
Working Paper 2009-01
Revised July 2009

Does Student
Sorting

Invalidate
Value-Added Models of

Teacher
Effectiveness?

An Extended Analysis of
the Rothstein Critique

Cory Koedel
Julian R. Betts

IN COOPERATION WITH:LED BY



The NaTioNal CeNTer oN PerformaNCe iNCeNTives
(NCPI) is charged by the federal government with exercising leader-
ship on performance incentives in education. Established in 2006
through a major research and development grant from the United
States Department of Education’s Institute of Education Sciences
(IES), NCPI conducts scientific, comprehensive, and independent
studies on the individual and institutional effects of performance in-
centives in education. A signature activity of the center is the conduct
of two randomized field trials offering student achievement-related
bonuses to teachers. e Center is committed to air and rigorous
research in an effort to provide the field of education with reliable
knowledge to guide policy and practice.

e Center is housed in the Learning Sciences Institute on the
campus of Vanderbilt University’s Peabody College. e Center’s
management under the Learning Sciences Institute, along with the
National Center on School Choice, makes Vanderbilt the only higher
education institution to house two federal research and development
centers supported by the Institute of Education Services.

is working paper was supported by the National Center on Perform-
ance Incentives, which is funded by the United States Department of
Education's Institute of Education Sciences (R30SA06034). The
authors thank Andrew Zau and many administrators at San Diego
Unified School District (SDUSD), in particular Karen Bachofer
and Peter Bell, for helpful conversations and assistance with data
issues. They also thank ZackMiller, Shawn Ni and Mike Podgursky,
seminar participants at Northwestern University and Simon Fraser
University, and two anonymous referees for useful comments and
suggestions, and the National Center for Performance Incentives
for research support. SDUSD does not have an achievement-based
merit pay program, nor does it use value-added student achieve-
ment data to evaluate teacher effectiveness. The underlying project
that provided the data for this study has been funded by a number
of organizations including The William and Flora Hewlett Founda-
tion, the Public Policy Institute of California, The Bill and Melinda
Gates Foundation, the Atlantic Philanthropies and the Girard
Foundation. None of these entities has funded the specific research
described here, but we warmly acknowledge their contributions to
the work needed to create the database underlying the research.
The views expressed inthis paper do not necessarily reflect those
of sponsoring agencies or individuals acknowledged.

Please visit www.performanceincentives.org to learn more about
our program of research and recent publications.



Does Student Sorting
Invalidate Value-Added
Models of Teacher
Effectiveness?
An Extended Analysis
of the Rothstein Critique
CorY KoeDel
University of Missouri

JUliaN r. BeTTs
University of California, San Diego
National Bureau of Economic Research

Abstract

Value-added modeling continues to gain traction as a tool for measur-
ing teacher performance. However, recent research (Rothstein,
2009a, 2009b) questions the validity of the value-added approach
by showing that it does not mitigate student-teacher sorting bias (its
presumed primary benefit). Our study explores this critique in more
detail. Although we find that estimated teacher effects from some
value-added models are severely biased, we also show that a sufficiently
complex value-added model that evaluates teachers over multiple
years reduces the sorting-bias problem to statistical insignificance.
One implication of our findings is that data from the first year or two
of classroom teaching for novice teachers may be insufficient to make
reliable judgments about quality. Overall, our results suggest that in
some cases value-added modeling will continue to provide useful in-
formation about the effectiveness of educational inputs.
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 Economic theory states that in an efficient economy workers should be paid their value 

marginal product.  Implementing this rule in the service sector is not simple, as it is often not 

obvious how to measure the output of a white collar worker.  Teachers provide an example of 

this problem: p

credentials, and years of experience, none of which appears to be strongly related to teaching 

effectiveness.   

 Perhaps in recognition that teacher pay is not well aligned with teaching quality, 

President Obama has recently called for greater use of teacher merit pay as a tool to boost 

And yet, in the United States, teacher merit 

pay is hardly a new idea.  It has been used for at least a century, but most programs are short-

lived, or survive either by giving almost all teachers bonuses or by giving trivial bonuses to a 

small number of teachers.  Teachers have traditionally complained that principals cannot explain 

why they gave a bonus to one teacher but not another (Murnane et al., 1991, pp. 117-119).  

Opponents of teacher merit pay would raise the question of whether we can reliably measure 

ch that informed merit-pay decisions can be made. 

 The advent of widescale student testing, partly in response to the requirements of the 

federal No Child Left Behind law, raises the possibility that it is now feasible to measure the 

effectiveness of individual teachers.  Indeed, recently developed panel datasets link students and 

-

teacher effectiveness.1  Because test scores are generally available for each student in each year, 

they -

teacher inputs can be measured by student test-score growth.  The conjuncture of President 
                                                 
1 Harris 
and Sass (2006), Koedel and Betts (2007), Nye, Konstantopoulos and Hedges (2004), and Rockoff (2004). 
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d the development of panel datasets that provide 

information on student achievement growth raise the stakes considerably: can we use student 

testing to reliably infer teaching quality?  

 In most schools, students are not randomly assigned to teachers.  A presumption in value-

added modeling is that by focusing on achievement growth rather than achievement levels, the 

problem of student- -score level 

is used as a control in the model.  The value-added approach is intuitively appealing, and 

increasing demand for performance-based measures by which teachers can be held accountable - 

at the federal, state and district levels  has only fueled the value-added fire.2  However, despite 

the popularity of the value-added approach among both researchers and policymakers, not 

everyone agrees that it is reliable.  

systematically or occasionally receives students whose gains in test scores are unusually low, for 

reasons outside the control of the teacher?  Ability grouping would be one source of persistent 

differences in the types of students across classrooms.  Random variations, accompanied by 

mean reversion, would be a source of fleeting differences that a value-added model might 

wrongly attribute to a given teacher.  

 Recent research by Rothstein (2009a) shows that future teacher assignments have non-

negligible predictive power over current student performance in value-added models, despite the 

fact that future teachers cannot possibly have causal effects on current student performance.  

This result suggests that student-teacher sorting bias is not mitigated by the value-added 

approach.  -added methodology comes as numerous studies have 

                                                 
2 No Child Left Behind legislation is one example of this demand at the federal level (e.g., adequate yearly 
progress), and states such as Florida, Minnesota and Texas have all introduced performance incentives for teachers 
that depend to some extent on value-added.  For a further discussion of the performance-pay landscape, particularly 
as it relates to teachers, see Podgursky and Springer (2007). 
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used and continue to use the technique.  It raises serious doubts about the value-added 

methodology just as other work, such as Kane and Staiger (2008), Jacob and Lefgren (2007) and 

Harris and Sass (2007), appears to confirm that value-added is a meaningful measure of teacher 

performance. 

