaling will compress the high end of the scale, diminishing mean
gains between the upper grades and reducing the variance in achievement.
Evidence that something of this kind occurs is found in developmental scales
used to measure student growth across grades. Students at different grade
levels are typically given different exams, but by including a sufficient number
of overlapping items on forms at adjacent grade levels, performance on one
test can be linked to performance on another test, facilitating the creation of a
single scale of ability spanning multiple grade levels.

Table 1, reproduced from Yen (1986), displays scores for the norming
sample for the Comprehensive Test of Basic Skills (CTBS), Form Q, developed
by CTB/McGraw-Hill and scaled using IRT methods for the first time in 1981.16

In both subjects, mean growth between grades drops dramatically, and almost
monotonically, between the lowest elementary grades and secondary grades.
In addition, the standard deviation of scale scores declines as the mean score
rises.

16. Prior to 1981, the CTBS was scaled using an older method known as Thurstone scaling. Although it
has been claimed that Thurstone scaling produces scores on an interval scale, there is no basis for this
claim comparable to the proofs provided for conjoint measurement structures in representational
measurement theory: scale properties are not based on the structure of empirical relations holding
among test items and examinees but on ad hoc assumptions about the distribution of ability in the
population tested.
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Table 2. Mean Between-Grade Differences, Terra Nova

Subject Year 2nd–3rd 3rd–4th 4th–5th 5th–6th 6th–7th 7th–8th 8th–9th

Mississippi, 2001

Language arts 30.2 20.4 17.8 6.9 9.9 10.9 –

Reading 23.8 21.5 15.5 10.5 9.2 12.4 –

Math 47.3 24.7 19.0 21.7 10.7 17.0 –

New Mexico, 2003

Language arts – 14.8 12.6 5.1 3.7 4.5 8.3

Reading – 14.4 13.8 5.0 4.7 11.4 4.9

Math – 21.1 14.6 19.0 5.5 16.5 5.4

Science – 20.2 13.9 9.0 11.6 11.9 7.1

History/SS – 13.3 6.2 11.2 11.5 3.6 3.6

Source: Author’s calculations from school-level data posted on www.schooldata.org, maintained
by the American Institutes for Research. Data for each school are weighted by enrollment and
aggregated to the state level.

CTB/McGraw-Hill has since superseded the CTBS with the Terra Nova
series. The decline in between-grade gains seen in the CTBS norming sample
is still evident, though less pronounced, in Terra Nova results for Mississippi
and New Mexico, as shown in table 2.17 Mean gains in all subjects tend to
decrease with grade level, though there is a break in the pattern between
grades 7 and 8.

Between-grade gains can be affected by the differences in the content of
tests and by linking error. It is particularly instructive, therefore, to see the
patterns that emerge when there are no test forms specific to a grade level
and no linking error. The Northwest Evaluation Association uses computer-
adaptive testing in which items are drawn from a single, large item bank.
Results for all examinees in reading and mathematics in the fall of 2005 are
presented in table 3. As in the previous tables, we again find that between-grade
differences decline with grade level. Within-grade variance in scores is stable
(reading) or increases moderately (mathematics).

Because this is at base a dispute about how to use words, we need to
be careful in discussing these phenomena. If the test data in fact exhibit a
conjoint structure (let us concede the point for now), the IRT θ is an interval
scaled variable. Yet this scale commits us to the conclusion that the variance of

17. Data are from www.SchoolData.org maintained by the American Institutes for Research. New
Mexico and Mississippi were two of a handful of states in these data that reported mean scale scores
for vertically linked tests produced by test makers known to employ IRT scaling methods.
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Table 3. Scale Scores, Northwest Evaluation Association, Fall 2005

Reading Mathematics

Grade Mean Std Change Mean Std Change

2 175.57 16.22 – 179.02 11.81 –

3 190.31 15.56 14.74 192.96 12.06 13.95

4 199.79 14.95 9.48 203.81 12.80 10.85

5 206.65 14.60 6.86 212.35 13.92 8.53

6 211.49 14.76 4.84 218.79 15.00 6.44

7 215.44 14.82 3.96 224.59 15.99 5.80

8 219.01 14.76 3.56 229.38 16.79 4.79

9 220.93 15.28 1.92 231.76 17.42 2.38

Source: Author’s calculations from data provided by NWEA.

reading ability is no greater among high school students than second graders.
Most of us, I suspect, would respond that this scale fails to capture something
about the word ability (or achievement) that causes us to recoil from such a
conclusion.

