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Abstract

Performance pay for teachers is frequently suggested as a way of improv-
ing educational outcomes in schools, but the empirical evidence to date
on its effectiveness is limited and mixed. We present results from a ran-
domized evaluation of a teacher incentive program implemented across
a representative sample of government-run rural primary schools in the
Indian state of Andhra Pradesh. e program provided bonus payments
to teachers based on the average improvement of their students’ test
scores in independently administered learning assessments (with a mean
bonus of 3% of annual pay). Students in incentive schools performed
significantly better than those in control schools by 0.19 and 0.12 stan-
dard deviations in math and language tests respectively. ey scored
significantly higher on "conceptual" as well as "mechanical" components
of the tests suggesting that the gains in test scores represented an actual
increase in learning outcomes. Incentive schools also performed better
on subjects for which there were no incentives. We find no significant
difference in the effectiveness of group versus individual teacher incentives.
Incentive schools performed significantly better than other randomly-
chosen schools that received additional schooling inputs of a similar value.



1. Introduction 
The focus of primary education policy in developing countries such as India has 

typically been on access, enrollment, and retention; however, much less attention has 

been paid to the low quality of learning in schools.1  The recently published Annual

Status of Education Report found that 52% of children aged 7 to 14 in an all-India sample 

of nearly 200,000 rural households could not read a simple paragraph of second-grade 

difficulty, though over 93% of them were enrolled in school (Pratham, 2005).

Attempts to improve education in developing countries have typically focused on 

providing more inputs to schools – and have usually expanded spending along existing 

patterns.  However, a recent study using a nationally representative dataset of primary

schools in India found that 25% of teachers were absent on any given day, and that less 

than half of them were engaged in any teaching activity (Kremer, Muralidharan, 

Chaudhury, Hammer, and Rogers, 2005).  Since over 90% of non-capital education 

spending in India goes to regular teacher salaries and benefits, it is not clear that a 

"business as usual" policy of expanding inputs along existing patterns is the most

effective way of improving educational outcomes.

We present results from the Andhra Pradesh Randomized Evaluation Study (AP 

RESt) that considered two alternative approaches to improving primary education in the 

Indian state of Andhra Pradesh (AP).2  The first was to provide schools with additional 

"smart inputs" that were believed to be more cost effective than the status quo, and the 

second was to provide performance-based bonuses to teachers on the basis of the average 

improvement in test scores of their students.  We studied two types of smart inputs (an 

additional para-teacher; and cash block grants to schools) and two types of incentives 

(group incentives based on school performance; and individual incentives based on 

teacher performance), and the additional spending in each of the four programs was 

calibrated to be slightly over 3% of a typical school's annual budget.  The study was 

1 For instance, the Millennium Development Goal for education is to "ensure that all boys and girls
complete a full course of primary schooling," but it makes no mention of the level of learning achieved by
students completing primary school.
2 The AP RESt is a partnership between the government of AP, the Azim Premji Foundation (a leading
non-profit organization working to improve primary education in India), and the World Bank.  The Azim
Premji Foundation (APF) was the main implementing agency for the study. We have served as technical
consultants and have overseen the design, implementation, and evaluation of the various interventions.
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conducted by randomly allocating the programs across a representative sample of 500 

government-run schools in rural AP with 100 schools in each of the four treatment groups 

and 100 control schools serving as the comparison group.  This paper presents results 

from the first year (2005 – 06) of all four interventions, but focuses on the two teacher 

incentive programs.  Detailed results of the input experiments and estimates of the 

education production function are presented in a companion paper.

This paper attempts to answer the following questions in the context of primary

education in a developing country: (i) Can teacher incentives based on test scores 

improve student achievement?  (ii) What, if any, are the negative consequences of teacher 

incentives? (iii) How do school-level group incentives perform relative to teacher-level 

individual incentives? (iv) What is the impact of simply monitoring schools and 

measuring students' achievement without attaching incentives? (v) How does teacher 

behavior change in response to incentives? (vi) How cost effective are teacher incentives

relative to other uses for the same money? and (vii) Will teachers support the idea?

We find that offering performance-based bonuses to teachers had a significant 

positive impact on test scores, with students in incentive schools scoring 0.19 and 0.12 

standard deviations higher than students in control schools in math and language tests 

respectively.  The mean treatment effect of 0.15 standard deviations is equal to 6 

percentile points at the median of a normal distribution.  Incentive schools score higher in 

each of the 5 grades (1-5), across all quintiles of question difficulty, and in all the 5 

districts where the project was conducted, with most of these differences being 

statistically significant.  We find no evidence of heterogeneous treatment effects across

any of these categories.

We find no evidence of any adverse consequences as a result of the incentive 

programs.  Incentive schools do significantly better on both mechanical components of 

the test (designed to reflect rote learning) and conceptual components of the test 

(designed to capture deeper understanding of the material), suggesting that the gains in 

test scores represent an actual increase in learning outcomes. Students in incentive 

schools also do significantly better in science and social studies (on which there were no 

incentives), suggesting positive spillover effects from incentive to non-incentive subjects.

There was no difference in student attrition between incentive and control schools.

- 2 -



We find no significant difference between the effectiveness of school-level group 

incentives and teacher-level individual incentives.  We cannot reject equality of either 

mean or variance of student test scores across group and individual incentive schools.

Because the average government-run school in rural AP is quite small with only 3 

teachers, the results probably reflect a context of relatively easy peer monitoring.

To evaluate the impact of measurement without incentives, we also conduct endline 

assessments in an additional 100 schools (referred to as "pure control" schools) that were

not formally a part of the study.  We find no significant difference in the endline test 

scores between the regular "control" schools (who had a baseline test, were presented 

with feedback on their baseline performance, were subject to regular tracking surveys by 

enumerators, and knew about the endline tests in advance) and the "pure control" schools 

(who had none of these) suggesting that mere measurement and monitoring without any 

consequences for teachers had no impact on student learning outcomes.

Teacher absence did not differ across treatments.  There was no difference in teacher 

behavior between incentive and control schools when measured by classroom observation 

of teaching processes, but teacher interviews indicate that teachers in incentive schools 

were more likely to have exerted extra effort such as assigning additional homework and 

class work, providing practice tests, and conducting extra classes after school.  The 

similarity in observed classroom processes between incentive and control schools could 

be the result of teachers conforming to a behavior norm when they are subjected to 

repeated observation.  We find that teachers in control schools (who were observed once 

a month) were more likely to be engaging in teaching activity (when observed) than 

teachers in the sample of "pure control" schools (who were only observed once during the 

year and never revisited), though there was no difference in test scores between the 

control and pure control schools.  This suggests that repeated monitoring affected teacher 

behavior while it was being observed but had no effect on student performance.

The two input programs (an extra para-teacher; and cash block grants) also had a 

positive and significant impact on test scores. Student test scores in input schools were 

0.09 standard deviations higher than those in control schools.  The input programs were

around five times more cost effective than the status quo, confirming the hypothesis that 

they were "smart" inputs.  However, the incentive programs cost the same amount in 
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bonuses paid and students in incentive schools scored 0.06 standard deviations higher 

than students in the input schools, with the difference being significant at the 10% level. 

Thus, performance-based bonus payments were more cost effective even when compared

with smart inputs, and substantially more so when compared with the status quo.

Bonuses are another way of paying a salary.  So, it may be possible to introduce a 

performance pay component to the wage structure in lieu of scheduled 'across the board'

increase in salaries.  In this scenario, the cost of performance pay is not the bonus 

payment itself, but the risk premium that has to be paid to keep teachers' expected utility 

constant under a system of variable pay. Since the risk premium would be much lower 

than the expected bonus payment, the long-run cost of a teacher incentive program could 

be even lower than the cost of additional bonus payments made in the short run. 

There was broad-based support from teachers for the program.  Over 85% of them

were in favor of the idea of bonus payments on the basis of performance, and over 75% 

favored such a scheme even if their expected wage were to be held constant.  We also 

find that the extent of teachers' ex-ante support for performance pay (presented as a 

mean-preserving spread of pay) is positively correlated with their ex-post performance.

This suggests that teachers are aware of their own effectiveness (as measured by test 

scores) and that performance pay might not only increase effort among existing teachers, 

but systematically draw more effective teachers into the profession over time.3

Our results contribute to a small but growing literature on the effectiveness of

performance-based pay for teachers.4  Unfortunately, a majority of teacher incentive

programs have been implemented in ways that make it difficult to construct a statistically

valid comparison group against which the impact of the incentives can be assessed.  The

best identified studies on the effect of paying teachers on the basis of student test 

outcomes are Lavy (2002) and (2004), and Glewwe, Ilias, and Kremer (2003), but their 

evidence is mixed.  Lavy uses regression discontinuity and matching methods to show 

3 Lazear (2000) shows that around half the gains from performance-pay in the company he studied were
due to more productive workers being attracted to join the company under a performance-pay system.
Similarly, Hoxby and Leigh (2005) argue that compression of teacher wages in the US is an important
reason for the decline in teacher quality, with higher-ability teachers exiting the teacher labor market.
4Previous studies include Ladd (1999) in Dallas, Atkinson et al (2004) in the UK, and Figlio and Kenny
(2006) who use cross-sectional data across multiple US states.  See Umansky (2005) for a current literature
review on various kinds of teacher incentive programs.  The term "teacher incentives" is used very broadly
in the literature. We use the term to refer to financial bonus payments on the basis of student test scores.
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that both group and individual incentives for high school teachers in Israel led to 

improvements in student outcomes.  Glewwe et al (2003) report results from a 

randomized evaluation that provided primary school teachers (grades 4 to 8) in Kenya 

with group incentives based on test scores and find that, while test scores went up in 

program schools in the short run, the students did not retain the gains after the incentive 

program ended.  They conclude that the results are consistent with teachers expending 

effort towards short-term increases in test scores but not towards long-term learning. 

We make several original contributions in this paper.  We present results from the 

first randomized evaluation of teacher incentives in a representative sample of schools.5

We take the test design seriously and include both 'mechanical' and 'conceptual' questions 

in the tests to distinguish rote learning from a broader increase in learning outcomes.  We

study group (school-level) and individual (teacher-level) incentives in the same field 

experiment.  We isolate the impact of measurement and monitoring from that of 

incentives by including a set of "pure control" schools whose outcomes are compared to 

those in traditional "control" schools, and thereby contribute to the methodology of field 

experiments.  We record differences in teacher behavior with both direct observations 

based on tracking surveys and teacher interviews.  We study both input and incentive 

based policies in the same field experiment and calibrate the spending on each of these

options to be similar.  Finally, we interview teachers after the first year of the program,

but before they know their own performance, to determine the extent and correlates of 

their support for performance pay.

While set in the context of schools and teachers, this paper also contributes to the

broader literature on performance pay in organizations in general and public 

organizations in particular.6  The most common source of identification in this literature 

is to look for changes in compensation systems and compare outcomes before and after 

the change.  However, these studies typically cannot rule out the possibility that other 

management practices also changed at the time the compensation system was changed, or 

5 The random assignment of treatment provides high internal validity, while the random sampling of
schools into the universe of the study provides greater external validity than previous studies.
6 See Gibbons (1998) and Prendergast (1999) for general overviews of the theory and empirics of
incentives in organizations. Dixit (2002) provides a discussion of these themes as they apply to public
organizations. Chiappori and Salanié (2003) survey recent empirical work in contract theory and
emphasize the identification problems in testing incentive theory.
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the possibility that the change in the incentive structure was endogenously determined by 

unmeasured factors that directly impact the measured outcomes.  True experiments in 

compensation structure with identical contemporaneous control groups are rare,7 and our 

results can help to answer broader questions regarding performance pay in organizations, 

and group versus individual incentives in small group situations.8

An important caveat to the results presented here is that they are based on data from

just the first year of the program.  These results reflect only the announcement of the 

incentives, with no bonuses having been paid at the time of the endline tests.  It is 

possible that the impact of the incentives will be larger in subsequent years, once the 

program's credibility is established; it is also possible that the gains in test scores may not 

persist in future years, once the novelty of the program wears off.  We also do not know 

whether new and unanticipated dimensions of gaming will emerge as teachers become

more familiar with the program.  AP RESt is expected to continue until 2011, and we 

hope to answer these and other questions in the coming years, by continuing the 

experiment to study long-term outcomes.