 We further explore the reliability of value-added modeling by extending 

analysis in two important ways.  First, Rothstein estimates teacher effects using only a single 

year of data for each teacher.  We consider the importance of using multiple years of data to 

identify teacher effects.  If the sorting bias uncovered by Rothstein is transitory to some extent, 

using multiple cohorts of students to evaluate teachers will help mitigate the bias.3  For example, 

a principal may alternate across years in assigning the most troublesome students to the teachers 

at her school, or teachers may connect with their classrooms more in some years than in others.4  

These types of single-year idiosyncrasies will be captured by single-year teacher effects, but will 

be smoothed out if estimates are based on multiple years of data.  Second, we evaluate the 

Rothstein critique using a different dataset.  Given that the degree of student-teacher sorting may 

differ across different educational environments, his results may or may not be replicated in 

other settings.   

  value-added 

models of student achievement that focus on single-year teacher effects will generally produce 

biased estimates of value-added.  However, when we estimate a detailed value-added model and 

restrict our analysis to teachers who teach multiple classrooms of students, we find no evidence 

                                                 
3 Rothstein notes this in his appendix, although he does not explore the practical implications in any of his models. 
4 Additionally, some of what we observe to be sorting bias may be attributable to the random assignment of students 
to teachers across small samples (classrooms).  In an omitted analysis, we perform a Monte Carlo exercise to test for 
this possibility. Although any given teacher may benefit (be harmed) in any given year from a random draw of high-
performing (low-performing) students, we find no evidence to suggest that this would influence estimates of the 
distribution of teacher effects. 
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of sorting bias in the estimated teacher effects.  Although this result depends on the degree of 

student-teacher sorting in our data, it suggests that at least in our setting, sorting bias can be 

almost completely mitigated using the value-added approach and looking across multiple years 

of classrooms for teachers.   

 Our results in this regard are encouraging, but less detailed value-added models that 

include teacher-effect estimates based on single classroom observations fare poorly in our 

analysis.  That some value-added models will be reliable but not others, and that value-added 

modeling may only be reliable in some settings, are important limitations.  They suggest that in 

contexts such as statewide teacher-accountability systems, large-scale value-added modeling 

may not be a viable solution.  Because the success of the value-added approach will depend 

largely on data availability and the underlying degree of student-teacher sorting in the data 

(much of which may be unobserved), post-estimation falsification tests along the lines of those 

proposed by Rothstein (2009a) will be useful in evaluating the reliability of value-added 

modeling in different contexts.   

 Although we do not uncover a well-defined set of conditions under which value-added 

modeling will universally return causal teacher effects across different schooling environments 

(outside of random student-teacher assignments such conditions are unlikely to exist), we do 

identify conditions under which value-added estimation will perform better.  The most important 

insight is that teacher evaluations that span multiple years will produce more reliable measures of 

teacher effectiveness than those based on single-year classroom observations.  Often implicitly, 

the value-added discussion in research and policy revolves around single-year estimates of 

teacher effects.  Our analysis strongly discourages such an approach.   
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  The remainder of the paper is organized as follows.  Section I briefly describes the 

Rothstein critique.  Section II details our dataset from the San Diego Unified School District 

(SDUSD).  Section III replicates a portion of  the San Diego data.  

Section IV details our extended analysis of value-added modeling and presents our results.  

Section V uses these results to estimate the variance of teacher effectiveness in San Diego.  

Section VI concludes. 

I.  The Rothstein Critique  

 Rothstein raises concerns about assigning a causal interpretation to value-added estimates 

of teacher effects.  His primary argument is that teacher effects estimated from value-added 

models are biased by non-random student-teacher assignments, and that this bias is not removed 

by the general value-added approach, nor by standard panel-data techniques.  Consider a simple 

value-added model of the general form: 

(1)  1 ( )it it it it i itY Y X T  

 In equation (1), Yit is a test-score for student i in year t, Xit is a vector of time-varying 

student and school characteristics (for the school attended by student i in year t), and Tit is a 

vector of indicator variables indicating which teacher(s) taught student i in year t.   This model 

could be re-

to unity and moving it to the left-hand side of the equation.  The error term is written as the sum 

of two components, one that is time-invariant ( i ) and another that varies over time ( it ).   

 Rothstein discusses sorting bias as coming from two different sources in this basic model.  

First, students could be assigned to teachers 

of sorting corresponds to the typical tracking story  some students are of higher ability than 

others, and these students are systematically assigned to the best teachers.  Static tracking may 
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operationalize in a variety of ways including administrator preferences, parental preferences, or 

teacher preferences (assuming that primary-school aged children, upon whom we focus here, are 

not yet able to form their own preferences).  Given panel data, the typical solution to the static-

tracking problem is the inclusion of student fixed effects, which control for the time-invariant 

components to the error terms in equation (1).  If student-teacher sorting is based only on static 

student characteristics, this approach will be sufficient.  

 However, the student-fixed-effects solution to the static tracking problem necessarily 

imposes a strict exogeneity assumption.  That is, to uncover causal teacher effects from a model 

that controls for time-invariant student characteristics, it must be the case that teacher 

assignments in all periods are uncorrelated with the time-varying error components in all periods.  

To see this, note that we could estimate equation (1) by first differencing to remove the time-

invariant component to the error term:5 

(2)  1 1 2 1 1 1( ) ( ) ( ) ( )it it it it it it it it it itY Y Y Y X X T T  

The first-differencing induces a mechanical correlation between the lagged test-score gain and 

the first-differenced error term in equation (2).  This correlation can be resolved by 

instrumenting for the lagged test-score gain with the second-lagged gain, or second-lagged level 

(following Anderson and Hsiao, 1981).  In addition, year-t teacher assignments may also be 

correlated with the first-differenced error term.  Specifically, if students are sorted dynamically 

based on time-varying deviations (or shocks) to their test-score-growth trajectories, then lagged 

shocks to test-score growth, captured by 1it , will be correlated with year-t teacher assignments, 

                                                 
5 
sense that the error terms across time must be uncorrelated with teacher assignments only in contiguous years. 
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and the teacher effects from equation (2) cannot be given a causal interpretation.6  

critique can be summarized as follows:  If students are assigned to teachers based entirely on 

time-invariant factors, unbiased teacher effects can in principle be obtained from a well-

constructed value-added model.  However, if sorting is based on dynamic factors that are 

unobserved by the econometrician, value-added estimates of teacher effects cannot be given a 

causal interpretation. 

 Rothstein proposes a falsification test to determine whether value-added models produce 

biased estimates of teacher effectiveness.  He suggests simply adding future teacher assignments 

to the model, and testing whether these teacher assignments have non- .   Future 

teachers do not causally influence 

must be the result of a correlation between teacher assignments and the error terms.  

Alternatively, if the coefficients on the future-teacher indicator variables are jointly insignificant, 

sorting bias is unlikely to be a major concern for any teacher effects in the model (as this finding 

would suggest that the controls in the model are capturing the sorting bias that would otherwise 

confound the teacher effects).  In  analysis (2009a), his most provocative finding is 

that future teacher assignments have significant predictive power over current student 

performance.  This result suggests that value-added estimates of teacher effects are contaminated 

by substantial sorting bias. 