Readers wondering whether their own pre-theoretical notions of these
terms accord with the usage implied by IRT are invited to consider the sample
of mathematics test items displayed in figure 4, taken from the Northwest
Evaluation Association (2008) Web site. The items are drawn from a larger
chart providing examples of test questions at eleven different levels of difficulty.
The two selections represent items scored at the 171–80 level and the 241–50
level, respectively.18 Consider the following question: if student A is given
the items in the first set and student B the items in the second set, and
if initially each student is able to answer only two of seven items correctly,
which student will have to learn more mathematics in order to answer all
seven items correctly? Student A has basics of addition and subtraction to
learn, as well as (perhaps) how to read simple charts and diagrams. None
of the required calculations is taxing; all could be done by counting on one’s
fingers. By contrast, student B must make up deficits in several of the following
areas: decimal notation, fractions, factoring of polynomials, solving algebraic
equations in one unknown, solid geometry, reading box plots, calculating
percentages. The calculations required are more demanding. However, the

18. According to the data in table 3, the average second grader tested in 2005 would have answered
slightly more than half the questions in the first set correctly, while the average ninth grader would
have responded correctly to slightly less than half the questions in the second set.
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Figure 4. Math Items at Two Levels of Difficulty
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correct answer, according to IRT, is that both require the same increase in
mathematics ability.19

One might conclude from this evidence that psychometricians should not
attempt to construct overarching developmental scales for mathematics and
reading ability that span so many age levels. But other concerns are also raised.
Between-grade gains begin to decline at the lowest grade levels in tables 1–3:
gains between third and fourth grades are markedly lower than gains between
second and third. Between-grade comparisons may matter little for value-
added assessment if most instructors, particularly in the elementary grades,
teach only one grade level. However, there are also implications for within-
grade assessments. If third graders are not in fact learning less than second
graders—if instead IRT methods have compressed the true scale—then the
true gains of higher-achieving students within these grades are understated.20

5. OPTIONS FOR VALUE-ADDED ASSESSMENT
What options are available to the practitioner who wants to conduct value-
added assessment but is unwilling to accept at face value claims that the IRT
ability trait is measured on an interval scale? Broadly speaking, there are three
available courses of action.

1. Use the θ scale anyway;
2. Choose another measure of achievement with an interval scaled metric; or
3. Adopt analytical methods suited to ordinal data.

19. Strictly speaking, this is the correct answer only if items have equal discrimination parameters, that
is, the one-parameter IRT model fits the data. In fact, NWEA does use the one-parameter model and
has gone to considerable lengths to verify that the items meet the assumptions of that model. When
I put this question to faculty and graduate students of my department in the School of Education
at Vanderbilt, 13 of the 108 respondents chose A, 47 chose B, 15 said the amounts were equal, and
33 said the answer was indeterminate. Obviously this was not a scientifically conducted survey,
nor is it clear just what respondents meant by their answers. Conversations with some revealed
that they converted the phrase “more mathematics” into something more readily quantified, such
as the amount of time a student would need to acquire these skills. Persons who said the answer
was indeterminate may have meant it was indeterminate in principle (“more mathematics” is
meaningless) or simply that that answer could not be determined from the information given.
Nonetheless, it is striking how few gave the psychometrically correct response.

20. The phenomena of decreasing gains and diminishing or constant variance with advancing grade
level have been treated in the psychometric literature under the heading “scale shrinkage.” While a
number of explanations have been advanced, these explanations typically assume that there is a true
IRT model that fits the data (with ability, perhaps, multidimensional rather than unidimensional)
and that various problems (e.g., a failure to specify the true model, the small number of items on the
test, changing test reliability within or across grades, ceiling and floor effects) prevent practitioners
from recovering the true values of θ . Psychometricians have disagreed about the extent to which
these explanations account for the phenomena in question. (For notable contributions to this
literature, see Yen 1985; Camilli 1988; Camilli, Yamamoto, and Wang 1993; Yen and Burket 1997.)
By contrast, the point I am making here is that even in the absence of these problems, IRT scales
are likely to exhibit compression at the high end when compared with pre-theoretical notions of
achievement grounded in a wider set of empirical relations.

371



TEST SCALING AND VALUE-ADDED MEASUREMENT

In this section I argue that neither (1) nor (2) is an attractive option. I then go
on to demonstrate the feasibility of (3).