The rest of this paper is organized as follows: section 2 provides a theoretical 

framework for thinking about teacher incentives.  Section 3 describes the experimental

design and the treatments, while section 4 discusses the test design.  Sections 5 and 6 

present results on the impact of the incentive programs on test score outcomes and 

teacher behavior.  Section 7 shows results of the input interventions, compares them with 

the incentive treatments, and does a cost-benefit analysis relative to the status quo.

Section 8 discusses stakeholder opinions and policy implications.  Section 9 concludes. 

2. Theoretical Framework
2.1 Incentives and intrinsic motivation

It is not obvious that paying teachers bonuses on the basis of student test scores will 

raise test scores.  Evidence from psychological studies suggests that monetary incentives 

7 Bandiera, Barankay, and Rasul (2006) is a recent exception that studies the impact of exogenously varied
compensation schemes (though with a sequential as opposed to contemporaneous comparison group).
8 Of course, as Dixit (2002) warns, it is important for empirical work to be cautious in making
generalizations about performance-based incentives, and to focus on relating success or failure of incentive
pay to context-specific characteristics such as the extent and nature of multi-tasking.
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(especially of small amounts) can sometimes crowd out intrinsic motivation and lead to 

inferior outcomes.9  Teaching may be especially susceptible to this concern since many

teachers are thought to enter the profession due to strong intrinsic motivation.  The AP

context, however, suggested that an equally valid concern was the lack of differentiation 

among high and low-performing teachers.  Kremer et al (2006) show that in Indian 

government schools, teachers reporting high levels of job satisfaction are more likely to

be absent.  In subsequent focus group discussions with teachers, it was suggested that this 

was because teachers who were able to get by with low effort were quite satisfied, while 

hard-working teachers were dissatisfied because there was no difference in professional 

outcomes between them and those who shirked. Thus, it is also possible that the lack of 

external reinforcement for performance can erode intrinsic motivation.10

2.2 Multi-task moral hazard

Even those who agree that incentives based on test scores could improve test 

performance worry that such incentives could lead to sub-optimal behavioral responses 

from teachers.   Examples of such behavior include rote 'teaching to the test' and 

neglecting higher-order skills (Holmstrom and Milgrom, 1991), manipulating

performance by short-term strategies like boosting the caloric content of meals on the day 

of the test (Figlio and Winicki, 2005), excluding weak students from testing (Jacob, 

2005), or even outright cheating (Jacob and Levitt, 2003).

These are all examples of the problem of multi-task moral hazard, which is illustrated

by the following formulation from Baker (2002).11  Let be an n-dimensional vector of 

potential agent (teacher) actions that map into a risk-neutral principal's (social planner's)

value function (V) through a linear production function of the form:

a

afa ),(V

where f is a vector of marginal products of each action on V, and  is noise in V.

9 A classic reference in psychology is Deci and Ryan (1985).  References in economics include Frey and
Oberholzer-Gee (1997), and Gneezy and Rustichini (2000). Chapter 5 of Baron and Kreps (1999) provides 
an excellent discussion relating intrinsic motivation to practical incentive design and communication.
10 Mullainathan (2006) describes how high initial intrinsic motivation of teachers can diminish over time if 
they feel that the government does not appreciate or reciprocate their efforts.
11 The original references are Holmstrom and Milgrom (1991), and Baker (1992).  The treatment here
follows Baker (2002) which motivates the multi-tasking discussion by focusing on the divergence between
the performance measure and the principal's objective function.
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Assume the principal can observe V (but not a) and offers a linear wage contract of 

the form .  If the agent's expected utility is given by: Vbsw v

n

i
ivv aVbshVbsE

1

2 2/)var()(

where h is her coefficient of absolute risk aversion and  is the cost of each action, 

then the optimal slope on output ( ) is given by: 

2/2
ia

*
vb

22

2
*

2hF
Fbv   (2.2.1) 

where n

i ifF
1

2 .  Expression (2.2.1) reflects the standard trade-off between risk and 

aligning of incentives, with the optimal slope  decreasing as h and  increase.*
vb 2

Now, consider the case where the principal cannot observe V but can only observe a 

performance measure (P) that is also a linear function of the action vector a given by: 

aga ),(P

Since g  f, P is an imperfect proxy for V (such as test scores for broader learning). 

However, since V is unobservable, the principal is constrained to offer a wage contract as 

a function of P such as Pbsw p .

The key result in Baker (2002) is that the optimal slope on P is given by: *
pb

22
*

2
cos
hG

GFbp   (2.2.2) 

where n

i igG
1

2 , and  is the angle between f and g.  The cosine of  is a measure of 

how much  needs to be reduced relative to due to the distortion arising from g  f.

If

*
pb *

vb

1cos , both expressions are equivalent except for scaling and there is no distortion.

The empirical literature in education showing that agents often respond to incentives 

by increasing actions on dimensions that are not valued by the principal highlights the 

need to be cautious in designing incentive programs.  However, in most practical cases,

g  f (and cos 1), and so it is perhaps inevitable that a wage contract with  will 

induce some actions that are unproductive. The implication for incentive design is that 

0pb
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0*
pb , as long as , even if there is some deviation relative 

to the first-best action in the absence of distortion and .12  In other 

words, what matters is not whether teachers engage in more or less of some activity than 

they would in a first-best world (with incentives on the underlying social value function), 

but whether the sum of their activities in a system with incentives on test scores generates 

more learning (broadly construed) than in a situation with no such incentives.

))0(())0(( pp bVbV aa

)(())(( **
vp bVbV aa

There are several reasons why test scores might be an adequate performance measure

in the context of primary education in a developing country.  First, given the extremely

low levels of learning, it is likely that even an increase in routine classroom teaching of 

basic material will lead to better learning outcomes.  Second, even if some of the gains 

merely reflect an improvement in test-taking skills, the fact that the education system in 

India is largely structured around test-taking suggests that it might be unfair to deny 

disadvantaged children in government-schools the benefits of test-taking skills that their 

more privileged counterparts in private schools develop.13  Finally, the design of tests can 

get more sophisticated over time, making it difficult to do well on the tests without a 

deeper understanding of the subject matter.  So, it is possible that additional efforts taken 

by teachers to improve test scores for primary school children can also lead to 

improvements in broader educational outcomes.  Whether this is true is an empirical

question and is a focus of our research design (see section 4). 

2.3 Group versus Individual Incentives

The theoretical prediction of the relative effectiveness of individual and group teacher 

incentives is ambiguous.  Let w = wage, P = performance measure, and c(a) = cost of 

exerting effort a with c'(a) > 0, c''(a) > 0, P'(a) > 0, and P''(a) < 0.  Unlike typical cases 

of team production, an individual teacher's output (test scores of his students) is 

12 Thus a key challenge is choosing the appropriate performance measure P. Duflo and Hanna (2005)
evaluate the effectiveness of a program run by an NGO in rural Rajasthan (a north Indian state) that
provided high-powered incentives based on teacher attendance rather than test scores and find a significant
increase in both teacher attendance and student test scores, but no effect on teaching conditional on teachers
being present in school.  This is a promising option because the multi-tasking problem is potentially less 
severe with respect to attendance than with classroom activity.
13 While the private returns to test-taking skills may be greater than the social returns, the social returns
could be positive if they enable disadvantaged students to compete on a more even basis with privileged
students for scarce slots in higher levels of education.
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observable, making contracts on individual output feasible.  The optimal effort for a 

teacher facing individual incentives is to choose ai so that: i i

i i

w P
P a

c'(ai) (2.3.1)

Now, consider a group incentive program where the bonus payment is a function of 

the average performance of all teachers. The optimality condition for each teacher is:

i ii

ii i

P P nw
aP P n

 c'(ai)     (2.3.2) 

If the same bonus is paid to a teacher for a unit of performance under both group and 

individual incentives then i i

ii i

w w
PP P n

, but 1i i i

i i

P P n P
a n a

.

Since c''(a) > 0, the equilibrium effort exerted by each teacher under group incentives is 

lower than that under individual incentives.  Thus, in the basic theory, group (school-

level) incentives induce free riding and are therefore inferior to individual (teacher-level) 

incentives, when the latter are feasible.14

However, if the teachers jointly choose their effort levels, they will account for the 

externalities within the group.  In the simple case where they each have the same cost and 

production functions and these functions do not depend on the actions of the other 

teachers, they will each (jointly) choose the level of effort given by (2.3.1).  Of course, 

each teacher has an incentive to shirk relative to this first best effort level, but if teachers

in the school can monitor each other at low cost, then it is possible that the same level of 

effort can be implemented as under individual incentives.  This is especially applicable to 

smaller schools where peer monitoring is likely to be easier.15

Finally, if there are gains to cooperation, then it is possible that group incentives 

might yield better results than individual incentives.16  Consider a case where teachers 

have comparative advantages in teaching different subjects or different types of students.

If teachers specialize in their area of advantage and reallocate students/subjects to reflect 

14 See Holmstrom (1982) for a solution to the problem of moral hazard in teams.
15 See Kandori (1992) and Kandel and Lazear (1992) for discussions of how social norms and peer pressure
in groups can ensure community enforcement of the first best effort level.
16 Holmstrom and Milgrom (1990) and Itoh (1991) model incentive design when cooperation is important.
Hamilton, Nickerson, and Owan (2003) present empirical evidence from a garment factory showing that 
group incentives for workers improved productivity relative to individual incentives.
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this, they could raise P'(a) ( relative to a situation where each teacher had to teach all 

students/subjects.  Since P''(a) < 0, the equilibrium effort would also be higher and the 

outcomes under group incentives might be superior to those under individual incentives.17

)a

Lavy (2004) reports that a high-school teacher incentive program in Israel at the 

individual level was more effective than one at the group level.  However, the two 

programs in Israel were implemented at different (non-overlapping) times and the schools 

were chosen by different (non-random) eligibility criteria.  We study both group and 

individual incentives in the same field experiment.

3. Experimental Design 
3.1 Context

Andhra Pradesh (AP) is the 5th most populous state in India, with a population of over 

80 million, 73% of whom live in rural areas. AP is close to the all-India average on 

measures of human development such as gross enrollment in primary school, literacy, 

and infant mortality, as well as on measures of service delivery such as teacher absence

(Figure 1a).  The state consists of three historically distinct socio-cultural regions  and a 

total of 23 districts (Figure 1b).  Each district is divided into three to five divisions, and 

each division is composed of ten to fifteen mandals, which are the lowest administrative

tier of the government of AP.  A typical mandal has around 25 villages and 40 to 60 

government primary schools.  There are a total of over 60,000 such schools in AP and 

over 80% of children in rural AP attend government-run schools (Pratham, 2005).

The average rural primary school is quite small, with total enrollment of around 80 to 

100 students and an average of 3 teachers across grades one through five.18  One teacher 

typically teaches all subjects for a given grade (and often teaches more than one grade 

simultaneously).  All regular teachers are employed by the state, and their salary is 

mostly determined by experience and rank,19 with minor adjustments based on postings, 

but no component based on any measure of performance.  The average salary of regular 

17 The additive separability of utility between income and cost of effort implies that there is no 'income
effect' of higher productivity on the cost of effort, and so effort goes up in equilibrium since P'(a) is higher.
18 This is a consequence of the priority placed on providing all children with access to a primary school 
within a distance of 1 kilometer from their homes.
19 A regression of teacher salary on experience and rank (in our sample) has an R-squared of 0.8. 
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teachers is over Rs. 7,500/month and total compensation including benefits is close to Rs. 

10,000/month (per capita income in AP is around Rs. 2,000/month; 1 US Dollar  45 

Indian Rupees (Rs.)).  Regular teachers' salaries and benefits comprise over 90% of non-

capital expenditure on primary education in AP.  Teacher unions are strong and 

disciplinary action for non-performance is rare.20

3.2 Sampling

We sampled 5 districts across each of the 3 socio-cultural regions of AP in proportion 

to population (Figure 1b).21   In each of the 5 districts, we randomly selected one division 

and then randomly sampled 10 mandals in the selected division.  In each of the 50 

mandals, we randomly sampled 10 schools using probability proportional to enrollment.