II. Data 

 We use administrative data from four cohorts of fourth-grade students in San Diego (at 

the San Diego Unified School District) who started the fourth grade in the school years between 

1998-1999 and 2001-2002.  The standardized test that we use to measure student achievement, 
                                                 
6 Serial correlation in the epsilons would imply that if year-t teacher assignments are correlated with 1it  then they 

will also be correlated with it , invalidating any value-added model even in the absence of static tracking. 
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and therefore teacher value-added, is the Stanford 9 mathematics test.  The Stanford 9 is 

designed to be vertically scaled such that a one-point gain in student performance at any point in 

the schooling process is meant to correspond to the same amount of learning.7   

 Students who have fourth-grade test scores and lagged test scores are included in our 

baseline dataset.  We estimate a value-added model that assumes a common intercept across 

students, and a second model that incorporates student fixed effects.  In this latter model we 

additionally require students to have second-lagged test scores.  For each of our primary models, 

we estimate value-added for teachers who teach at least 20 students across the data panel and 

restrict our student sample to the set of fourth-grade students taught by these teachers.8  In the 

baseline dataset, we evaluate test-score records for 30,354 students taught by 595 fourth-grade 

teachers.  Our sample size falls to 15,592 students taught by 389 teachers in the student-fixed-

effects dataset.  The large reduction in sample size is the result of (1) the requirement of three 

contiguous test-score records per student instead of just two, which in addition to removing more 

transient students also removes one year-cohort of students because we do not have test-score 

data prior to 1997-1998 (that is, students in the fourth grade in 1998-1999 can have lagged scores 

but not second-lagged scores) and (2) requiring the remaining students be assigned to one of the 

389 fourth-grade teachers who teach at least 20 students with three test-score records or more.9  

We include students who repeat the fourth grade because it is unlikely that grade repeaters would 

be excluded from teacher evaluations in practice.  In our original sample of 30,354 students with 

current and lagged test-score records, only 199 are grade repeaters. 

                                                 
7 For detailed information about the quantitative properties of the Stanford 9 exam, see Koedel and Betts 
(forthcoming). 
8 This restriction is imposed because of concerns about sampling variation (see Kane and Staiger, 2002).  Our results 
are not sensitive to reasonable adjustments to the 20-student threshold.   
9 Only students who repeated the 4th grade in the latter two years of our panel could possibly have had more than 
three test-score records.  There are 32 students with four test-score records in our dataset. 
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III. Replication of  

Based on details provided by Rothstein in his paper (2009a) and corresponding data appendix, 

we first replicate a portion of his analysis using data from the 1999-2000 fourth-grade cohort in 

San Diego

findings are relevant in San Diego.10  We estimate the following basic value-added model: 

(3) 4 3 3 4 4 5 5
i i i i i iY S T T T   

Equation (3) is a gainscore model  

indicators for past, current and future teacher assignments.  4
iY  -score 

gain going from the third to fourth grade, Si is a vector of school indicator variables, and x
iT is a 

vector of teacher indicator variables for student i in grade x.  Correspondingly, x  is a vector of 

teacher effects corresponding to the set of teachers who teach grade x

argument is that if future teacher effects, for fifth-grade teachers in this case, are shown to be 

non-zero then none of the teacher effects in the model can be given a causal interpretation.11   

 We replicate the data conditions in Rothstein (2009a) as closely as possible when 

estimating this model.  There are two conditions that seemed particularly important.  First, in 

specifications that include teacher identifiers across multiple grades, Rothstein excludes students 

who changed schools across those grades in the data.  Second, he also focuses on only a single 

cohort of students passing through the North Carolina public schools. Similarly to Rothstein, the 

dataset used to estimate equation (3) does not include any school switchers, and is estimated 

using just a single cohort of fourth-grade students in San Diego. 

                                                 
10 The replication data sample is roughly a subsample of the student-fixed-effects dataset, but we use different 
teachers because Rothstein does not require teachers to teach 20 students for inclusion into the model. 
11 s (2009b, 2009a) are quite thorough and we refer the interested reader to his paper for more 
details. 
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 In our replication we focus on the effects of fourth and fifth-grade teachers in equation 

(3).  In accordance with the literature that measures the importance of teacher value-added, we 

approach to reporting the teacher-effect variances, borrowed from Aaronson, Barrow and Sander 

(2007), where the unadjusted variance is just the raw variance of the teacher effects and the 

adjusted variance is equal to the raw variance minus the average of the square of the robust 

standard errors.  We follow the steps outlined appendix to estimate the within-

school variance of teacher effects without teachers switching schools.  Our results are detailed in 

Table 1.   

 The first two columns of Table 1 report the results of separate Wald tests of the 

hypotheses that all grade 4 teachers have identical effects and that all grade 5 teachers have 

grade 5 teachers have 

-value below 0.01.   

 The next two columns show the raw standard deviations of teacher effects and the 

standard deviations after adjusting for sampling variance.  (These are scaled by dividing by the 

standard deviation of student test scores.)  The adjusted standard deviations are 0.24 and 0.15 for 

grade 4 and grade 5 teachers respectively.  that are most analogous to those 

in our Table 1, both in terms of the model and data, are reported in his Table 5 (column 2) for the 

adjusted standard deviations of the distributions of grade 

4 and grade 5 teacher effects of 0.193 and 0.099 standard deviations of the test, respectively.  

These results are also replicated virtually identically in his Table 2 (column 7) where he uses a 

larger student sample and excludes lagged-year teacher identifiers from the model.  Our 

estimates, which show a larger overall variance of teacher effects, are consistent with past work 
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using San Diego data (Koedel and Betts, 2007).  The relevant result to compare with Rothstein 

(2009a) is our estimate of the ratio of the standard deviations of the distributions of future and 

current teacher effects.  Rothstein finds that the standard deviation of the distribution of future 

pproximately 51 percent of the size of that of current teacher effects (i.e., 

0.099/0.193), whereas in our analysis this number is slightly higher at roughly 63 percent 

(0.15/0.24).  Our results here findings that future teachers explain a sizeable 

portion of current grade achievement gains, and establish that his primary result is not unique to 

North Carolina. 

 The results in Table 1, and the corresponding results detailed by Rothstein, suggest that 

student-teacher sorting bias is a significant complication to value-added modeling.  Information 

about the degree of student-teacher sorting in our data will be useful for generalizing our results 

to other settings.  We document observable student-teacher sorting in our data by comparing the 

average realized within-

measures based on simulated student-teacher matches that are either randomly generated or 

perfectly sorted.  This approach follows Aaronson, Barrow and Sander (2007).  Although sorting 

may occur along many dimensions, the extent of sorting based on lagged test scores is likely to 

provide some indication of sorting more generally.  Table 2 details our results, which are 

presented as ratios of the standard deviation of interest to the within-grade standard deviation of 

the test (calculated based on our student sample).  Note that while there does appear to be some 

student sorting based on lagged test-score performance in our dataset, this sorting is relatively 

mild.   
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IV.  Extensions to More Complex Value-Added Models 

 We extend the analysis using three models 

that are more commonly used in the value-added literature.  These models include a richer set of 

control measures.  We use a general value-added specification where current test scores are 

regressed on lagged test scores, but note that it is also somewhat common in the literature to use 

the gainscore model (which is used primarily by Rothstein), where the coefficient on the lagged 

test score is forced to one and the lagged-score term is moved to the left side of the equation. 