(1) Using the θ Scale

Even if the IRT ability scale possesses at best ordinal significance, one might
continue to use it if reasonable transformations of θ all yield essentially the
same estimates of value added. (Compare the claim that statistics calculated
from ordinal variables are generally robust to all but the most grotesque trans-
formations of the original scale.)21 The practice of many social scientists who
are aware that achievement scales may not be of the interval type but pro-
ceed with value-added assessment anyway suggests that this view may be
widespread.

Unfortunately, to test whether reasonable transformations of θ yield es-
sentially the same measures of value added requires some sense of what is
reasonable. Absent that, there may be a tendency for researchers conduct-
ing sensitivity analyses to decide that the alternatives that are reasonable are
those that leave their original estimates largely intact. The compression of
scales displayed in tables 1–3 suggests one possibility: assume an achievement
scale in which average gains are equal across grades. I have examined the
consequences of adopting this alternative scaling for data from a sample of
districts in a Southern state.22 Data are from mathematics tests administered
in grades 2–8 during the 2005–6 school year. The tests were scaled using
the one-parameter IRT model. Results were similar to those we have seen in
tables 2–4, with near-monotonic declines in between-grade gains. A transfor-
mation ψ = g(θ ) was sought that would equalize between-grade gains for the
median student.23 It turned out that this could be closely approximated by a
quadratic function increasing over the range of observed scores. Figure 5 de-
picts the relationship between the transformed and original scaled values for
the median examinee. While one might object to the ψ scale on the grounds
that median student gains are not “really” equal across grades, tapering off as
students approach adolescence, figure 5 shows that the transformation from
θ to ψ is not driven by the upper grades—essentially the same curve would
be found if data points for grades 7 and 8 were dropped. Moreover, g(θ )

21. Cliff (1996) attributes this remark to Abelson and Tukey (1959), but it does not appear in that paper.
22. Anonymity has been promised to both the state and the test maker. Data are available for only a

portion of the state. In addition, because between-grade growth is central to the analysis, only those
districts that tested at least 90 percent of students in each grade are included. The final sample
comprised 98,760 students in grades 2–8 during the 2005–6 school year.

23. To accomplish this, the original median scores were replaced with a new series in which the between-
grade gain was set to the overall sample median gain across all grades. This left unchanged the
second-grade values but altered the values in subsequent grades, as shown in figure 5. A quadratic
function of θ was then fit to the new series. The fit, as shown, was exceedingly close, though on the
resulting scale, median gains can vary by ±.5 points.
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Figure 5. Scale Transformation Equating Median Between-Grade Gains

exhibits only a modest departure from linearity. It seems unlikely that many
researchers would regard it as a grotesque transformation of the data.

Nonetheless, the consequences of this transformation for the distribution
of growth are pronounced (table 4). At each grade level, I have calculated the
change in θ (alternatively, ψ) required to remain at the 10th, 25th, 50th, 75th,
and 90th percentiles of the achievement distribution when advancing to the
next grade. The absolute changes in θ and ψ that meet this criterion are af-
fected by the magnitude of the median student growth (and are therefore scale
dependent—i.e., they depend on choice of units). However, relative changes
are invariant to the choice of units. Accordingly, column 1, top panel, presents
the ratio of �θ25 to �θ10 (the change required to remain at the 25th percentile
over the change required to stay at the 10th percentile). Comparable ratios for
the 50th, 75th, and 95th percentiles appear in the other columns. The lower
panel contains the same ratios for the ψ scale.

In the original scale, differences in growth at various points of the distribu-
tion are not pronounced. The ratios are greatest in the fifth and sixth grades,
but even here there is not much difference between a student at the median
and one at the 90th percentile. By contrast, the ratios are much greater using
the transformed scale and increase monotonically as we move to the right,
from �ψ25/�ψ10 to �ψ90/�ψ10. While the direction of the change is what
we would expect on the basis of the preceding discussion—less compression
at the high end of the ψ scale compared with the θ scale—the magnitude of
the difference is surprising. The impact on value-added assessment depends
on how students are distributed over schools and teachers. Clearly, changes of
the magnitude shown in table 4 can make a great difference to teacher value
added when that distribution is not uniform.
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Table 4. Effect of Scale Transformations on Between-Grade Growth

Relative to students at the 10th percentile, growth by students at the:

25th 75th 90th
percentile Median percentile percentile

Original Scale

2nd–3rd 0.97 1.06 1.03 0.95

3rd–4th 1.10 1.03 1.16 1.34

4th–5th 0.96 1.15 1.35 1.23

5th–6th 1.61 2.12 2.17 2.24

6th–7th 1.21 1.39 1.43 1.62

7th–8th 1.16 1.17 1.16 1.13

Transformed Scale

2nd–3rd 2.63 5.06 6.83 7.90

3rd–4th 1.69 2.10 2.93 3.95

4th–5th 1.30 1.94 2.74 2.87

5th–6th 2.12 3.48 4.25 4.91

6th–7th 1.60 2.29 2.79 3.50

7th–8th 1.51 1.89 2.17 2.35

Source: Mathematics test results furnished to author from a southern state, 2005–6.

(2) Changing the Scale

Clearly nothing is gained by substituting percentiles, normal curve equivalents,
or standardized scores for θ . While all are used in the research literature, no one
claims that they are interval scaled. However, two approaches merit discussion,
not because they work any better but because the view seems to be gaining
currency that they do, or could.

The first, which I will refer to as binning, assigns every examinee to a
group defined by prior achievement (e.g., deciles of the distribution of prior
scores). Gain scores are normalized by mean gains within bins, either through
dividing by the mean gain or standardizing with respect to the mean and
standard deviation within each bin. The normalized gain scores are then used
as raw data for further analysis, which could include value-added assessment
of schools and teachers. Examples of this approach are Springer (2008) and
Hanushek et al. (2005). In the latter study, binning is explicitly motivated by
concern that the metric in which test results are reported does not represent
true gains uniformly at all points of the achievement distribution.24

24. A practice similar to binning has been used in the Educational Value-Added Assessment System
(EVAAS) of the SAS Institute, wherein gain scores are divided by the gain required to keep an
examinee at the same percentile of the post-test distribution that he or she occupied in the pretest
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Binning does not solve the problem of scale dependence; it merely declares
that a normalized gain in one bin is to count the same as one that takes the
same normalized value in another bin. The declaration does not ensure that
these two gains are equal when measured on the true scale (if such a thing
exists). Rather than solving the problem, binning is simply the substitution of
a particular transformation for the θ scale.

The notion that binning represents a solution may derive from the fact
that normalizing within bins removes much of the effect of any prior transfor-
mation of scale (for example, the substitution of the ψ scale for the θ scale).
Differences between bins have no effect on value-added measures. Only differ-
ences within bins matter (though these are still affected by the transformation
whenever the slope of g(θ ) = ψ at a bin mean differs from 1). Hence the results
of the binned analysis are less sensitive to prior transformations of the original
scale. This may have led some to believe that scale no longer matters as much.
This is not so, given that the normalized-within-bin scores are themselves just
another transformation of θ . Moreover, if invariance of this kind were the sole
desideratum, percentiles could be used in place of θ . Percentiles are invariant
to any increasing transformation of θ , but that does not make percentiles an
interval scale of achievement.

Suppose we decide that the problem of finding interval scales for academic
achievement is intractable. We still might be able to conduct value-added as-
sessment if achievement—by whatever metric—could be mapped into other
variables whose measurement poses no such difficulties. This mapping could
go backward to inputs or forward to outcomes. In the former, academic achieve-
ment would be related to measurable inputs required to produce that achieve-
ment. Thus, instead of worrying whether one student’s five-point gain was
really the equal of another student’s five-point gain, we would concern our-
selves with measuring the educational inputs required to produce either of
these gains. If those inputs (e.g., teacher time) turn out to be equal, then for
all purposes that matter the two gains are equivalent. If those inputs turn
out not to be equal, the teacher or school that has produced the gain requir-
ing the greater inputs has contributed more and should be so recognized by
value-added analysis.