Thus, the universe of 500 schools in the study was representative of the schooling 

conditions of the typical child attending a government-run primary school in rural AP.

3.3 AP RESt Design Overview

The overall design of the first year of AP RESt is represented in the table below:

Table 3.1

NONE GROUP
BONUS

INDIVIDUAL
BONUS

NONE CONTROL
(100 Schools) 100 Schools 100 Schools

EXTRA PARA
TEACHER 100 Schools

EXTRA BLOCK
GRANT 100 Schools

INCENTIVES (Conditional on Improvement in
Student Learning

INPUTS
(Uncond
itional)

As Table 3.1 shows, the inputs were provided unconditionally to the selected schools at 

the beginning of the first school year, while the incentive treatments consisted of an 

announcement that bonuses would be paid at the beginning of the second school year 

conditional on average improvements in test scores during the first year.  No school 

received more than one treatment.  The school year in AP starts on June 15, and the 

20 See Kingdon and Muzammil (2001) for an illustrative case study of the power of teacher unions in India.
Kremer et al (2005) find that 25% of teachers are absent across India, but only 1 head teacher in their
sample of 3000 government schools had ever fired a teacher for repeated absence.
21 Subject to the selected districts within a region being contiguous for ease of logistics and supervision.
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baseline tests were conducted in the 500 sampled schools during late June and early July, 

2005.22  After the baseline tests were evaluated, we randomly allocated 2 out of the 10 

project schools in each mandal to each of 5 cells (four treatments and one control).  Since 

50 mandals were chosen across 5 districts, there were a total of 100 schools (spread out 

across the state) in each cell.  The geographic stratification implies that every mandal was 

an exact microcosm of the overall study, which allows us to estimate the treatment

impact with mandal-level fixed effects and thereby net out any common factors at the 

lowest administrative level of government.

Table 1 (Panel A) shows summary statistics of baseline school and student 

performance variables by treatment (control schools are also referred to as a 'treatment'

for expositional ease).  Column 6 provides the p-value of the joint test of equality, 

showing that the null of equality across treatment groups cannot be rejected for any of the 

variables and that the randomization worked properly.  Column 7 shows the largest 

difference in each variable across treatment categories, and we cannot reject the null that

the variables are equal across any pair of treatments at the 5% level (column 8).

After the randomization, mandal coordinators (MCs) from the Azim Premji

Foundation (APF) personally went to each of the 500 schools in the first week of August 

to provide them with student, class, and school performance reports, and with oral and 

written communication about the intervention that the school was receiving.  The MCs 

also made six rounds of unannounced tracking surveys to each of the 500 schools during 

September 2005 to February 2006 (averaging one visit/month) to collect data on process 

variables including student attendance, teacher attendance and activity, and classroom

observation of teaching processes.  The 500 schools operated under identical conditions 

of information and monitoring and only differed in the treatment that they received.  This

ensures that Hawthorne effects are minimized and that a comparison between treatment

and control schools can accurately isolate the treatment effect.

To estimate the impact of measurement and monitoring without incentives, data was 

also collected on schools other than the 500 schools in the main study (we refer to these 

22 See Appendix A for the project timeline and activities and Appendix B for details on test administration.
The selected schools were informed by the government that an external assessment of learning would take
place in this period, but there was no communication to any school about any of the treatments at this time 
(since that could have led to gaming of the baseline test).

- 13 -



as "pure control" schools).  We sampled 300 extra schools (6 in each mandal), and the 

MCs made only one unannounced visit to these schools during the school year and 

collected similar process data from these schools.  We use this data to construct the 

process variables for the "pure control" category of schools (since these schools are not 

subject to the effects of being under regular observation).

We randomly sampled 100 out of these 300 extra schools (2 in each mandal) and 

administered the same endline tests in these 100 schools as in the main 500 schools.

These schools were given only a week's notice before being tested (whereas the 500 

schools knew about the tests from the beginning of the year and were reminded of it by 

the repeated tracking surveys).  Comparing process and test score outcomes between 

"control" schools (that were fully in the study) and "pure control" schools allows us to 

estimate the impact of external measurement and monitoring on school outcomes (which 

can be considered analogous to estimating the magnitude of the Hawthorne effect). 

3.4 Description of Input and Incentive Treatments 

3.4.1 Extra Para-Teacher 

Para-teachers (also known as contract teachers) are hired at the school level and have 

usually completed either high school or college but typically have no formal teacher 

training.23  Their contracts are renewed annually and they are not protected by any civil-

service rules.  Their typical salary of around Rs. 1000/month is less than 15% of the 

average salary of regular government teachers.  Para-teachers usually teach their own 

classes and are not 'teacher-aides' who support a regular teacher in the same classroom.

The use of para-teachers has increased in developing countries as a response to fiscal 

pressures and to the perceived inadequacy of incentives for regular civil service teachers. 

There is some evidence that para-teachers are more cost effective than regular teachers 

but their use is a controversial issue. Proponents argue that para-teachers are a cost-

effective way of reducing class size and multi-grade teaching; opponents argue that the

use of untrained teachers will not improve learning.

Para-teachers are paid for 10 months/year, and so the extra spending on the para-

teacher intervention was Rs. 10,000/school.  A typical government school has a little over

23 See the 3 case studies in Pritchett and Pande (2006) for a detailed discussion on para-teachers in India.
See Banerjee et al (2005) and De Laat and Vegas (2005) for other studies on para-teachers.
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3 regular teachers and average variable costs of Rs. 25,000/month.  Salaries are paid for 

all 12 months and the annual variable cost of running a typical government school is 

around Rs. 300,000/year.  Thus, the additional spending of Rs. 10,000/year is a little over

3% of the average annual variable cost of running a government school.  Schools selected 

to receive the extra para-teacher took a few weeks to hire and appoint the para-teacher

and typically had them in place by September, 2005.  The appointment of the extra para-

teacher was independent of the appointment, posting, and transfer of regular teachers. 

3.4.2 Extra Block-Grant 

The block grant intervention targeted non-teacher inputs directly used by students.24

The schools had the freedom to decide how to spend the block grant, subject to guidelines 

that required the money to be spent on inputs directly used by children.  The block grant 

amount was set so that the average additional spending per school was the same as that in 

the para-teacher treatment.25  Schools receiving the block grant were given a few weeks 

to make a list of items they would like to procure.  The list was approved by the project 

manager, and the materials were jointly procured by the teachers and the APF mandal

coordinators and provided to the schools by September, 2005.  The majority of the grant 

money was spent on notebooks, workbooks, exercise books, slates and chalk, writing 

materials, and other interactive materials such as charts, maps, and toys. 

3.4.3 Group and Individual Incentives 

Teachers in incentive schools were offered bonus payments on the basis of the 

average improvement in test scores (in math and language) of students taught by them

subject to a minimum improvement of 5%.  The bonus formula was: 

Bonus = Rs. 500 * (% Gain in average test scores – 5%) if Gain > 5% 

= 0 otherwise26

24 See Pritchett and Filmer (1999) for a political economy model, in which the marginal return to additional
spending on non-teacher inputs is higher than the returns to additional spending on regular teacher salaries.
25 The block grant was set on a per child basis, and so the value of the grant scaled linearly with valid
enrollment.  Schools receiving the para-teacher treatment however received only one extra para-teacher
regardless of enrollment and so the effective class-size reduction would vary across treatment schools.
26 1st grade children were not tested in the baseline, but were in the endline. The 'baseline' for grade 1 was
computed as the mean baseline score of the 2nd grade children in the school, and the 'improvement' for
grade 1 was calculated relative to this.  The 5% threshold did not apply to the 1st grade.  Schools selected
for the incentive programs were given detailed letters and verbal communications explaining the incentive
formula.  Sample communication letters are available from the authors on request.
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All teachers in group incentive schools received the same bonus based on average school-

level improvement in test scores, while the bonus for teachers in individual incentive 

schools was based on the average test score improvement of students taught by the 

specific teacher.  We use a (piecewise) linear formula for the bonus contract, both for 

ease of communication and implementation and also because it is the most resistant to 

gaming across periods (the endline test score for the first year will be the baseline score

for the second year).27

The 'slope' of Rs. 500 per percentage point gain in average scores was set so that the 

expected incentive payment per school would be approximately equal to the additional 

spending in the input treatments (based on calibrations from the project pilot).28  The 

threshold of 5% average improvement was introduced to account for the fact that the

baseline tests were in June/July and the endline tests would be in March/April, and so the 

baseline score might be artificially low due to students forgetting material over the 

vacation.  There will be no improvement threshold in subsequent years of the program

because each year's endline score will be used as the next year's baseline and the testing 

will be conducted at the same time of the school year on a 12-month cycle.29

We tried to minimize potentially undesirable 'target' effects, where teachers only 

focus on students near a performance target, by making the bonus payment a function of 

the average improvement of all students.30  If the function transforming teacher effort 

into test-scores is concave (convex) in the baseline score, teachers have an incentive to 

27 Holmstrom and Milgrom (1987) show the theoretical optimality of linear contracts in a dynamic setting
(under assumptions of exponential utility for the agent and normally distributed noise). Oyer (1998)
provides empirical evidence of gaming in response to non-linear incentive schemes.
28 The best way to set expected incentive payments to be exactly equal to Rs. 10,000/school would have
been to run a tournament with pre-determined prize amounts.  Our main reason for using a contract as
opposed to a tournament was that contracts were more transparent to the schools in our experiment since
the universe of eligible schools was spread out across the state.  Individual contracts (without relative
performance measurement) also dominate tournaments for risk-averse agents when specific shocks (at the 
school or class level) are more salient for the outcome measure than aggregate shocks (across all schools),
which is probably the case here (see Kane and Staiger, 2002).  See Lazear and Rosen (1982) and Green and
Stokey (1983) for a discussion of tournaments and when they dominate contracts.
29 The convexity in reward schedule due to the threshold could have induced some gaming, but the
distribution of mean class and school-level gains does not have a gap below the threshold of 5%. If there is
no penalty for a reduction in scores, there is convexity in the payment schedule even if there is no threshold
(at a gain of zero).  To reduce the incentives for gaming in subsequent years, we use the higher of the
baseline and endline scores as the baseline for the next year and so a school/class whose performance
deteriorates does not have its baseline reduced for the next year.
30 Many of the negative consequences of incentives discussed in Jacob (2005) are a response to the
threshold effects created by the targets in the program he studied.
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focus on weaker (stronger) students, but no student is likely to be wholly neglected since 

each contributes to the class average.  In order to discourage teachers from excluding

students with weak gains from taking the endline test, we assigned a zero improvement

score to any child who took the baseline test but not the endline test.  To make cheating

as difficult as possible, the tests were conducted by external teams of 5 evaluators in each 

school (1 for each grade), the identity of the students taking the test was verified, and the 

grading was done at a supervised central location at the end of each day's testing. 

4. Test Design 
4.1 Test Construction

We engaged India's leading educational testing firm, "Educational Initiatives" (EI), to

design the tests to our specifications.  The test design activities included mapping the 

syllabus from the text books into skills, creating a universe of questions to represent each 

skill, and calibrating question difficulty in a pilot exercise in 40 schools during the prior

school year (2004-05) to ensure adequate discrimination on the tests (Figure 3a).31

The baseline test (June-July, 2005) covered competencies up to that of the previous 

school year.  At the end of the school year (March-April, 2006), schools had two rounds 

of tests with a gap of two weeks between them.  The first test (the 'lower endline') tested 

the same set of skills from the baseline (competencies up to that of the previous school

year) with an exact mapping of question type from the baseline to lower endline to enable

comparison of progress between treatment and control schools.  The second test (the 

'higher endline') tested skills from the current school year's syllabus.  The term 'endline'

refers to both rounds of end of year tests (the 'lower endline' and the 'higher endline').