 The first model that we consider, and the simplest, is a basic value-added model that 

allows for the comparison of teacher effects across schools: 

(4) ( 1) 1 2it t i t it it itY Y X T   

In (4), Yit is the test score for student i in year t, t  is a year-specific intercept, Xit is a vector of 

time-invariant and time-varying student-specific characteristics (see Table 3) and Tit is a vector 

of teacher indicator variables where the entry for the teacher who teaches student i in year t is set 

to one.  The coefficients of interest are in the vector of teacher effects, .  

 We refer to equation (4) as the basic model.  The most obvious omission from the model 

is school-level information, whether in the form of school fixed effects or time-varying controls.  

Researchers have generally incorporated this information because of concerns that students and 

teachers are sorting into schools non-randomly.  This sorting, along with the direct effects of 

school-level inputs on student achievement (peers, for example), will generate omitted-variables 

bias in the value-added estimates of teacher effects in equation (4).  This leads to the second 

model that we consider, the within-schools model, which is more commonly estimated in the 

literature and includes school-level covariates and school fixed effects.   

(5)    ( 1) 1 2 3it t i t it it it itY Y X S T      
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In equation (5), Sit includes school indicator variables and time-varying school-level information 

for the school attended by student i in year t. The controls in the vector Sit are detailed in Table 3.  

The benefit of including school-level information is a reduction in omitted-variables bias, 

including sorting bias generated by students and teachers selecting into specific schools.  

However, the cost of moving from equation (4) to equation (5) is that it is no longer 

straightforward to compare teachers across schools.12   

 Finally, in our third specification we incorporate student fixed effects.  This approach is 

suggested by Harris and Sass (2006), Koedel (forthcoming) and Koedel and Betts (2007), among 

many others:    

(6)    ( 1) 1 2 3it i t i t it it it itY Y X S T u     

The inclusion of the student fixed effects, i, allows us to drop from the vector Xit time-invariant 

student characteristics, leaving only time-varying student characteristics.  The benefit of the 

within-students approach is that teacher effects will not be biased by within-school student 

sorting across teachers based on time-invariant student characteristics (such as ability, parental 

involvement, etc.).  However, as noted in Section I, there are tradeoffs.  Recall that the student-

fixed-effects model necessarily imposes some form of the strict exogeneity assumption.  

Equation (6) also , 

meaning that identification comes from comparing test-score gains for individual students when 

they were in the third and fourth grades.  In addition, the incorporation of the student fixed 

effects makes the model considerably noisier.13  Finally, the size of the student sample that can 

                                                 
12 Although teacher effectiveness cannot be compared across schools straightforwardly using value-added estimates 
from equation (5), this may be acceptable from a policy perspective.  For example, policymakers may wish to 
identify the best and worst teachers on a school-by-school basis regardless of any teacher sorting across schools. 
13 In fact, a test for the statistical significance of the student fixed effects in equation (6) fails to reject the null 
hypothesis of joint insignificance (tested using the gainscore analog to this model).  However, the test is of low 
power given the large-N, small-T panel dataset structure (typical of most value-added analyses), limiting inference. 
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be used is restricted in equation (6) because a student record must contain at least three 

contiguous test scores, instead of just two, to be included in the analysis (as described in Section 

II). 

 Despite these concerns, econometric theory suggests that the inclusion of student fixed 

effects will be an effective way to remove within-school sorting bias in teacher effects as long as 

students and teachers are sorted based on time-invariant characteristics.  We estimate the within-

students model by first-differencing equation (6 -

score gains with their second-lagged test-score levels.14  This general approach was developed by 

Anderson and Hsiao (1981) and has been recently used by Harris and Sass (2006), Koedel 

(forthcoming) and Koedel and Betts (2007) to estimate teacher value-added.15  Note that to 

completely first-difference equation (6

assignments, which will appear in the period-(t-1) version of equation (6).16  That is, the model 

compares the effectiveness of -year teachers.   

 We start with our baseline student samples  the 30,354-student/595-teacher sample for 

our basic and within-schools models and the 15,592-student/389-teacher sample for our within-

students model.  For the students in these samples, we then move forward one year and identify 

fifth-grade teacher assignments.  In each sample, approximately 85 percent of the students 

appear in the dataset in year-(t+1) with future teacher assignments.  We include teacher indicator 

-grade teacher assignments, and test the null hypothesis that these 

                                                 
14 Rothstein (2009a
when testing for student fixed effects in his analysis. 
15 Although all three of these studies use the same basic methodology, Harris and Sass (2006) estimate their model 
using GMM while Koedel (2007) and Koedel and Betts (2007) use 2SLS.  We use 2SLS here. 
16 We include lagged-teacher assignments for all lagged teachers who teach at least five students in our sample in the 
prior year. 
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different teacher assignments differentially predict grade 4 test-score growth.17  So, adjusting 

model (4) by adding controls for grade 5 teachers,  

(4 ) 4 4 5
( 1) 1 2 ( 1)it t i t it it i t itY Y X T T   

-effect coefficients.  We test whether the 

indicators for future teachers differentially predict achievement in the current year: 

0 1 2: ... .JH   A rejection of this null hypothesis for futu

that sorting bias is contaminating the teacher effects in the model.  This is the falsification test 

proposed by Rothstein (2009a).   

It is less straightforward to add the future teacher effects to the student-fixed-effects 

model because of the first-differencing procedure.  Fo -grade teacher 

enters into the model for third-grade value-added as a future teacher and the model for fourth-

grade value-added as a current teacher.  We allow fourth-grade teachers 

the lagged-score model and a separate effect in the current-score model by not differencing out 

the teacher indicator variables.  This approach is taken because the current-score teacher effect 

may be partially causal, while the future-teacher effect cannot be.  The current-score and lagged-

score effects are not separately identifiable, but are captured by a single coefficient for each 

fourth-grade teacher.  Equation (7) details the first-differenced version of the within-students 

model that incorporates future teacher assignments.  Year t corresponds to the fourth grade for 

the students in our sample. 