Forward mapping treats test scores as an intermediate output. Value-added
assessment would proceed by tying scores to long-term consequences.

distribution (Ballou 2005). Thus for exams like the Iowa Test of Basic Skills that exhibit increasing
variance at higher grade levels, the transformation pulls up gains of examinees whose pretest scores
were below the mean and reduces gains of examinees whose pretest scores were above the mean.
There is no reason that this should be regarded as superior to using the original scale.
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An important methodological issue . . . is the problem of choosing the
correct metric with which to measure academic growth. Because the
metric issue is so perplexing, almost all researchers simply use the par-
ticular test at their disposal, without questioning how the test’s metric
affects the results. . . . The only solution I see to the problem of deter-
mining whether gains from different points on a scale are equivalent
is to associate a particular test with an outcome we want to predict (say,
educational attainment or earnings), estimate the functional form of
this relationship, and then use this functional form to assess the mag-
nitude of gains. For example, if test scores are linearly related to years
of schooling, then gains of 50 points can be considered equal, regard-
less of the starting point. If the log of scores is linearly related to years
of schooling, however, then a gain of 50 points from a lower initial
score is worth more than a gain of 50 points from a higher initial
score. This “solution” is, of course, very unsatisfactory, because the
functional form of the relationship between test scores and outcomes
undoubtedly varies across outcomes. (Phillips 2000, p. 127)

As the final sentence of this passage suggests, we are very far from being
able to carry out either of these programs. Only some educational inputs are
easily quantified. For such inputs as the clarity of a teacher’s explanations or
the capacity to inspire students, the challenges to quantification are at least as
great as for academic achievement. Indeed, the low predictive power of those
inputs that are easily quantified is largely responsible for the current interest
in value-added assessment.

The practical difficulty mentioned in the last sentence of the quoted passage
is not the only problem facing the forward mapping of test scores to long-term
educational outcomes. Given the variation in test results in tables 1–3, it would
almost certainly be the case that the functional form of the relationship between
test scores and outcomes would vary across tests as well as outcomes. The
introduction of each new test would require additional analysis to determine
how scores on its metric were related to long-term objectives like educational
attainment and earnings. In many cases, the data for such analysis would not
be available for years to come, if ever. In the interim we would have to make
do with very imperfect efforts to equate the new tests with tests already in use
(for which we would hope this mapping had already been done).

These are the technical issues. There is in addition the difficult normative
question of how to value various outcomes for different students in order to
assign a unique social value to each θi.It is not obvious how we would come by
these weights. Even if future earnings were the only outcome that mattered,
we would require the relative values of a marginal dollar of future income
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for all examinees (whose future incomes are, of course, unknown at the time
the assessment is done). Attaching a price to the nonpecuniary benefits of
an education is still more difficult. Education is a transformative enterprise.
The ex ante value placed on acquiring an appreciation of great literature is
doubtless very different from the ex post value. In these circumstances there
is likely to be a great discrepancy between the compensating and equivalent
variations associated with a given educational investment. Accordingly, the
weights in our index would have to reflect the values of “society” rather than
the still-unformed persons to be educated.

It is not clear that we should subject decisions about education to this kind
of utilitarian calculus because it fails to respect the autonomy of individuals.
There is a strong tradition in our polity of regarding educational opportunity
as a right. Individuals have a claim on educational resources not because
distributing resources in this manner maximizes a social welfare function but
because they are entitled to the chance to realize their potential as individuals. If
we take this seriously, the notion that teachers and schools are to be evaluated
by converting test scores into the outputs that matter and weighting these
outputs according to their social value is wrongheaded. The point of education
is to provide students with skills and knowledge that as autonomous persons
they can make of what they will. Teachers should therefore be judged on how
successfully they equip their students with these tools—regardless of anyone’s
views of the merits of the final purposes, within wide limits, for which students
use them.

(3) Analyzing Test Scores as Ordinal Data

The final option for researchers uncertain of the metric properties of ability
scales is to treat such scales as ordinal, thus forgoing any analysis based on the
distance between two scores. On the assumption that θ scales contain valid
ordinal information about examinees, statistics based on the direction of this
distance remain meaningful. There are a variety of closely related statistics
of this kind (known generally as measures of concordance/discordance) em-
ployed in the analysis of ordinal data. In this discussion I will not attempt to
identify a particular approach as best. Rather, my objective is to demonstrate
the feasibility of such methods for value-added assessment.

Suppose we want to compare the achievement of teacher A’s class to the
achievement of other students at the same grade level in the school system. If
A has n students, and teachers elsewhere in the system have m students, there
are nm possible pairwise comparisons of achievement. Because only ordinal
statements are meaningful, each pair is examined to determine which student
has the higher score. If it is A’s student, we count this as one in A’s favor
(+1); if it is the student from elsewhere in the system, we count this as one
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against A (−1). Ties count as zeros. The sum of these counts, divided by the
number of pairs, is known as Somers’ d statistic. Somers’ d can be considered an
estimate of the difference in two probabilities: the probability that a randomly
selected student from A’s class outperforms a randomly selected student from
elsewhere in the system, less the probability that A’s student scores below the
outsider.