4.2 Basic versus higher-order skills

As highlighted in section 2.2, it is possible that broader educational outcomes are no 

better (or even worse) under a system of teacher incentives based on test scores even if 

the test scores improve.  A key empirical question, therefore, is whether additional efforts

31 The low level of learning meant that a substantial fraction of children in grade 4 and 5 would score zero
on a grade-appropriate test.  The test papers therefore had to sample from previous years' skills in order to 
obtain adequate discrimination on the test. The tests encompass a broad range of difficulty except in grade
1, where it was not possible to include questions from a lower grade (Figure 3a).
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taken by teachers to improve test scores for primary school children in response to the 

incentives are also likely to lead to improvements in broader educational outcomes.  We 

asked EI to design the tests to include both 'mechanical' and 'conceptual' questions within 

each skill category on the test.  The distinction between these two categories is not 

constant, since a conceptual question that is repeatedly taught in class can become a 

mechanical one.  Similarly a question that is conceptual in an early grade might become

mechanical in a later grade, if students acclimatize to the idea over time.  For this study, a 

mechanical question was considered to be one that conformed to the format of the 

standard exercises in the text book, whereas a conceptual one was defined as a question 

that tested the same underlying knowledge or skill in an unfamiliar way.

As an example, consider the following pair of questions (which did not appear 

sequentially) from the 4th grade math test under the skill of 'multiplication and division'
Question 1:  34

x 5

Question 2: Put the correct number in the empty box:

8 + 8 + 8 + 8 + 8 + 8 = 8 x

The first question follows the standard textbook format for asking multiplication

questions and would be classified as "mechanical" while the second one requires the 

students to understand that the concept of multiplication is that of repeated addition, and

would be classified as "conceptual." Note that conceptual questions are not more

difficult per se.  In this example, the conceptual question is arguably easier than the 

mechanical one because you only have to count that there are 6 '8's and enter the answer 

'6' as opposed to multiplying 2 numbers (with a carry over).  But the conceptual question

is unfamiliar and this is reflected in 43% of children getting Question 1 correct, while 

only 8% got Question 2 correct. 

A second example is provided below from the fifth grade math test under the skill of 

'Area, Volume, and Measurement'
Question 1: What is the area of the square below? __________

9cm

9cm
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Question 2: A square of area 4 sq. cm is cut off from a rectangle of area 55 sq. cm.

What is the area of the remaining piece?  _______ sq. cm

Again, the first question tests the idea of area straight from the textbook requiring the 

multiplication of the 2 sides, while the second requires an understanding of the concept of 

area as the magnitude of space within a closed perimeter.  Of course, the distinction is not 

always so stark, and the classification into mechanical and conceptual is a discrete 

representation of a continuous scale between familiar and unfamiliar questions.32

4.3 Incentive versus non-incentive subjects

Another dimension on which incentives can induce distortions is on the margin

between incentive and non-incentive subjects.  We study the extent to which this is a 

problem by including additional tests during the endline on science and social studies

(referred to in AP collectively as Environmental Sciences or EVS) on which there was no 

incentive.  Since the subject is formally introduced only in grade 3 in the school 

curriculum, the EVS tests were administered in grades 3 to 5.

5. Results
5.1 Teacher Turnover and Student Attrition 

Regular civil-service teachers in AP are transferred once every three years on 

average.  While this could potentially bias our results if more teachers chose to stay in or 

tried to transfer into the incentive schools, it is unlikely that this was the case since the 

treatments were announced in August, while the transfer process typically starts earlier in 

the year.  There was no statistically significant difference between any of the treatment

groups in the extent of teacher turnover (Table 1 – Panel B).

32 Koretz (2002) points out that test score gains are only meaningful if they generalize from the specific test
to other indicators of mastery of the domain in question. While there is no easy solution to this problem
given the impracticality of assessing every domain beyond the test, our inclusion of both mechanical and
conceptual questions in each test attempts to address this concern.
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The average student attrition rate in the sample is 14.2%, and there is no significant 

difference in attrition across the treatments (Table 1 – Panel B).  Beyond confirming

sample balance, this is an interesting result in its own right because one of the concerns 

of teacher incentives based on test scores is that weaker children might be induced to

drop out of testing in incentive schools (Jacob, 2005).  Students with lower baseline 

scores were more likely to not take the endline in all schools, but we find no difference in 

mean baseline test score across treatment categories among the students who drop out. 

5.2 Specification

We first discuss the impact of the incentive program as a whole by pooling the group 

and individual incentive schools and considering this to be the 'incentive' treatment.  All 

estimation and inference is done with the sample of 300 control and incentive schools 

unless stated otherwise.  Our default specification uses the form:

ijkjkkmijkmijkm ZIncentivesBLTELT )()(   (5.1) 

The main dependent variable of interest is which is the normalized test score on 

the specific test (normalized with respect to the distribution of the control schools), where

i, j, k, m denote the student, grade, school, and mandal respectively.  EL and BL indicate 

the endline and the baseline tests.  Including the normalized baseline test score improves

efficiency due to the autocorrelation between test-scores across multiple periods.33  All 

regressions include a set of mandal-level dummies (Zm) and the standard errors are

clustered at the school level.  Since the treatments are stratified (and balanced) by 

mandal, including mandal fixed effects increases the efficiency of the estimate.

ijkmT

The 'Incentives' variable is a dummy at the school level indicating if it was in the 

incentive treatment, and the parameter of interest is , which is the effect on the 

normalized test scores of being in an incentive school.  The random assignment of 

treatment ensures that the 'Incentives' variable in the equation above is not correlated with 

the error term, and the estimate is therefore unbiased.

An alternate specification stacks all the data from every test round and uses a 

difference in difference approach (DID) to estimate  as follows:

33 Since grade 1 children did not have a baseline test, we set the normalized baseline score to zero for these
children. All results are robust to completely excluding grade 1 children as well.
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ijkjkkmijkm ZELIncentivesELIncentivesT )(  (5.2) 

The DID specification constrains the coefficient on the lagged test score (  in equation 

5.1) to be equal to one and is more efficient if this restriction is true.  However, if the 

restriction is not valid, then specification (5.1) allows for this.  We also run both 

specifications with controls for household and school variables.34

5.3 Impact of Incentives on Test Scores 

Table 2 reports the results of estimating each of these specifications.  Panel A shows 

that the estimate of  from specification (5.1) is 0.154 standard deviations (SD).  Panel B 

shows the difference-in-difference estimate of  to be 0.169, which is not significantly 

different from 0.154.   However, the data strongly rejects '  = 1' and so we prefer 

specification (5.1) because it does not constrain the coefficient on the lagged score to be 

equal to one.35  The impact of the incentives is greater in math (0.19 SD) than in language 

(0.12 SD) and a Chow test shows this difference to be significant.  The addition of school 

and household variables does not change the estimated value of  in any of the 

regressions, confirming the validity of the randomization. We verify that teacher 

transfers do not affect the results by estimating equation (5.1) on the sample of teachers 

who were not transferred during the entire period, and the estimate of  is 0.18.  We have 

no reason to believe that cheating was a problem and Appendix B describes both the 

testing procedure and robustness checks for cheating. 

Figure 2a (left panel) plots the density of the gain in test scores 

for control and incentive schools.  Figure 2a (right panel) shows the cdf of the same

distributions, and that the distribution of gains in the incentive schools first order 

stochastically dominates that of the control school distribution.  Figure 2b plots the gain 

in normalized test scores by treatment at every percentile of the gain distribution (the x-

axis is the gain percentile for each treatment).  The vertical distance between the two 

))()(( BLTELT ijkmijkm

34 The randomization implies that the estimates of  will not change, but including the controls can decrease
the clustered standard errors by absorbing common variation at the school level (though it can also increase
it by absorbing within school variation of student demographic characteristics). See Donner and Klar
(2000) for a discussion of the implications for power calculations and sample size determination.
35 The estimate of  is biased due to measurement error and omitted ability, but the data strongly rejects
=1.  Once we have data for more than 1 year, we can use the panel data to estimate  consistently (see 

Todd and Wolpin, 2003 for details).
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plots is positive at every percentile but increasing.  In other words, gains are higher at 

every percentile and also have higher variance in incentive schools.  Another way of 

looking at Figure 2b is that the horizontal gap represents the percentile-point gap in the 

gain distributions.  Thus, the median score gain in an incentive school would be equal to 

the 57th percentile of score gains in a control school (as shown in Figure 2b).

5.4 Robustness of results across sub-groups 

In addition to the overall effects of the incentives, we check the robustness of the 

results by looking at various sub-groups and seeing if the effects are equally present

across sub-groups or if they are concentrated among certain groups of students.  The 

general specification used for testing treatment effects by sub-group was: 

ijkjkkmi

n

i
iijkmijkm ZCategoryIncentivesBLTELT )()()(

1

followed by an F-test of equality across the si ' .  Equivalently, the 'Incentives' variable 

can be included and one of the interactions can be omitted, followed by an F-test of the 

null that the si ' are jointly equal to zero.  Table 3 presents the effect of incentives on 

performance by grade (1-5).  The estimate of  is positive for every grade and we cannot

reject that the treatment effect is equal across the 5 grades.  Similarly we cannot reject 

equality of treatment effects across the 5 project districts. 

In addition to being significantly positive for both math and language, the gains in the 

incentive schools are robustly present across various sub-categories of the tests.  Table 4 

breaks down the results by 'lower endline' (which covered previous year competencies

tested in the baseline) and 'higher endline' (which covered current school year 

competencies) and shows that the test score gains were significant in both rounds of 

testing.  The gains in the higher endline are greater than those in the lower endline 

(though not significantly so), which is consistent with our finding from teacher interviews 

that teachers report spending over 80% of their time on covering the syllabus from the 

present school year and less than 20% reviewing material from previous years. 

We also check for robustness of the gains across the range of difficulty of questions.

The left panel of Figure 3b pools all 406 questions (across all tests) and sorts them by 

difficulty (as measured by the fraction correct in the control schools).  We see that the 
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questions covered a full range of difficulty, and also see that the incentive schools did 

better than the control schools in over 80% of the questions.  The right panel plots the 

question-level difference between incentive and control schools against the difficulty of

the question, and both the intercept and slope in that regression are positive and 

significant.  So, incentive schools perform better on questions of all difficulty, and the 

performance difference relative to control schools increases with question difficulty.

Finally, we aggregate the questions by 'skill/competency' as defined by EI and 

compare the difference in skill-level mean scores between incentive and control schools.

Students in incentive schools outperformed those in control schools in 80% of the skills 

and significantly so in 40% of them.  Out of the remaining 20% of skills where the 

incentive schools underperformed, only 2% were significant at the 10% level and none at 

the 5% level, which confirms that the gains in the incentive schools were broadly present 

in all parts of the curriculum.

5.5 Mechanical versus Conceptual Learning and Non-Incentive Subjects

Table 5 shows summary statistics of the fraction of questions answered correctly on 

the endline by mechanical and conceptual type (for each grade and subject), and the gap

between the two types of questions appears to increase with the grade.  This is consistent 

with the idea that in lower grades, all questions are equally unfamiliar (at which point a 

conceptual question can actually be easier as indicated in section 4.2), but that as the 

grades progress the students' knowledge seems to comprise more of knowing patterns 

from the textbook as opposed to understanding concepts.

To test the impact of incentives on these two kinds of learning, we again use 

specification (5.1) but run separate regressions for the mechanical and conceptual parts of 

the test.  Incentive schools do significantly better on both the mechanical and conceptual 

components of the test and the estimate of  is almost identical across both components

(Table 6).36  The other interesting result is that the coefficient on the baseline score is 

significantly lower for the conceptual component than for the mechanical component

(0.34 versus 0.48), indicating that these questions represented unfamiliar territory relative 

36 The score on each component is normalized by the mean and standard deviation of the control school
distribution for that component. Since the variance of the mechanical component is larger, normalizing by
the standard deviation of the total score distribution would show that the magnitude of improvement due to
incentives was larger on the mechanical component.
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to the mechanical questions.  The relative unfamiliarity of these questions increases our

confidence that the gains in test scores represent genuine improvements in learning 

outcomes.