                                                 
17 By not requiring all students to have future teacher assignments we are able to use a larger student sample, and 
therefore a larger teacher sample. The reference group here is the student population for which no grade 5 teacher is 
observed.  The results do not depend on the use of this comparison group.  For instance, dropping the students 
without a fifth grade teacher and instead omitting one future teacher does not change the results. 
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4 5
( 1) 1 2 3 4 ( 1) 5it i t i t it it it i t itY Y X S T T u  

3 4
( 1) ( 1) ( 2) 1 ( 1) 2 ( 1) 3 ( 1) 3 4 ( 1)i t i t i t i t i t i t it i tY Y X S T T u

 
 

(7) ( 1) ( 1) ( 1) ( 2) 1 ( 1) 2 ( 1) 3

4 3 5 4
4 ( 1) 3 ( 1) 5 4 ( 1)

( ) ( ) ( ) ( ) ( )

( )
it i t i i t t i t i t it i t it i t

it i t i t it it i t

Y Y Y Y X X S S

T T T T u u
  

 
 In (7) we instrument for the lagged test-score gain with the second-lagged test-score 

level.  The second row in the equation contains the vectors of teacher effects after first-

differencing.  The positive entries are from the current-score model and the negative entries are 

from the lagged-score model.  The superscripts on the teacher-indicator vectors indicate the 

grade level taught by the teachers, along with the corresponding subscripts on the coefficient 

vectors.18  le the 

vector of current-teacher coefficients in this model estimates 4 4( ) .  

 In each model, we estimate future- ers who teach at least 20 

students from our original student sample, one year in advance.  We perform Wald tests of the 

null hypothesis that the teacher effects are jointly equal to each other separately for current and 

future teachers, although our primary interest is in the tests for the future teachers.  We also 

estimate the unadjusted and adjusted variances of the distributions of the current and future 

teacher effects again following Aaronson, Barrow and Sander (2007).19    

                                                 
18 Our approach requires that we treat teacher effects separately by grade for fourth-grade teachers who also teach 
students in the third grade.  If teacher effects are constant across grades, these by-grade effects are expected to 
difference out for a student who has the same teacher in the third and fourth grades (assuming constant quality).  
However, this creates some additional noise relative to a standard first-differenced model because more than one 
parameter must be estimated for the 49 fourth-grade teachers who also teach in the third grade in our panel.   
19 We diagonalize the variance matrices to compute the Wald statistics.  Substituting the full variance-covariance 
matrices for the diagonal variance matrices has little effect on the reported Wald statistics, and mechanically, it does 
not affect the teacher-effect variance estimates at all. 
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A caveat to the falsification tests in the basic and within-schools models is that they need 

not indicate sorting bias.  R  and the analogous within-schools model, if 

students are sorted into year-(t+1) classrooms based on year-t performance, grade 5 teacher 

assignments should be correlated with grade 4 test-score growth.  By itself, this is not an 

indictment of the value-added model because a model of grade 5 test-score growth, which would 

be used to estimate grade 5 teacher effects, would include grade 4 performance as a control.  

However, only if grade 4 test scores capture fully differences in academic readiness prior to 

grade 5 would this benign explanation for grade 5 teacher effects suffice.  If this condition fails, 

then the future teacher coefficients in the basic and within-schools models will capture sorting 

bias attributable to any unobserved factors that determine both academic performance and 

student-teacher assignments.  In the context of the models, if the error terms in the basic and 

within-schools models are serially correlated, non-zero future teacher effects will be 

problematic.20 

One way to test the extent to which the future-teacher effects in these models are 

capturing bias from sorting on unobservables is to look at prior-year teachers.  If lagged test 

scores are complete measures of academic readiness, which is the condition required for the 

future-teacher effects to be benign, the contributions of prior-year teachers to student 

performance should be small.  Rothstein (2009a) shows that this is not the case, and in fact 

lagged teacher assignments are strong predictors of student outcomes in value-added models.21  

This suggests that non-zero future teacher effects in the basic and within-schools models will 

reflect sorting bias.  

                                                 
20 We expect that the student fixed effects model will reduce the problem of serial correlation because in the simpler 
models the errors will partly reflect omitted student ability and motivation, which are largely unchanging across 
grades.   
21 We replicate this finding in our data (results available upon request).   
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 Turning to the within-students model, the falsification test is a test of strict exogeneity.  

By assumption, the time-varying information contained in year-t test scores does not influence 

teacher assignments in year-(t+1) in this model.  Non-zero future teacher effects indicate that the 

future-year teacher assignments are correlated with the first differenced error terms  that is, they 

indicate that strict exogeneity fails.  

 Table 4 details our initial results from the three value-added models - in all three 

specifications, the significance of the future- Although the 

results in Table 4 continue to show non-zero future teacher effects, note that the estimates of the 

standard deviations of teacher effects are much smaller than the analogous estimates in Table 1.  

For example, the ratio of the adjusted standard deviation of the future-teacher-effects distribution 

to the adjusted standard deviation of the current-teacher-effects distribution falls below one half 

in each of the models in Table 4 (down from approximately 0.6 in Table 1).22  Compared to 

Table 1, Table 4 indicates that richer value-added models that evaluate teachers over multiple 

years reduce the bias in the estimated teacher effects.23   

 One potentially important aspect of the results in Table 4 is that some of the future-

multiple cohorts of students to evaluate teacher effects will help mitigate the bias.  To illustrate, 

we write the single-year teacher effect estimate for teacher j at school k in year t from the basic 

value-added model as the sum of five components: 

                                                 
22 Note that the meaning of this ratio is less clear in the student-fixed-effects model because the current-teacher 
effects from this model estimate the joint parameter 4 4( )  in equation (7).  Ultimately, however, the important 
result from the student-fixed-effects model is that the future-
current test-score growth. 
23 The control variables added to the specifications marginally reduce the sorting bias.  This result is consistent with 
Rothstein (2009a).  Although Rothstein does not report results from models that incorporate student or school-level 
control variables, he notes that his results do not qualitatively change if they are included in the model. 
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(8) ( )jkt j k j jt jt  

In (8), j  is teacher j k  measures the quality of school k, j measures bias from 

persistent student sorting to teacher j across years, jt  measures bias from non-persistent student 

sorting to teacher j and jt  is the statistical noise associated with the teacher-effect estimate.  If 

0k  the within-schools model is appropriate.  Including additional student-level controls 

and/or student fixed effects will reduce the impacts of j  and jt ; however, if students are 

sorted to teachers based on dynamic and unobserved attributes that are correlated with test-score 

growth (e.g., expected mean reversion), these terms can be non-zero in expectation even in the 

within-students model.  

 Using multiple years of data to evaluate teachers will reduce the bias from sorting on 

unobservables to the extent that the sorting is transitory and captured by jt  rather than j .  So 

long as student sorting is partly transitory, the variance of our estimated teacher effects will fall 

with the number of cohorts observed for each teacher j because jt  is being averaged over an 

increasing number of cohorts of students.  In the extreme, if sorting on unobservables contributes 

only to jt  (i.e., it is entirely non-persistent from year to year), the sorting bias will go to zero as 

t increases.   

Table 5 provides compelling evidence that transitory sorting bias may be an important 

concern in the data.  We group students by year-(t+1) classrooms, then calculate the within-

teacher, across-year correlations of classroom-average year-t gainscores for the year-(t+1) 

teachers who teach in each year of the within-students data panel.  In the context of equation (8), 

for teacher j these correlations provide a rough measure of the relationship between ( )j jt  
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and ( 1)( )j j t .  Correlations near one would suggest that there is little scope for transitory 

bias, and that adding additional years of teacher data will not be helpful.  Correlations near zero 

would indicate that the sorting bias can be reduced by evaluating teachers across multiple years.  