This procedure suffers from the obvious defect that no adjustment has
been made for other influences on achievement. In conventional value-added
analyses, this might be accomplished through the introduction of prior test
scores as covariates in a regression model or by conditioning on prior scores in
some other manner. An analogous procedure in the ordinal framework would
be to divide students into groups on the basis of one or more prior test scores,
compute separate values of Somers’ d by group, and aggregate the resulting
statistics using the share of students in each group as weights. In principle
there is no reason to restrict the information used to define groups to test
scores. Any student characteristic could be used to define a group. Only data
limitations prevent the construction of ever-finer groups.

Results from an application of this approach are presented in table 5. Be-
cause the data used in the previous example do not contain teacher identifiers,
for this application I have used a different data set provided by a single large
district that contains student-teacher links. Two sets of value-added estimates
are presented for teachers of fifth-grade mathematics. The first is the weighted
Somers’ d statistic, based on pairwise comparisons of each teacher’s students
to other fifth graders in the district. To control for prior achievement, stu-
dents were grouped by decile of the fourth-grade mathematics score. Students
without fourth-grade scores were dropped from the analysis. The second value-
added measure is obtained from a regression model in which fifth-grade scores
were regressed on fourth-grade scores and a dummy variable for the teacher in
question. Separate regressions were run for each teacher so that each teacher
was compared with a hypothetical counterpart representing the average of the
rest of the district, preserving the parallel with the Somers’ d statistic. The co-
efficients on the dummy variables represent teachers’ value added. Statistical
significance was assessed using the conventional t-statistics in the case of the
regression analysis and jackknifed standard errors in the case of the ordinal
analysis.

How much difference does it make to a teacher to be evaluated by one
method rather than the other? The hypothesis that teachers are ranked the
same by both methods is rejected by the Wilcoxon signed rank test (p =
.0078). The proportion of statistically significant estimates is higher using the
ordinal measure (which is less sensitive to noisiness in test scores): 86 of the
237 teachers are significant by this measure, compared with 64 by the other.
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Table 5. Comparison of Conventional and Ordinal Measures of Teacher Value Added

Total number of teachers 237

Wilcoxon signed ranks test, p-value 0.0078

Maximum discrepancy in ranks 229

Absolute discrepancy in ranks, 90th percentile 45

Number of statistically significant teacher effects, fixed effect estimate 64

Number of statistically significant teacher effects, ordinal estimate 86

Number of significant effects by both estimates 55

Number ranked in the top quartile 59

Number ranked in the top quartile by both estimates 47

Number ranked in the bottom quartile by both estimates 48

Number ranked above the median by one estimate, below the median by the other 14

Number ranked in the bottom quartile by one, top quartile by the other 3

Source: Fifth-grade mathematics teachers, large southern district, 2005–6, author’s
calculations.

The maximum discrepancy in ranks is 229 positions (out of 237 teachers in
all). In 10 percent of cases, the discrepancy in ranks is 45 positions or more.

Depending on the uses to which value-added assessment is put, the ques-
tion of greatest importance to teachers may be whether they fall at one end of
the distribution or the other. There are fifty-nine teachers in each quartile of
the distribution. The two measures agree in forty-seven cases on the teachers
in the top quartile and in forty-eight cases on teachers in the bottom quartile.
Thus, if falling in the top quartile qualifies a teacher for a reward, twenty-four
teachers (more than a third of the number of awardees) will qualify or not
depending on which measure is used. A comparable figure applies to teachers
placing in the bottom quartile, if that event is used to determine sanctions. In
a small number of cases (three), the effect of using one measure rather than
the other is great enough to move a teacher from the top quartile to the bottom
quartile.