The impact of incentives on the performance in non-incentive subjects such as 

science and social studies is tested using a slightly modified version of specification (5.1)

ijkjkkmLanguageijkmMathijkmEVSijkm ZIncentivesBLTBLTELT )()()( 1

where lagged scores on both math and language are included, and again the parameter of 

interest is  (EVS stands for "Environmental Sciences" which include both science and 

social studies).  Students in incentive schools performed significantly better on non-

incentive subjects as well scoring 0.11 and 0.14 standard deviations higher than students 

in control schools in science and social studies respectively (Table 7).  The coefficients 

on the baseline math and language scores here are much lower than those in Table 2 

(below 0.25 versus 0.5), confirming that the domain of these tests was substantially 

different from that of the tests on which incentives were paid.

These results do not imply that no diversion of effort away from EVS or conceptual 

thinking took place, but rather that in the context of primary education, teacher efforts 

aimed at increasing test scores in math and language also contribute to superior 

performance on broader educational outcomes suggesting complementarity in the various 

measures and positive spillover effects (though the result could also be due to an 

improvement in test-taking skills that transfer across subjects). 

5.6 Heterogeneity of Treatment Effects 

We test for heterogeneity of the incentive treatment effect across student, teacher, and

school characteristics by testing if 3 is significantly different from zero in: 

sticCharacteriIncentivesBLTELT ijkmijkm 21)()(

ijkjkkmZsticCharacteriIncentives )(3

We find no evidence of a significant difference in the effect of the incentives on any of 

the student demographic variables, including an index of household affluence, an index 
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of household literacy, the caste of the household, the student's gender, and the student's

baseline score.37

Similarly, we find no evidence of differential impact of incentives by teacher 

characteristics including gender, designation, experience, and base pay.  The last finding 

might suggest that the magnitude of the incentive was not salient because the potential

incentive amount (for which all teachers had the same contract) would have been a larger 

share of base pay for lower paid teachers.  However, teachers with higher base pay are 

typically more educated and experienced and so we cannot disentangle the impact of the 

incentive amount from that of teacher variables that influence the base pay.

The only evidence of heterogeneous treatment effects is at the school level, where 

schools with better infrastructure show a greater response to the incentives.  Incentive 

schools score 0.06 SD higher in the endline tests for every additional point on a 6-point

infrastructure index (as described in the notes to Table 1). The mean infrastructure index

in the sample is 3.2, implying that a school having an index value of 0 or 1 showed no 

improvement relative to the control schools, while schools having index values of 5 or 6 

improved by 0.3 to 0.35 standard deviations. 

5.7 Group versus Individual Incentives 

Point estimates suggest that students in individual incentive schools perform slightly 

better than those in group incentive schools, but the difference is not significant (Table 

8).  There was also no significant difference in the variances of the two gain distributions 

(though the variance of the gain distribution of the group incentive schools is slightly 

lower).  As mentioned earlier, the average school in rural AP is quite small and has only 

3 teachers on average.  The results therefore probably reflect a context of relatively easy 

peer monitoring.

We find no significant impact of the number of teachers in the school on the relative

performance of group and individual incentives (both linear and quadratic interactions of 

school size with the group incentive treatment are insignificant).  However, the variation 

in school size is small with 92% of group incentive schools having between two and five 

37 The affluence index (0-4) assigns one point for each of owning a brick home, and having functioning
water, electricity and a toilet, and the literacy index (0-4) assigns one point for each parent being literate 
and an additional point for each parent who has completing primary school
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teachers (the mean number of teachers across the 100 schools was 3.28, the median was

3, and the mode was 2).   The limited range of school size makes it difficult to precisely 

estimate the impact of group size on the effectiveness of group incentives.  Also, field 

reports suggest that teachers in some individual incentive schools agreed ex ante to split

their bonus amounts equally, potentially reducing the difference in treatments.

Our results are relevant not just for AP's rural schools but for rural schools throughout 

India because the government's access policy makes small schools common.  Since 

educationists emphasize the value of cooperation within the school and the harmful 

effects of within-school competition, it is useful to know that the gains from teacher 

incentives can be obtained just as effectively from group and individual incentives in this 

context of rural schools with a small number of teachers.  However, the result should not 

be extrapolated to large schools in which the group would comprise many teachers. 

Beyond the context of schools and teachers, our results indicating near equivalence 

between individual and group incentives may also be relevant for compensation design in 

small groups in general.  In particular, the result suggests that the inability to provide 

individual incentives in cases of team production and unobservable individual output 

might not be a salient constraint to incentive provision in small groups if group incentives 

perform as well as the individual incentives even when the latter are feasible.38

5.8 Impact of Measurement 

To isolate the impact of 'measurement' on test scores, we run the regression: 

ijkjkkmijkm ZControlELT )(

using only the 'control' and 'pure control' schools.  Table 9 shows that there is no 

significant impact of the baseline test, detailed feedback, continuous tracking surveys, 

and advance announcement of the endline assessments on the test score outcomes of the

control schools relative to the 100 randomly-sampled schools in the pure control category 

that were told about the testing only a week before the endline tests.  We find this result 

surprising given that our initial hypothesis was that the 'announcement effect' of external 

testing would have a larger impact.  However, all 500 schools in the main study were told 

38 Of course, if the group's ability to prevent free riding is improved by being able to observe individual
output (as opposed to effort), then the equivalence between group and individual incentives might not hold
in cases where individual outcomes are not measurable.
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that information about a specific school or teacher's performance would not be shared 

outside the school on an identifiable basis (to limit confounding of monetary and non-

monetary incentives).  Since no consequences were attached to poor or good performance

on the test for the control schools, the result reinforces the importance of incentives, as 

opposed to mere diagnostic information, in changing behavior.39

6. Teacher Behavior and Classroom Processes
As described in section 3.3, the APF mandal coordinators (MCs) conducted six 

rounds of unannounced tracking surveys during the school year to all 500 schools (and 

one similar visit to a sample of extra schools outside the study).  To code classroom

processes, an MC typically spent between 20 and 30 minutes at the back of a classroom

(during each visit) without disturbing the class and coded whether specific actions took 

place during the period of observation.  The MCs also interviewed teachers about their 

teaching practices and methods, asking identical sets of questions in both incentive and

control schools.  These interviews were conducted in August 2006, around 4 months after 

the endline tests, but before any results were announced. 

There was no difference in either student or teacher attendance between control and 

incentive schools.  We also find no significant difference between incentive and control 

schools on any of the various indicators of classroom processes as measured by direct 

observation (Table 10 – Panel A).  This is similar to the results in Glewwe et al (2003) 

who find no difference in teacher behavior between treatment and control schools from

similar surveys and raises the question of how the outcomes are significantly different

when there don't appear to be any differences in the processes between the schools.  One 

explanation could be that teachers' actions converge to certain norms of behavior when 

under repeated observation.

We check for this by comparing the process variables in control schools with those in 

the pure control schools.  While there is no difference in teacher attendance, the control 

schools do better on many of the recorded measures of classroom processes (Table 10 – 

Panel B).  Since there is no significant difference in test score outcomes between the 

39 Of course, this result does not rule out the possibility that widely disseminating information and creating
'public rankings' etc. can induce better performance even without monetary rewards.
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control and the pure control schools, it seems likely that the superior process measures in 

the control schools are a result of the repeated observation by (usually) the same person 

over the course of the year.  This interpretation is supported by the fact that there is no 

difference in teacher absence, or classroom cleanliness (which cannot be affected after 

the MC arrives in the school), but there is a significant difference in actions that a teacher 

is likely to believe constitute good teaching (such as using the blackboard, reading from 

the textbook, making children read from the textbook, and assigning homework).  If 

actions converge to a norm of behavior under observation,40 we may not be able to 

identify process differences between control and incentive schools by observation even if 

the true processes are different.

The teacher interviews provide another way of testing for differences in behavior.

Teachers in both incentive and control schools were asked unprompted questions about 

what they did differently during the 2005 – 06 school year before they knew the endline 

results.  The interviews indicate that teachers in incentive schools are significantly more

likely to have assigned more homework and class work, conducted extra classes beyond 

regular school hours, given practice tests, and paid special attention to weaker children 

(Table 11).  While self-reported measures of teacher activity might not be considered 

very credible, we find a positive correlation between the reported activities of teachers

and the performance of their students.  The effect of assigning homework and class work 

is positive but not significant, while that of extra classes and practice tests are positive

and strongly significant.

The interview responses suggest other reasons for why salient dimensions of changes 

in teacher behavior might not have been captured in the classroom observations.  An 

enumerator sitting in classrooms during the school day is unlikely to observe the extra 

classes conducted after school. Similarly, if the increase in practice tests occurred closer 

to the end of the school year (in March), this would not have been picked up by the 

tracking surveys conducted between September and February.

Our use of both direct observations and interviews might help in reconciling the 

difference between the findings of Glewwe et al. (2003) and Lavy (2004) with respect to 

40 A striking example is provided in Brennan and Pettit (2005) who present experimental evidence that
users of public rest rooms in New York were twice as likely to wash their hands (80% versus 40%) after 
using the toilet if there was someone else present in the rest room.
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teacher behavior.  Glewwe et al. use direct observation and report that there was no 

significant difference in teacher actions between incentive and comparison schools; Lavy

uses phone interviews with teachers and reports that teachers in incentive schools were 

significantly more likely to conduct extra classes, stream students by ability, and provide 

extra help to weak students.  While both methods are imperfect, our results suggest that 

the difference between the studies could partly be due to the different methodologies used 

for measuring classroom process variables.

In summary, it appears that the incentive program based on end of year test scores did 

not change the teachers' cost-benefit calculations on the presence/absence margin on a 

given day during the school year, but that it probably made them teach more effectively 

when present.  Regular observation changed teacher behavior while they were observed, 

but had no impact on student learning outcomes.

7. Input Treatments & Cost-Benefit Analysis
7.1. Effectiveness of Para-teachers and Block grants 

Table 12 shows the impact on test scores of providing additional inputs to primary

schools using the same specification as before (5.1) and the sample of 300 control, para-

teacher, and block-grant schools.  Columns 1, 3, and 5 pool both the input treatments

together, while columns 2, 4, and 6 separate the impact of the extra para-teacher and the 

block grant.  The input treatments had a significant positive impact on student test scores, 

increasing math and language scores by 0.1 and 0.08 standard deviations respectively 

relative to the control schools.  There was no significant difference between the effects of 

the block grant and the para teacher.  Further results on the inputs and estimates of the 

education production function are presented in a companion paper.

7.2. Comparison of Input and Incentive Treatments 

To compare the effects across treatment types, we pool the 2 incentive treatments, the 

2 input treatments, and the control schools and run the regression: 

ijkjkkmijkmijkm ZInputsIncentivesBLTELT 21)()(

using the full sample of 500 schools.  While both categories of treatments had a positive 

and significant impact on learning outcomes, the incentive schools performed 0.06 

- 29 -



standard deviations better than the input schools and this difference is significant at the 

10 percent level (Table 13 - Column 1).  The incentive schools perform better than input

schools in both math and language and in both rounds of testing, though not all of the 

differences are significant.  The performance difference is greater (and significant at the 

5% level) for the higher endline test than for the lower endline test (where the difference

is not significant).  It is possible that the increased intensity of effort reported in the 

incentive schools applied more to current-year materials (covered in the higher endline 

test) than in reviewing previous years' materials (covered in the lower endline test). 

Table 14 summarizes the amount of money spent on each of the interventions, and the 

total amount spent on each intervention is roughly equal.  The average annual spending 

on the incentives was around Rs. 9,000/school.  The bonus payment in the group 

incentive schools was around 35% lower than that in the individual incentive schools (in 

spite of having only slightly lower performance) because classes with gains less than 5% 

brought down the average school gain in the group incentive schools, while gains below 

5% in some classes did not hurt other classes in the individual incentive schools.  Thus, 

while all four interventions had a significant positive impact, the incentives were more

cost effective than the inputs, and the group incentive treatment was the most cost 

effective of the four interventions.

Table 15 shows the fraction of eligible schools and teachers who qualified for an 

incentive payment along with the distribution of bonuses.  61% of schools and 62% of 

teachers who were eligible for a group incentive qualified for one.  66% of teachers 

eligible for an individual incentive qualified for it, and 87% of the individual incentive 

schools had at least one teacher who received a bonus.  The frequency of high payments

is greater in the individual incentive schools, which is consistent with performance

having a higher variance at the class-level than at the school-level.