The first panel of Table 5 reports correlations for raw year-t gainscores, which range between 

0.30 and 0.36 across years. The second panel reports correlations for year-t gainscores that are 

demeaned within students (i.e., we subtrac which are even smaller and 

range from 0.14 to 0.30.  Although these correlations are not zero, they are far from one, 

suggesting that transitory sorting bias can be reduced by evaluating teachers across multiple 

years. 

As a second way to investigate the significance of transitory sorting bias we replicate our 

analysis from Table 4 but only evaluate future teachers who teach students in every possible year 

of the data panel.  For the basic and within-schools models, this means that future teachers teach 

students in four consecutive years.  For the within-students model, future teachers teach students 

in three consecutive years (recall that we only use three year-cohorts of students in the within-

students model).   

 We report our results in Table 6.  Consistent with what is suggested by the correlations in 

Table 5, future- ller when we focus on future teachers who teach 

multiple cohorts of students.  In fact, in the student-fixed-effects model, when we focus on future 

teachers who teach at least three classrooms of students, the adjusted variance of grade 5 teacher 

effects goes to zero.  This suggests that at least some of the sorting bias uncovered by Rothstein 

(2009a) is transitory.24  This finding highlights perhaps the most policy-relevant implication of 

our study  evaluating teachers over multiple years will improve the performance of value-added 
                                                 
24 Our transitory-sorting bias finding is consistent with other work that finds that multi-year teacher effects are more 
stable (McCaffrey et al., 2009) and more predictable (Goldhaber and Hansen, 2009).  However, reduced sampling 
variance will also be a determinant of these other results. 
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models, and depending on the sorting environment, may be sufficient to mitigate sorting bias if 

static tracking is adequately controlled for.25 

V. Is this Transitory Sorting Bias or Sample Selection? 

 In addition to transitory sorting bias, sample selection may also partly explain our results 

in Table 6.  For example, by requiring teachers to teach in all three years of our data panel, we 

exclude a disproportionate share of inexperienced teachers.  If students are sorted differently to 

experienced and inexperienced teachers, this could contribute to our findings.  Although we 

cannot capture fully the differences between the teachers who do and do not exit the data panel, 

we can replicate the correlative analysis in Table 5 separately for the experienced and 

inexperienced teachers who remained in the dataset for all three years.  We present these 

correlations in Table 7 - they do not suggest that the magnitude of transitory sorting bias will 

differ across experienced and inexperienced teachers.26 

We also directly test the extent to which our results in Table 6 are driven by sample 

selection.  If -selection effect, then if we remove a cohort of 

student data and re-run the model using the new student subsample but the same teachers, the 

adjusted variance of grade 5 teacher effects should remain near zero, and the Wald test should 

continue to retain the null that all grade 5 teachers have an identical "effect" on grade 4 

achievement.  Table 8 shows the results when we re-estimate the within-students model after 

removing one cohort of grade 4 students at a time.  The adjusted variance of grade 5 teachers 

                                                 
25 Although we focus on future teachers, the analysis is also relevant for lagged teachers.  In omitted results we find 
that the patterns of bias that are associated with transitory sorting for future teachers are also reflected among lagged 
teachers, although the interpretation of the lagged-teacher analysis is less straightforward for a handful of reasons, 
some specific to our dataset (contact the authors for details). 
26 We omit the demeaned-gainscore correlations for brevity - they are smaller in magnitude and display a similar 
pattern to the raw gainscores. 
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now rises.  Also, in two of three cases the adjusted variance for the grade 4 teachers also 

increases as would be expected. 

 So, why does the fixed-effect model using future teachers who teach in all years, shown 

in Table 6, appear to salvage hope for the use of value-added models?  We conclude that there is 

not something unusual about this sample of grade 5 teachers.  Rather, the main reason why we 

succeed in reducing future teacher effects to zero has mostly to do with the fact that in Table 6 

we include only grade 5 teachers who teach in all years in the data.  The use of multiple years of 

data reduces transitory sorting bias significantly.27 

VI.  The Variance of Teacher Quality in San Diego 

 The results from the previous section suggest that we can estimate the variance of causal 

teacher effects in San Diego using a within-students value-added model that focuses on teachers 

who teach in all three years of our data panel.  For this analysis we return to the within-students 

model in equation (6) from Section IV, and estimate teacher effects for fourth-grade teachers.  

Unlike in the previous analysis, we do not include future teachers in the model, and estimate a 

typical first-differenced specification (as opposed to the non-standard specification in equation 

(7)).   

 Across all of the fourth-grade teachers in our within-students sample, the adjusted 

standard deviation of the teacher effects from the model in equation (6) is estimated to be 0.22  

this number is similar in magnitude to the results above.28  To estimate the magnitude of the 

variance of actual teacher quality, free from sorting bias, we split the teacher sample into two 

                                                 
27 In an analysis omitted for brevity, we investigated the extent to which transitory student sorting is exacerbated by 
principal turnover.  Although our findings are consistent with a principal-turnover effect in the expected direction, 
the effect is not statistically significant.  One implication of this result is that transitory student sorting does not 
unduly depend on principal turnover.  Further details are available from the authors upon request. 
28 Recall that the within- 6 and 8 are from the non-standard first-
differenced model in equation (7). 
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groups.  Group (A) consists of fourth-grade teachers who taught in all three years of our within-

students data panel and group (B) consists of teachers who did not.  Approximately 45 percent of 

the fourth-grade teachers belong to group (A) and 55 percent to group (B).29  Consistent with the 

transitory-sorting-bias result in Table 6, the adjusted variance of the teacher effects from group 

(A) is approximately 24 percent smaller than the adjusted variance of the teacher effects from 

group (B).  Correspondingly, the standard deviations of the adjusted teacher-effect distributions, 

measured in standard-deviations of the test, are 0.20 for group (A) and 0.23 for group (B).  The 

standard deviation of the adjusted difference-in-variance between the two groups is 0.11.  Table 

9 documents these results.   