In principle it is possible to condition on multiple variables (additional
prior test scores, student demographic characteristics, or socioeconomic sta-
tus [SES]) by defining groups as functions of several covariates. In practice
this is apt to exceed the capacity of the data. Consider, for example, a data set
containing prior test scores in two subjects, plus indicators of race and partic-
ipation in the free and reduced price lunch program. If groups are defined by
deciles of the two test scores plus two binary indicators, the total number of
groups is 400 (10 × 10 × 2 × 2). In a district of moderate size, there could be
many cells with only one observation and therefore no matching pair.
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A two-stage method circumvents this difficulty. In the first stage, multiple
covariates are used to predict Prob(Yi > Yj) − Prob(Yj < Yi) for all pairs of
students i and j, where Y is the dependent variable of ultimate interest (e.g.,
end-of-year test scores in the current year). The prediction is of the form
π̂i = �wk(Xki − Xkj) or �wksgn(Xki − Xkj), depending on whether the Xk are
themselves interval scaled or ordinal. The wk are weights that reflect how
informative the different covariates are about sgn(Yi− Yj). (For details, see
Cliff 1996.)

In the second stage, the n students of one teacher are compared to the m
students elsewhere in the same system, using π̂i (or grouped values of π̂i) as
the covariate. π̂i is therefore analogous to a propensity score: it is a summary
measure of the effects of the stage-one covariates on the probability that a
student outranks other students, before controlling for teachers. The resulting
measure of a teacher’s value added is based on her students’ performance
relative to this prediction (in the ordinal sense, of course).

Given that many achievement tests are now administered to thousands of
students throughout a state, it is worth noting that all the data can be used in
the first stage to form an ordinal prediction based on prior achievement, de-
mographics, and SES while continuing to rely on within-district comparisons
in the second stage for the final measures of value added.25

6. CONCLUSION
Are IRT ability traits measured on an interval scale? It seems hazardous to
assume so. Whether examinees and test items constitute a conjoint structure
depends on the makeup of equivalence classes defined by the Pij, but those
are not given. Statistical testing can reveal whether the data are strongly in-
consistent with this hypothesis, but moderate departures from the conjoint
structure almost certainly go undetected. Moreover, even if these conditions
hold in the norming samples used by test makers to calibrate item difficulties,
this provides no assurance that they will hold in the population of students to
whom the test is finally administered.

End users of the data, such as practitioners of value-added assessment,
typically have no access to item-level data to test these assumptions themselves.
Moreover, even if the assumptions are met, conjoint additivity may not capture
everything we want in a scale of achievement. It would seem wise, then,
to check the plausibility of the resulting scales. On this count IRT ability
scales often do poorly. Gain scores frequently fall from one grade to the next.
While some of this may reflect adolescents’ declining interest in academic

25. Within-district comparisons are preferred, given the impact of curriculum and other district policies
on achievement.
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achievement, the patterns set in as early as third grade and the drop between
second and third grade is often the largest. In addition, IRT ability often shows
a diminishing or constant variance from lower to higher grades.

What, then, is the practitioner of value-added assessment to do? It is no
good hoping that the choice of scale makes little difference to estimates of value
added. We have seen that reasonable transformations of the θ scale can have a
substantial effect on relative gains across the distribution of achievement. No
other scales with superior metric properties are at hand. We can, however, use
methods of ordinal data analysis on the assumption that IRT scales (or any of
their monotonic transformations) at least permit us to rank students.

Ordinal analysis changes the question we ask in value-added assessment.
Instead of measuring mean achievement of a teacher’s students vis-à-vis the
students of a (hypothetical) average instructor, we ask what fraction of the for-
mer outperform the latter. In ordinal analysis, as in regression-based methods,
it is possible to control for other influences in order to isolate the teacher’s
or the school’s contribution. Clearly, if θ is an interval-scaled variable, ordinal
methods throw away valuable information. Practitioners should ask them-
selves, however, whether they are so confident of the metric properties of θ

scales that they are willing to attribute differences between conventional esti-
mates of value added and estimates based on ordinal analysis to the superiority
of the former.

Ordinal methods have other advantages. They are likely to be more robust
to measurement error in test scores and to various model misspecifications
(though the question of robustness is a complicated one; see Cliff 1996). The
question they answer may be a more sensible way to evaluate educators, given
that it attaches more value to spreading gains over a wider number of students,
compared with larger but more concentrated gains. However, this article has
considered ordinal methods from one standpoint only—that of finding appro-
priate value-added models when test scores are not expressed on an interval
scale. Numerous questions have been raised about the assumptions and meth-
ods of more conventional regression-based analyses. Some of these concerns
can be addressed through modifications of those models. It remains to be seen
whether the same concerns arise with respect to ordinal methods and, if so,
how readily they can be accommodated within the ordinal framework.

The author thanks Kurt Scheib and Warren Langevin for their expert research assis-
tance.
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