A different way of thinking about the cost of the incentive program is to not consider 

the incentive payments as a cost at all, because it is simply a way of reallocating salary 

spending.  For instance, if salaries were increased by 3% every year for inflation, then it 

might be possible to introduce a performance component with an expected payout of 3% 

of base pay in lieu of a standard increase across the board.  Under this scenario, the 

'incentive cost' would only be the risk premium needed to keep expected utility constant
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compared to the guaranteed increase of 3%.  This is a very small number with an upper 

bound of 0.1% of base pay if teachers' coefficient of absolute risk aversion (CARA) is 2 

and 0.22% of base pay even if the CARA is as high 5.41  This is less than 10% of the 

mean incentive payment (3% of base pay) and thus, the long-run cost of the incentive 

program can be substantially lower than the full cost of the bonuses paid in the short run. 

7.3. Comparison with Regular Spending Patterns 

Since the inputs considered for the comparison above are non-typical ones (in that 

they do not represent a proportional increase in current spending), a second way of 

evaluating the cost-effectiveness of the interventions is to compare their outcomes to 

those from the 'business as usual' pattern of spending.  Since the skills and competencies

assessed on the lower endline test correspond exactly to those tested on the baseline, we

can consider the gain in scores in the control schools between the baseline and lower 

endline (but not the 'higher endline') to represent the progress made in one school year in 

a typical government school. 42  The gains in the incentive and input schools can then be 

compared with a year's progress in the average government school.43

Table 16 shows this calculation.  Columns 1, 2, and 3 present the mean gain in test 

scores for all schools within a treatment category by grade for control, input, and 

incentive treatments respectively.  Columns 4 and 5 present the ratio of the gain in the 

input and incentive schools with respect to the control schools.  Averaging across grades 

and subjects, the input schools added the equivalent of 116% of a regular year's learning 

while the incentive schools added 126%.

Both the input and incentive interventions were highly cost effective relative to the 

status quo.  As mentioned earlier, the variable cost of running a typical government

school is around Rs. 300,000/year. The input treatments added the equivalent of 16% of 

41 The risk premium here is the value of  such that )()]03.1()97.0([5.0 wuwuwu , and is 
easily estimated for various values of CARA using a Taylor expansion around w. This is a conservative
upper bound since the incentive program is modeled as an even lottery between the extreme outcomes of a 
bonus of 0% and 6%.  In practice, the support of the incentive distribution would be non-zero everywhere
on [0, 6] and the risk premium would be considerably lower.
42 The baseline and lower endline were of exactly the same length and had a 1 to 1 correspondence at the
question level.  So if the baseline had a question testing 'double digit addition with carry over', then the
lower endline also had a similar question but with different numbers. This does not apply to the higher
endline because there was no 'matched baseline' corresponding to it. 
43 This is an approximate calculation, because a precise comparison of 'changes' in learning across schools
usually requires retesting of the same questions as opposed to similar questions as done here.
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a normal year's learning for an additional cost of Rs. 10,000/year, and so 6.25 years of the 

programs would add an equivalent of a full year's learning at a cost of Rs. 62,500 (or 

around 21% of the current variable cost of a year's schooling).  This confirms our initial 

hypothesis that the para-teacher and block grant interventions are "smarter inputs" that 

are substantially more cost effective than the status quo. 

Since a year of the incentive program added the equivalent of 26% of a normal year's 

learning, four years of such a program would add the equivalent of a full year's learning 

at a cost of Rs. 36,000 (assuming the same program effects continue).  The teacher 

incentive program could therefore add the equivalent of a full year of schooling at 12% of 

the current cost of a year's schooling, which would make it a very cost effective program

relative to the status quo.44

A full discussion of cost effectiveness should include an estimate of the cost of 

administering the program.  The main cost outside the incentive payments is that of 

independently administering and grading the tests.  The approximate cost of each round

of testing was Rs. 5,000 per school, which includes the cost of testing and data entry but 

not the additional costs borne for research purposes.45  This is probably an over estimate

because the small size and geographical dispersion of the program was not conducive to 

exploiting economies of scale.   The incentive program would be highly cost effective 

even after adding these costs (adding a full year's learning for Rs. 56,000 or 19% of the 

current cost of a year's schooling) and even more so in the long-run when the incentive

cost is only the risk premium and not the amount of the incentive payments.

8.  Stakeholder Reactions and Policy Implications
8.1 Stakeholder Reactions

Nearly 75% of teachers in incentive schools report that their motivation levels went 

up as a result of the program (with the other 25% reporting no change); over 95% had a 

44 This estimate is likely to be a lower bound for 2 reasons.  First, it does not use the 'higher endline' test 
data where the performance advantage of incentive schools is even more pronounced.  Second, the baseline
tests were in June and the lower endline tests were in March, and so the baseline score might be artificially 
low due to students forgetting material over the vacation.  If the true absolute improvement is therefore a
little lower for both treatment and control schools, the relative advantage of the treatments studied here
would be even higher.
45 The first year of the program required two rounds of testing, but subsequent years will only require one
round since the endline in one year will serve as the baseline for the next year. 
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favorable opinion about the program; over 85% had a favorable opinion regarding the 

idea of providing bonus payments to teachers on the basis of performance; and over two

thirds of teachers felt that the government should consider implementing a system of 

bonus payments on the basis of performance.

Of course, it is easy to support a program when it only offers rewards and no 

penalties, and so we also asked the teachers their opinion regarding performance-pay in a 

wage-neutral way.  Teachers were asked their preference regarding how they would 

allocate a hypothetical budgetary allocation for a 15% pay increase between an across-

the-board increase for all teachers, and a performance-based component.  Over 75% of 

teachers supported the idea of at least some performance-based pay, with over 20% in

favor of having 20% or more of annual pay determined by performance.46

To obtain data on parental preferences, the APF mandal coordinators interviewed a 

small random sample of parents during each round of the tracking survey.  The most

important reasons that parents report for sending their children to school are "improving

job prospects" (66%) and "building discipline" (55%).  The most important traits that 

parents report looking for in their child's teachers are: "Can improve skills and learning"

(74%) and "can build discipline" (73%).  These objectives are likely to be well aligned

with providing teachers bonuses based on improvements in student test scores.

8.2 Policy Implications

Since both the incentive and para-teacher policies are more cost effective than the 

status quo, it might be possible to combine them creatively to improve primary education 

in Andhra Pradesh (and in India).  For instance, if all new teachers are hired as para-

teachers, the money saved could be used to expand the incentive program to all teachers.

Having an incentive program would also produce a track record of teacher performance,

and this data could be used to promote para-teachers to regular teacher status after a 

period of time on the basis of a sustained track record of performance.47  While the 

reactions of teachers' unions to such a proposal could be different from that of individual

46 If teachers are risk-averse and have rational expectations about the distribution of their abilities, we 
would expect less than 50% to support revenue-neutral performance pay since there is no risk premium
being offered in the set of options.  The 75% positive response could reflect many things including over
optimism about their own abilities, a belief that it will be politically more feasible to secure funds for salary 
increases if these are linked to performance, or a sense that such a system could bring more professional
respect to teachers and enhance motivation across the board. 
47 A similar proposal is made in Pritchett and Pande (2006).
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teachers,48 the overall positive response from teachers (and potentially parents) suggests 

that it might be possible to institute performance-based pay in government schools. 

The longer-term benefits to performance pay include not only greater teacher effort, 

but also potentially the entry of better teachers into the profession.49  We regress the 

extent of teachers' preference for performance pay holding expected pay constant 

(reported before they knew their outcomes) on the average test score gains of their 

students and find a positive and significant correlation between teacher performance and 

the extent of performance pay they desire.  This suggests that effective teachers know 

who they are and that there are likely to be sorting benefits from performance pay.  If the 

teaching community is interested in improving the quality of teachers entering the 

profession, this might be another reason to support performance pay.

9. Conclusion 
Performance pay for teachers is an idea with strong proponents as well as opponents 

and the empirical evidence to date on its effectiveness has been mixed.  We present 

evidence from a randomized evaluation of a teacher incentive program in a representative 

sample of government-run rural primary schools in the Indian state of Andhra Pradesh, 

and show that the incentives led to significant improvements in both math and language 

test scores.  The gains were spread out evenly across grades, districts, skills and 

competencies, and question difficulty.  We detect no adverse consequences of the 

program with student performance improving on mechanical as well as conceptual 

questions and on incentive as well as non-incentive subjects.  There was no difference 

between the effectiveness of group versus individual incentives.  Teacher absence did not 

differ across treatments, but teachers in incentive schools appear to teach more 

effectively when present.

The additional inputs we studied (para-teachers and school grants for spending on 

student-level inputs) were also effective in raising test scores and appear to be 

48 Ballou and Podgursky (1993) show that teachers' attitude towards merit pay in the US is more positive
than is supported by conventional wisdom and argue that the dichotomy may be due to divergence between
the interests of union leadership and members.  There is some evidence that this might be the case here as
well. Older teachers are significantly less likely to support the idea of performance pay in our data, but
they are also much more likely to be active in the teacher union.
49 See Lazear (2000) and (2003), and Hoxby and Leigh (2005)
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substantially more cost effective than the status quo. However, the incentive program

spent the same amount of money on bonus payments and achieved significantly better 

outcomes.  Since the long-term cost of performance pay is only the risk premium

associated with variable pay and the administrative cost, teacher incentive programs may

be a highly cost effective way of improving learning outcomes.  Teachers supported the 

idea of performance pay (even holding expected pay constant) with over 85% of them

being in favor of the idea of bonus payments on the basis of test score improvements.

The main caveat to the results presented here is that they only represent data from the 

first year of the program.  The impact of the incentives may be larger in subsequent years, 

once the program's credibility is established; but it is also possible that the gains in test

scores may not persist in future years, once the novelty of the program wears off.  We

also do not know how an understanding of the dynamics of student learning will affect a 

rational teacher's response to an incentive program in the long run, and if unanticipated 

dimensions of gaming will emerge as teachers become more familiar with the program.

Another area of uncertainty is the optimal ratio of base and bonus pay.  Setting the 

bonus too low might not provide adequate incentives to induce higher effort, while 

setting it too high increases both the risk premium and the probability of undesirable 

distortions.  It is possible that the first year of the program saw large performance effects 

from relatively small bonus payments because teachers have consumption commitments

and so even small bonuses represent large increases in utility.  However, if an expected 

bonus gets factored into annual expected income, the impact on teacher effort and student 

performance might be smaller in future years.  An expectation of bonuses may also lead 

to political pressure on the part of teachers to convert bonuses into raises, which would 

defeat the point of performance-based pay.

We have also not devised or tested the optimal long-term formula for teacher 

incentive payments.  While basing bonuses on average test score gains is an improvement

on simply using levels and avoids the problems associated with level targets, the current

formula is not optimal.  For instance, the fact that the coefficient on the lagged score ( )

is estimated as 0.5 as opposed to 1, suggests that the naïve 'average gain' formulation

penalized teachers who happened to be in classes that had high baseline scores.  There are 

also other determinants of student performance such as class size, school infrastructure,
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household inputs, and peer effects.  An optimal formula for teacher bonuses would net 

out these factors to estimate a more precise measure of teachers' value addition.  A related

concern is measurement error and the potential lack of reliability of test scores at the 

class and school levels.50

The incentive formula can be improved with data over multiple years and by drawing 

on the growing literature on estimating teacher value added in developed countries.51

However, there is a practical trade off between the accuracy and precision of the value-

added measurement on one hand and the transparency of the system to teachers on the 

other.  Teachers accepted the intuitive 'average gain' formula used in the first year.  We

expect that teachers will start getting more sophisticated about the formula in future 

years, at which point the decision regarding where to locate on the accuracy-transparency

frontier can be made in consultation with teachers.  However, it is possible that there may

be no satisfactory resolution of the tension between accuracy and transparency.52

We expect AP RESt to continue until 2011 and hope to answer many of the questions 

raised in this section as part of an ongoing effort to study the long-term outcomes of the 

input and incentive programs.  It may also be possible to continue random allocation of 

variants of the incentive program during a process of slowly expanding coverage.  This 

will allow experimentation with variations such as tournaments, incentives on both 

teacher attendance and test scores, and interactions between inputs and incentives.  It may

also be possible to vary the magnitude of the incentives to estimate outcome elasticity

with respect to the extent of variable pay, and thereby gain further insights not only on 

performance pay for teachers, but on performance pay in organizations in general.