 Although the analysis in the previous section suggests that the observed variance gap 

between the teachers in groups (A) and (B) will be driven, at least in part, by differences in 

transitory sorting bias, two other explanations merit discussion.  First, again, sample selection 

may be a concern if group (A) is a more homogeneous group of teachers than group (B).  As 

shown in Table 10, there are some observable differences in experience and education that 

suggest that this might be a concern.  Specifically, teachers in group (A) are likely to be more 

experienced   We investigate the extent to which differences across 

groups along these dimensions might explain the observed variance difference by estimating the 

within-group variance of teacher quality for more and less experienced teachers, and then for 

s degrees.  The within-group variance of teacher effects among 

teachers -group variance of those without, which 

                                                 
29 Note that in Table 6, for fifth-grade teachers, roughly 57 percent taught in all three years of the data panel.  The 
difference in stability between our fourth- and fifth-grade teacher samples may be explained by the different 
selection criteria.  Our initial sample of fifth-grade teachers in Table 4 teach at least 20 students for whom we 
observe teacher assignments in four consecutive years, while our sample of fourth-grade teachers teach at least 20 
students for whom we observe teacher assignments in just three consecutive years.  Also, the fifth-grade teacher 
sample is identified conditional on students being taught by one of the teachers in the fourth-grade teacher sample. 
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works counter to the observed variance gap.  For experience, there is more variation among 

teachers with 10 or more years of experience and among novice teachers (with 5 or fewer years 

of experience) than among teachers with 5-10 years of experience.  Ultimately, the variance 

decompositions based on grouping teachers by observable qualifications do not suggest a clear 

variance-gap effect.30   

We also note that the grouping criterion here is somewhat arbitrary in the sense that there 

is nothing particularly special about the years covered by our data panel.  For example, some of 

the teachers in group (A) surely left the district in the year after our data panel ended 

teach in the year before it started, and some of the teachers in group (B) surely taught in three or 

more contiguous years outside of the data panel (for example, if a teacher taught in the year prior 

to the first year of our data panel, and then the first two years of our data panel but not the third, 

we would assign the teacher to group (B)).   

 The second explanation for the observed variance gap is that it occurs by chance.  To 

evaluate this possibility, we use a bootstrap to derive empirically the distribution from which the 

variance-gap estimate would be drawn if the sample were split at random.  We randomly assign 

the teachers from our sample into two groups that are equivalent in size to groups (A) and (B) 

above, and calculate the adjusted-variance gap between these randomly assigned groups.  We 

repeat this procedure 500 times and use the 500 variance-gap estimates to define the variance-

gap distribution.  The variance gap is calculated as the adjusted variance of teacher effects in the 

                                                 
30 The differences in variances across the teacher samples split by observable qualifications are small, in the 
neighborhood of 0.01 to 0.02 standard deviations.  Although we cannot disentangle the effects of transitory sorting 
bias from the observable differences across teachers in the two samples of interest (groups A and B), there is a large 
literature showing that teachers differ only mildly in effectiveness based on observable qualifications (Hanushek, 
1996; exceptions in the literature include Clotfelter, Ladd and Vigdor, 2007).  Perhaps most relevant to the present 
study, Betts, Zau and Rice (2003) estimate value-added models in the San Diego Unified School District using 
student fixed effects, with separate models for elementary, middle and high school students.  Although they find 
some evidence that teacher qualifications matter at the high school level, they find very little evidence of this in 
elementary schools. 
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smaller group minus the adjusted variance of teacher effects in the larger group, all divided by 

the adjusted variance of teacher effects in the larger group.  In other words, we calculate 

[var( ) var( )] / var( ))GroupA GroupB GroupB .  The average variance gap generated by the 

bootstrap analysis is +1 percent. The standard deviation in this variance gap is quite large 

though, at 24 percent.  Thus, the variance gap estimated between the teachers in groups (A) and 

(B), -24 percent as shown in Table 9, is just over a standard deviation away from the average of 

the empirical variance-gap distribution (at approximately the 13th percentile of the range of 

bootstrapped estimates).  Although the empirical variance-gap distribution is wide (the 90-

percent confidence interval ranges from -35 and +45 percent), which limits our ability to detect 

statistical significance even when the observed variance gap is large, the gap estimated between 

groups (A) and (B) is suggestive of a transitory-sorting-bias effect. 

VII. Conclusion 

 On the one hand, our results corroborate key finding that value-added models 

of student achievement can produce biased estimates of teacher effects.  In fact, we show that 

even detailed value-added models that estimate teacher effects across multiple cohorts of 

students can still produce biased estimates, as evidenced by the future-

documented in Tables 4, 6 and 8.  However, on the other hand, our results are encouraging 

because they indicate that sorting bias in value-added estimation need not be as large as is 

 work.  A key finding here is that using multiple years of classroom 

observations for teachers will reduce sorting bias in value-added estimates.  This result raises 

concerns about using single-year measures of teacher value-added to evaluate teacher 

effectiveness.  For example, one may not want to use achievement gains of the students of novice 
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teachers who are in their first year of teaching to make decisions about which novice teachers 

should be retained. 

 In our setting in San Diego, using a student-fixed-effects model and evaluating teachers 

who teach students in three consecutive years mitigates the contribution of sorting-bias to the 

teacher-effect estimates.  Although this result may not universally generalize, and depends on the 

degree of student-teacher sorting in our data, it suggests that under some circumstances value-

added modeling can continue to be a powerful tool in the analysis of teacher effectiveness.   

 Nonetheless,  highlight 

an important issue with incorporating value-added measures of teacher effectiveness into high-

stakes teacher evaluations.  Namely, value-added is manipulable by administrators who 

 entire analysis is based on a low-stakes 

measure of teacher effectiveness.   If high stakes were assigned to value-added measures of 

teacher effectiveness, sufficient safeguards would need to be put in place to ensure that the 

system could not be gamed through purposeful sorting of students to teachers for the benefit of 

altering value-added measures of teacher effectiveness. 
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 Table 1.  Standard Deviations of Teacher Effects from a Model with Controls for Past, Current 
and Future Teachers.  Dependent Variable:  Fourth-Grade Gain in Test Score 
     
 Wald Statistic (DF) 

 
P-Value Unadjusted Standard 

Deviation 
Adjusted Standard 

Deviation 
Grade 4 
Teachers 
 

952 (292) <0.01 0.40 0.24 

Grade 5 
Teachers 

610 (253) <0.01 0.30 0.15 

The Wald statistics and p-values refer to tests that all teachers in the given grade have identical effects on student 
gains in grade 4.  The standard deviations refer to the standard deviations of estimated teacher effects, both raw and 
adjusted as explained in the text. 
 
 
 
 
 
Table 2.  Average Within- -1) Test Scores 
  Within Schools Across District 
 Actual Random 

Assignment 
Perfect 
Sorting 

Random 
Assignment 

Perfect 
Sorting 

      
Standard Deviations of 
Lagged Scores 

 
0.81 

 
0.90 

 
0.32 

 
0.99 

 
<0.01 

s students are sorted by period (t-1) test-score levels in math.  For the 
randomized assignments, students are assigned to teachers based on randomly generated numbers from a uniform 
distribution.  The random assignments are repeated 25 times and estimates are averaged across all random 
assignments and all teachers.  The estimates from the simulated random assignments are very stable across 
simulations.  
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Table 3.  Controls from Value-Added Models 
 
Student-Level Controls (Xit) 
 

 
School (and Classroom)-Level Controls (Sit) 

English-Learner (EL) Status 
Change from EL to English-Proficient 
Expected and Unexpected School Changer 
Parental Education 
Race 
Gender 
Designated as Advanced Student 
Percentage of School Year Absent* 
 

School Fixed Effects 
Classroom-level Peer Performance in Year (t-1) 
Class Size 
 
Percentage of Student Body: 
by Race 
by English Learner Status 
by Free/Reduced-Price Lunch Status 
by School-Changer Status 
 

*The share of days missed by students is sometimes considered endogenous. Fourth-grade students, however, are 
not likely to have much influence over their attendance decisions. 
 