50 Kane and Staiger (2002) show that measurement error in class-level and school-level averages can lead 
to rankings based on these averages being volatile. However, as Rogosa (2005) points out, mean test-
scores can be quite precise (in the sense of accurately estimating levels of learning) even while not being
very reliable (in the sense of accurately ranking schools).  This might be a reason to prefer contracts over
tournaments.
51 See the excellent collection of essays in Haertel and Herman (2005) for instance.
52 Murnane and Cohen (1986) point out that one of the main reasons why merit-pay plans fail is that it is 
difficult for principals to clearly explain the basis of evaluations to teachers. However, Kremer and Chen
(2001) show that performance incentives even for something as objective as teacher attendance did not 
work when implemented through head teachers in schools in Kenya.  The head teacher marked all teachers 
present often enough for all of them to qualify for the prize.  These results suggest that the bigger concern
is not complexity but rather human mediation, and so a sophisticated algorithm might be acceptable as long 
as it is clearly objective and based on transparently established ex ante criteria.
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Appendix A: Project Timeline and Activities

The broad timeline of AP RESt was as follows: 

January 2004 – October 2004: Planning, Permissions, Partner selection, Funding 
November 2004 – April 2005: Pilot
April 2005 – June 2006: First full year of main interventions 
June 2006 – onwards: Long-term outcomes and sustainability

Main Project (Timeline of Key Activities) 

April – June 2005
Random sampling of the 500 schools to comprise the universe of the study
Communication of the details of baseline testing to the various district-level 
officials in the selected districts (only communicated about the baseline tests and 
not about the inputs and incentives at this point)

Late June – July 2005 
Baseline tests conducted in all 500 project schools in a 2-week span in early July
Scoring of tests and preparation of school and class performance reports 
Stratified random allocation of schools to treatments groups 

August 2005
Distribution of test results, diagnostics, and announcement of relevant incentive 
schemes in selected schools
Treatment status and details communicated to schools verbally and in writing

September 2005 
Placement of extra teacher in the relevant randomly selected schools 
Provision of block grants to the relevant randomly selected schools, procurement
of materials and audit of procurement

September 2005 – February 2006 
Unannounced tracking surveys of all 500 schools on average once a month
From December, similar visits were made to additional "pure control" schools

March – April 2006 
Lower and higher endline assessments conducted in 500 schools plus a 100 extra 
schools that constitute the pure control category

August 2006 
Interviews with teachers on teaching activities in the previous school year and on 
their opinion about performance pay

September 2006 
Provision of school and class level performance reports
Provision of incentive payments to qualified schools and teachers
Communication letters about the second year of the program
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Appendix B: Project Team, Test Administration, and Robustness to Cheating

The project team from the Azim Premji Foundation consisted of around 30 full time
staff and 250 to 300 evaluators hired for the period of the baseline and endline testing.
The team was led by a project manager, and had 5 district coordinators (DCs) and 25 
mandal coordinators (MCs).  Each MC was responsible for project administration,
supervision of independent tests, communications to schools, and conducting tracking 
surveys in 2 mandals (20 schools).  The MCs were the 'face' of the project to the schools, 
while each DC was responsible for overall project implementation at the district level. 

Teams of evaluators were hired and trained specially for the baseline and endline 
assessments.  Evaluators were typically college graduates who were obtaining a 
certificate or degree in teaching.  The tests were externally administered with teams of 5 
evaluators conducting the assessments in each school (1 for each grade).  For the baseline 
there were 50 teams of 5 evaluators with each team covering a school in a day.   The 500 
schools were tested in 10 working days over 2 weeks.  For the end of year tests, we had 
60 teams of 5 evaluators each and 600 schools (including 100 'pure control' schools) were 
tested in 2 rounds over 4 weeks at the end of the school year.  The 'lower endline' was 
conducted in the first 2 weeks and the 'higher endline' was conducted in the last 2 weeks.
Schools were told that they could be tested anytime in a 2-week window and the order of 
testing schools was also balanced across treatment categories.

Identities of children taking the test were verified by asking them for their father's
name, which was verified against a master list of student data.  Standard exam procedures 
of adequate distance between students and continuous proctoring were followed. The 
teachers were not allowed in the classes while the tests were being given.  The tests (and 
all unused papers) were collected at the end of the testing session and brought back to a 
central location at the end of the school day.  The evaluation of the papers, and the 
transcription to the 'top sheet' (that was used for data entry) was done in this central 
location under supervision and with cross checking across evaluators to ensure accuracy.

We looked carefully at the student-level records in the top 10% of the incentive 
schools, and found 2 classrooms (out of the 100 top-performing classrooms) in the 
incentive schools with suspicious answer patterns.53  As Jacob and Levitt (2003) point 
out, it is quite difficult to isolate cheating from very good teaching with just one year's
data, and so we cannot be sure that these were cases of cheating.  However, the results on 
incentives are robust to excluding these 2 classrooms (and even to completely dropping 
the 2 schools) from the analysis.

53 Since the evaluation of the papers was done at a central location, the most likely form of cheating would 
not be a teacher altering a few students' answer sheets (as found by Jacob and Levitt, 2003) but a teacher
potentially giving out answers to a few questions in the class (though the teachers were typically not 
allowed in the class during testing).  Thus, we identify suspicious classrooms by looking for cases where 
all students get a few difficult questions correct, while some of them get easier questions wrong.
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Table 1: Sample Balance Across Treatments

Panel A (Means of Baseline Variables)

[1] [2] [3] [4] [5] [6] [7] [8]

Control
Extra
Para-

teacher

Block
Grant

Group
Incentive

Individual
Incentive

P-value
(Equality of 
all groups)

Largest
Difference

P-value
(Largest

Difference=0)

School-level Variables

Total Enrollment (Baseline: Grades 1-5) 113.2 104.6 104.2 111.3 112.6 0.82 9.0 0.38

Total Test-takers (Baseline: Grades 2-5) 64.9 62.0 62.3 62.0 66.5 0.89 4.5 0.42

Number of Teachers 3.07 2.83 3.03 3.12 3.14 0.58 0.31 0.14

Pupil-Teacher Ratio 39.5 39.8 34.6 40.6 37.5 0.66 6.0 0.16

Infrastructure Index (0-6) 3.19 3.13 3.33 3.14 3.26 0.84 0.21 0.32

Proximity to Facilities Index (8-24) 14.65 14.97 14.71 14.66 14.72 0.98 0.32 0.55

Baseline Test Performance

Math (Raw %) 18.4 17.3 16.6 17.8 17.4 0.56 1.8 0.10

Math (Normalized - in Std. deviations) 0.057 -0.022 -0.059 0.020 -0.005 0.57 0.116 0.11

Telugu (Raw %) 35.0 34.2 33.7 34.8 33.4 0.81 1.6 0.30

Telugu (Normalized - in Std. deviations) 0.032 -0.003 -0.027 0.024 -0.039 0.82 0.071 0.32

Panel B (Means of Endline Variables)

Turnover and Attrition 

Teachers Who Stayed the Full Year/ Total in 
School Beginning of School Year (%) 69.8 68.8 65.9 66.4 69.3 0.81 3.8 0.34

Teachers Who Stayed the Full Year/ Total in 
School at End of School Year (%) 66.0 66.6 66.4 66.7 67.5 1.00 1.5 0.69

Student Attrition (Students who did not take an 
endline test as a fraction of those who took a 
baseline test)

14.0 14.9 14.3 13.2 14.6 0.79 1.7 0.23

Notes:
1. The infrastructure index sums binary variables showing the existence of a brick building, a playground, a compound 
wall, a functioning source of water, a functional toilet, and functioning electricity.

2. The proximity index sums 8 variables (coded from 1-3) indicating proximity to a paved road, a bus stop, a public 
health clinic, a private health clinic, public telephone, bank, post office, and the mandal educational resource center.

3. The t-statistics for the baseline test scores and attrition are computed by treating each student/teacher as an 
observation and clustering the standard errors at the school level (Grade 1 did not have a baseline test).  The other t-
statistics are computed treating each school as an observation.



Table 2: Impact of Incentives on Student Test Scores 

Panel A (Coefficient on the lagged score is unconstrained)

Dependent Variable = Normalized Endline Test Score

Combined Math Telugu (Language)
[1] [2] [3] [4] [5] [6]

Normalized Baseline Score 0.499 0.494 0.49 0.481 0.516 0.515
(0.013)*** (0.013)*** (0.017)*** (0.018)*** (0.014)*** (0.015)***

Incentive School 0.154 0.153 0.189 0.193 0.12 0.113
(0.042)*** (0.045)*** (0.049)*** (0.054)*** (0.038)*** (0.040)***

School and Household Controls No Yes No Yes No Yes

Observations 68716 54910 34132 27278 34584 27632
R-squared 0.29 0.30 0.28 0.29 0.32 0.33

Panel B (Difference in Difference - Coefficient on lagged score constrained to equal one)

Dependent Variable = Normalized Endline Test Score

Combined Math Telugu (Language)
[1] [2] [3] [4] [5] [6]

Endline * Incentives 0.169 0.181 0.197 0.215 0.14 0.147
(0.047)*** (0.049)*** (0.054)*** (0.058)*** (0.047)*** (0.048)***

School and Household Controls No Yes No Yes No Yes

Observations 137025 104345 68305 52005 68720 52340
R-squared 0.09 0.09 0.09 0.10 0.09 0.10
Notes:
1. All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level.
2. Constants are insignificant in all specifications and are not shown.
* significant at 10%; ** significant at 5%; *** significant at 1%

Table 3: Impact of Incentives by Grade
Dependent Variable = Normalized Endline Test Score

Combined Math Telugu (Language)
[1] [2] [3] [4] [5] [6]

Incentives * Grade 1 0.105 -0.05 0.109 -0.076 0.101 -0.024
(0.064) (0.065) (0.069) (0.073) (0.065) (0.068)

Incentives * Grade 2 0.11 -0.045 0.124 -0.061 0.097 -0.028
(0.054)** (0.061) (0.058)** (0.069) (0.058)* (0.066)

Incentives * Grade 3 0.181 0.026 0.22 0.035 0.143 0.018
(0.055)*** (0.045) (0.062)*** (0.054) (0.053)*** (0.049)

Incentives * Grade 4 0.188 0.033 0.257 0.072 0.121 -0.004
(0.054)*** (0.046) (0.067)*** (0.060) (0.048)** (0.044)

Incentives * Grade 5 0.155 0.185 0.125
(0.051)*** (0.063)*** (0.048)***

Incentive School 0.155 0.185 0.125
(0.051)*** (0.063)*** (0.048)***

Observations 68716 68716 34132 34132 34584 34584
F-Test p-value (Equality Across Grades) 0.6104 0.6104 0.2244 0.2244 0.9533 0.9533
R-squared 0.29 0.29 0.28 0.28 0.32 0.32
Notes:
1. All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level.
* significant at 10%; ** significant at 5%; *** significant at 1%



Table 4: Impact of Incentives by Testing Round

Dependent Variable = Normalized Endline Test Score

Combined Math Telugu (Language)
Lower

Endline
Higher
Endline

Lower
Endline

Higher
Endline

Lower
Endline

Higher
Endline

[1] [2] [3] [4] [5] [6]

Incentive School 0.124 0.193 0.153 0.236 0.096 0.153
(0.042)*** (0.050)*** (0.048)*** (0.062)*** (0.041)** (0.042)***

Observations 38802 29914 19274 14858 19528 15056
R-squared 0.30 0.30 0.29 0.29 0.31 0.34
Notes:
1. All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level.
2. The Lower Endline test covered competencies tested in the baseline (corresponding to the previous school year's 
materials), while the Higher Endline covered the materials taught in the current school year.
* significant at 10%; ** significant at 5%; *** significant at 1%

Table 5: Raw Scores (% Correct on Endline) by Mechanical and Conceptual Categories

Grade

1 2 3 4 5

Math
Mechanical 15.4 38.6 30.4 28.4 25.2

Conceptual 18.7 40.0 25.8 23.3 16.3

Difference -3.3 -1.4 4.6 5.1 8.9

Language
Mechanical 32.4 54.3 54.2 49.5 58.1

Conceptual 24.4 40.4 22.0 32.2 39.5

Difference 8.0 13.9 32.2 17.3 18.6
Note: All differences except grade 2 math are statistically significant at the 5% level.

Table 6: Impact of Incentives on Mechanical Versus Conceptual Learning

Dependent Variable = Endline Test Score by Mechanical/Conceptual (Normalized by 
Mechanical/Conceptual Distribution in Control Schools)

Combined Math Telugu (Language)
Mechanical Conceptual Mechanical Conceptual Mechanical Conceptual

[1] [2] [3] [4] [5] [6]

Normalized Baseline Score 0.482 0.338 0.492 0.265 0.48 0.411
(0.012)*** (0.011)*** (0.015)*** (0.015)*** (0.013)*** (0.013)***

Incentive School 0.134 0.135 0.168 0.165 0.101 0.106
(0.038)*** (0.042)*** (0.045)*** (0.049)*** (0.036)*** (0.040)***

Observations 69310 69310 34428 34428 34882 34882
R-squared 0.28 0.17 0.28 0.14 0.29 0.23
Notes:
All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level.
* significant at 10%; ** significant at 5%; *** significant at 1%



Table 7: Impact of Incentives on Non-Incentive Subjects

Dependent Variable = Normalized Endline Test Score

Science Social Studies
[1] [2]

Normalized Baseline Math Score 0.214 0.222
(0.019)*** (0.018)***

Normalized Baseline Language Score 0.206 0.287
(0.019)*** (0.019)***

Incentive School 0.107 0.135
(0.052)** (0.047)***

Observations 12011 12011
R-squared 0.26 0.3
Notes:
All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level.
* significant at 10%; ** significant at 5%; *** significant at 1%

Table 8: Impact of Group Incentives versus Individual Incentives
Dependent Variable = Normalized Endline Test Score

Combined Math Telugu (Language)
[1] [2] [3]

Normalized Baseline Score 0.499 0.49 0.516
(0.013)*** (0.017)*** (0.014)***

Group Incentive School (GI) 0.146 0.183 0.11
(0.050)*** (0.058)*** (0.046)**

Individual Incentive School (II) 0.162 0.195 0.13
(0.049)*** (0.060)*** (0.043)***

Observations 68716 34132 34584
F-Stat p-value (Testiing GI = II) 0.76 0.84 0.66
R-squared 0.29 0.28 0.32
Notes:
All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level.
* significant at 10%; ** significant at 5%; *** significant at 1%

Table 9: Impact of Measurement on Test Score Performance (Control versus Pure Control)
Dependent Variable = Normalized Endline Test Score

Combined Math Telugu (Language)
[1] [2] [3]

Control Schools 0.012 -0.011 0.034
(0.045) (0.048) (0.044)

Observations 49248 24615 24633
R-squared 0.11 0.11 0.11
Notes:
1. The sample includes the "control" schools and the "pure control" schools.  The former had a baseline test, feedback on the baseline 
test, continuous tracking surveys, and advance notice about the end of year assessments.  The "pure controls" had none of these and 
were outside the main study.
2. All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level.
* significant at 10%; ** significant at 5%; *** significant at 1%



Table 10: Teacher Behavior (Measured by Classroom Observation)

Panel A Panel B

Incentive versus Control Schools 
(All figures in %)

Control versus PURE Control 
Schools (All figures in %)

Process Variable (Activities performed by 
Teachers unless recorded otherwise)

Incentive
Schools

Control
Schools

p-Value of 
Difference

Control
Schools

Pure
Control
Schools

p-Value of 
Difference

Student Attendance 62.9 64.3 0.54

Teacher Absence 24.9 22.5 0.21 22.5 20.6 0.342

Actively Teaching 47.5 49.9 0.46 49.9 40.9 0.012**

Clean & Orderly Classroom 60.5 59.5 0.772 59.5 53.5 0.124

Giving a Test 26.6 26.6 0.993 26.6 27.6 0.790

Calls Students by Name 78.5 78.1 0.878 78.1 78.6 0.865

Addresses Questions to Students 62.8 63.2 0.871 63.2 58.1 0.087*

Provides Individual/Group Help 37.1 35.7 0.625 35.7 31.9 0.263

Encourages Participation 37.6 37.0 0.835 37.0 37.0 0.996

Reads from Textbook 52.8 56.1 0.299 56.1 41.9 0.000***

Makes Children Read From Textbook 57.8 60.0 0.43 60.0 45.6 0.000***

Active Blackboard Usage 50.0 49.1 0.764 49.1 40.9 0.014**

Assigned Homework 39.5 37.2 0.518 37.2 29.2 0.034**

Provided Homework Guidance 33.6 32.9 0.849 32.9 18.0 0.000***

Provided Feedback on Homework 24.7 27.0 0.478 27.0 13.1 0.000***

Children were Using a Textbook 66.0 67.4 0.559 67.4 60.8 0.026**

Children Asked Questions in Class 37.1 37.0 0.958 37.0 42.6 0.069*

Teacher Was in Control of the Class 51.2 52.4 0.694 52.4 51.2 0.706

Notes:

1. The control and incentive schools were each visited by a mandal coordinator approximately once a month for a total of 6 
visits between September 05 and March 06.  The "pure control" schools consisted of around 300 randomly sampled additional 
schools (6 in each mandal) that were outside the main study.  Each of these schools was visited only once (at an unannounced 
date) during the period from December 05 to February 06 and the mandal coordinators collected data similar to that collected 
in the schools in the main study.  Student attendance data was not collected in the pure control schools.

2. Each round of classroom observation is treated as one observation and the standard errors for the t-tests are clustered at 
the school level (i.e. correlations across visits and classrooms are accounted for in the standard errors).
* significant at 10%; ** significant at 5%; *** significant at 1%



Table 11: Teacher Behavior (Measured by Teacher Interviews)

Incentive versus Control Schools (All figures in %)

Process Variable Incentive Schools Control Schools p-Value of 
Difference

Did you do any special preparation for the end of year tests? (% Yes) 74.6 52.7 0.000***

What kind of preparation did you do? (UNPROMPTED) (% Mentioning)

Extra Homework 57.2 35.8 0.000***

Extra Classwork 58.7 41.2 0.000***

Extra Classes/Teaching Beyond School Hours 22.5 11.1 0.000***

Gave Practice Tests 36.0 21.8 0.000***

Paid Special Attention to Weaker Children 24.9 10.7 0.000***
Notes:
Each teacher is treated as one observation with t-tests clustered at the school level.
* significant at 10%; ** significant at 5%; *** significant at 1%

Table 12: Impact of Inputs on Learning Outcomes

Dependent Variable = Normalized Endline Test Score

Combined Math Telugu (Language)
[1] [2] [3] [4] [5] [6]

Normalized Baseline Score 0.516 0.516 0.487 0.487 0.553 0.553
(0.012)*** (0.012)*** (0.014)*** (0.014)*** (0.014)*** (0.014)***

Inputs (Pooled) 0.09 0.101 0.079
(0.033)*** (0.038)*** (0.032)**

Extra Para Teacher (PT) 0.089 0.104 0.074
(0.038)** (0.043)** (0.038)*

Block Grant (BG) 0.091 0.098 0.084
(0.039)** (0.046)** (0.038)**

Observations 66246 66246 32926 32926 33320 33320
F-Stat p-value (Testing PT = BG) 0.96 0.90 0.81
R-squared 0.31 0.31 0.29 0.29 0.34 0.34
Notes:
All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level.
* significant at 10%; ** significant at 5%; *** significant at 1%

Table 13: Impact of Inputs versus Incentives on Learning Outcomes
Dependent Variable = Normalized Endline Test Score

Both Test Rounds Lower Endline Only Higher Endline Only

Combined Math Language Combined Math Language Combined Math Language

[1] [2] [3] [4] [5] [6] [7] [8] [9]

Incentives 0.156 0.189 0.124 0.127 0.154 0.100 0.195 0.235 0.156
(0.041)*** (0.049)*** (0.038)*** (0.041)*** (0.047)*** (0.041)** (0.050)*** (0.064)*** (0.042)***

Inputs 0.096 0.110 0.083 0.097 0.111 0.083 0.095 0.107 0.083
(0.037)*** (0.043)** (0.036)** (0.038)** (0.042)*** (0.039)** (0.044)** (0.056)* (0.039)**

Difference (Incentives - Inputs) 0.06 0.08 0.04 0.03 0.04 0.02 0.10 0.13 0.07

F-Stat p-value (Inputs = Incentives) 0.09* 0.06* 0.20 0.40 0.29 0.62 0.02** 0.03** 0.03**
Observations 112078 55681 56397 63338 31464 31874 48740 24217 24523
R-squared 0.29 0.27 0.32 0.29 0.28 0.31 0.3 0.28 0.34
Notes:
1. These regressions pool data from all 500 schools: 'Group' and 'Individual' incentive treatments are pooled together as "Incentives", and the 'extra para-
teacher' and 'block grant' treatments are pooled together as "Inputs", and they are compared relative to the "Control" group.
2. The Lower Endline test covered competencies tested in the baseline (corresponding to the previous school year's materials), while the Higher Endline 
covered the materials taught in the current school year.
3. All regressions include mandal (sub-district) fixed effects and standard errors clustered at the school level.
* significant at 10%; ** significant at 5%; *** significant at 1%



Table 14: Spending by Treatment

Extra Para 
Teacher Block Grant Group

Incentives
Individual
Incentives

Annual Spending by Treatment 
(Rs/School)                10,000                  9,960                  7,114                11,074 

Table 15: Distribution of Incentive Payments

Group
Incentives

Individual
Incentives

Number of Eligible Schools (Teachers) 100 (328) 100 (342)

Number of Schools (Teachers) Qualifying for a Bonus 61 (203) 87 (226)

Bonus Range (Rs. 0 - 5,000) 45 (158) 140

Bonus Range (Rs. 5,000 - 10,000) 12 (31) 61

Bonus Range (Rs. 10,000+) 4 (14) 25

Average Bonus (among all eligible teachers) (Rs.) 2142 3238

Average Bonus (among those who receive a bonus) (Rs.) 3461 4900

Maximum Bonus Received by a Teacher (Rs.) 11474 26448

Note: When there are 2 numbers together, the first one is the number of schools, and the number in parentheses 
is the number of teachers

Table 16: Comparison with Regular Pattern of Spending

Control Inputs Incentives Input Gain/ 
Control Gain

Incentive Gain/ 
Control Gain

[1] [2] [3] [4] [5]

Mean Math Gain by Grade (in % points 
over Baseline Score)

Grade 1 (Assuming Baseline = 0) 14.4% 17.6% 16.4% 1.22 1.13

Grade 2 22.6% 28.1% 26.3% 1.24 1.16

Grade 3 9.3% 10.3% 13.7% 1.11 1.48

Grade 4 16.2% 19.4% 20.2% 1.19 1.24

Grade 5 5.8% 6.6% 9.0% 1.15 1.56

Mean Math Gain Across Grades 1.18 1.32

Mean Telugu Gain by Grade (in % 
points over Baseline Score)

Grade 1 (Assuming Baseline = 0) 27.3% 30.9% 29.8% 1.13 1.09

Grade 2 13.5% 17.6% 16.6% 1.30 1.23

Grade 3 10.2% 10.4% 14.1% 1.02 1.39

Grade 4 14.0% 15.3% 16.0% 1.09 1.14

Grade 5 16.7% 18.7% 20.2% 1.12 1.21

Mean Telugu Gain Across Grades 1.13 1.21

Mean Gain Across Subjects 1.16 1.26



Figure 1a: Andhra Pradesh (AP) 
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Figure 1b: District Sampling (Stratified by Socio-cultural Region of AP) 



Figure 2a: Density/CDF of Normalized Test Score Gains by Treatment 
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Figure 2b: Incentive Treatment Effect by Percentile of Endline Test Scores
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Figure 3a: Test Calibration – Range of item difficulty
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Figure 3b: Incentive versus Control School Performance – By Question Difficulty 
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