 
 
Table 4.   Using the Value-Added Models from Section IV 
   

Wald Statistic 
(DF) 

 

 
P-Value 

 
Unadjusted 

Standard 
Deviation 

 
Adjusted 
Standard 
Deviation 

 
Basic Model 

 

 
Grade 4 
Teachers 
 

 
3393 (594) 

 
< 0.01 

 
0.27 

 
0.23 

Grade 5 
Teachers 
 

846 (471) < 0.01 0.16 0.10 

 
Within-
Schools 
Model 

 

 
Grade 4 
Teachers 
 

 
1994 (594) 

 
< 0.01 

 
0.28 

 
0.22 

Grade 5 
Teachers 
 

815 (471) < 0.01 0.15 0.10 

 
Within-
Students 
Model 

 

 
Grade 4 
Teachers* 
 

 
649 (388) 

 
< 0.01 

 
0.29 

 
0.18 

Grade 5 
Teachers 
 

341 (259) < 0.01 0.16 0.07 

See notes to Table 1. 
* Note that these estimates are for the composite effects documented in equation (7). 
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Table 5.  Across-Year Correlations in Year-t Gainscores Averaged at the Teacher-by-Year Level 
for Year-(t+1) Teachers Who Taught in all Three Years of the Within-Students Panel. 
 
Raw Gainscores 
 Year 1 Year 2 Year 3 
Year 1 1   
Year 2 0.35 1  
Year 3 0.30 0.34 1 
 
Year-t Gainscores Demeaned Within Students 
 Year 1 Year 2 Year 3 
Year 1 1   
Year 2 0.20 1  
Year 3 0.14 0.30 1 
 
 
Table 6.   Using the Value-Added Models from Section IV and 
Only Modeling Future Teachers Who Taught Students in Each Year of the Data Panel 
   

Wald Statistic 
(DF) 

 

 
P-Value 

 
Unadjusted 

Variance (sd) 

 
Adjusted 

Variance (sd) 

 
Basic Model 

 

 
Grade 4 
Teachers 
 

 
4640 (594) 

 
< 0.01 

 
0.27 

 
0.23 

Grade 5 
Teachers 
 

268 (140) < 0.01 0.14 0.09 

 
Within-
Schools 
Model 

 

 
Grade 4 
Teachers 
 

 
2260 (594) 

 
< 0.01 

 
0.28 

 
0.23 

Grade 5 
Teachers 
 

260 (140) < 0.01 0.14 0.08 

 
Within-
Students 
Model 

 

 
Grade 4 
Teachers* 
 

 
684 (388) 

 
< 0.01 

 
0.29 

 
0.19 

Grade 5 
Teachers 
 

158 (147) 0.25 0.13 0.00** 

Notes:  See notes to Table 1.  For the basic and within-schools models this analysis includes fifth-grade teachers 
who teach in all four years of our data panel.  In the within-students model we evaluate just three year-cohorts of 
students and therefore we include fifth-grade teachers who teach in three consecutive years. 

* Note that these estimates are for the composite effects documented in equation (7). 
** Adjusted-variance estimate was marginally negative.
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Table 7.  Across-Year Correlations in Year-t Gainscores Averaged at the Teacher-by-Year Level 
for Year-(t+1) Teachers who Taught in all Three Years of the Within-Students Panel, by Teacher 
Experience. 
 
Raw Gainscores  Experienced Teachers (N = 104) 
 Year 1 Year 2 Year 3 
Year 1 1   
Year 2 0.27 1  
Year 3 0.33 0.38 1 
 
Raw Gainscores  Inexperienced Teachers (N = 43) 
 Year 1 Year 2 Year 3 
Year 1 1   
Year 2 0.59 1  
Year 3 0.22 0.23 1 
 
Table 8.  Within-Students Model Using Only Future Teachers Who Taught Students in Each 
Year of the Data Panel, With Each of the Three Year Cohorts Individually Omitted from the 
Dataset. 
   

Wald Statistic 
(DF)* 

 

 
P-Value 

 
Unadjusted 

Variance (sd) 

 
Adjusted 

Variance (sd) 

Drop Fourth-
Grade 

Cohort in 
1999-2000 

 
Grade 4 
Teachers** 
 

 
568 (369) 

 
< 0.01 

 
0.31 

 
0.18 

Grade 5 
Teachers 
 

181 (147)  0.03 0.17 0.06 

Drop Fourth-
Grade 

Cohort in 
2000-2001 

 
Grade 4 
Teachers** 
 

 
651 (374) 

 
< 0.01 

 
0.34 

 
0.21 

Grade 5 
Teachers 
 

190 (147) 0.01 0.20 0.09 

 
Drop Fourth-

Grade 
Cohort in 

2001-2002 
 

 
Grade 4 
Teachers** 
 

 
617 (332) 

 
< 0.01 

 
0.36 

 
0.23 

Grade 5 
Teachers 
 

196 (147) < 0.01 0.21 0.07 

See notes to Table 1. 
* The number of grade 4 teachers included in the model changes across rows because some of the grade 4 

teachers only taught in a single year.  Note that the 2001-2002 cohort of students was somewhat larger than the other 
two cohorts, which explains why there are fewer grade 4 teachers in the model when this cohort is dropped. 

** These estimates are for the composite effects documented in equation (7). 
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Table 9.  Teacher-Effect Variance Estimates from the Within-Students Model (Equation 6).  The 
Teachers in Group (A) Taught in All Three Years of the Data Panel.  The Teachers in Group (B) 
Did Not. 
 Unadjusted Variance* Adjusted Variance* Standard Deviation 

(Adjusted)**  
All Teachers 128 76 0.22 
Group (A)  110 64 0.20 
Group (B) 141 84 0.23 
Variance Gap 31 20 0.11 
*       The unadjusted- and adjusted-variance estimates are in raw test-score points 
**     The standard-deviation estimates are ratios of the standard deviations of the teacher-effect (and bias) 
distributions to the standard deviation of the fourth-grade test-score distribution.  These estimates are analogous to 
those presented in Tables 2, 5 and 6. 
 
 
 
Table 10.  Differences in Observable Characteristics between the Teachers Who Taught in All 
Three Years of our Data Panel (Group A) and Those Who Did Not (Group B). 
 Group (A) Group (B) 
Share with Experience < 5 years 0.27 0.48 
Share with Experience between 5 and 10 years 0.20 0.19 
Share with Experience of more than 10 years 0.53 0.33 
Share with MA Degree 0.65 0.48 
Share with BA in Education 0.40 0.38 
Note: Characteristics are averaged within teachers over the course of the data panel. 
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