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Abstract

is article develops a model for longitudinal student achievement
data designed to estimate heterogeneity in teacher effects across stu-
dents of different achivement levels. e model specifies interactions
between teacher effects and students’ predicted scores on a test, esti-
mating both average effects of individual teachers and interaction
terms indicating whether individual teachers are differentially effec-
tive with students of different predicted scores. Using various longitu-
dinal data sources, we find evidence of these interactions that are of
relatively consistent but modest magnitude across different contexts,
accounting for about 10% of the total variation in teacher effects
across all students. However, the amount that the interactions matter
in practice depends on how different are the groups of students
taught by different teachers. Using empirical estimates of the hetero-
geneity of students across teachers, we find that the interactions
account for about 3%-4% of total variation in teacher effects on
different classes, with somewhat larger values in middle school
mathematics. Our findings suggest that ignoring these interactions
is not likely to introduce appreciable bias in estimated teacher effects
for most teachers in most settings. e results of this study should
be of interest to policymakers concerned about the validity of VAM
teacher effect estimates.
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1 Introduction

Recent empirical studies on the effects of individual teachers on student learning have

had an enormous impact on the educational discourse in our country by focusing the

attention of policymakers and educators on the contributions of teachers to educational

production. These studies, often referred to as “value-added modeling” (VAM), use statis-

tical analyses of longitudinal achievement data along with links of students to their teach-

ers or schools to estimate the effects of individual teachers or schools on student learning

(Ballou, Sanders, & Wright, 2004; Braun, 2005a; Harris & Sass, 2006; Jacob & Lefgren,

2006; Kane, Rockoff, & Staiger, 2006; Koedel & Betts, 2005; Lissitz, 2005; McCaffrey,

Lockwood, Koretz, & Hamilton, 2003; Sanders, Saxton, & Horn, 1997). The reputation

of VAM is that with rich enough data and sophisticated modeling, teacher performance

can be fairly compared across teachers even though students are not randomly assigned

to teachers and classrooms are often not comparable in terms of student backgrounds and

prior achievement. This reputation, along with increasingly available longitudinal data

at the district and state levels due to NCLB-mandated testing and rapidly expanding

data archiving capabilities, has led to calls for the use of VAM in teacher accountability.

Estimates of teacher impacts on student achievement are now used in some places for

pay for performance (e.g., Florida and Houston among others) and some researchers have

even called for teacher hiring/firing decisions to be based on information obtained from

VAM (Gordon, Kane, & Staiger, 2006).

Methodological research to date on VAM has centered primarily on the internal validity

of individual teacher effect estimates, or how confident we can be that the statistical

or econometric methods applied to the data provide estimated effects of teachers that

truly reflect the contributions of those teachers rather than the effects of other biasing

factors, particularly the characteristics of the students or prior educational inputs. Some

researchers have raised doubts about whether VAM can support estimates of true causal

effects of teachers or whether the effects of teachers can be separated from classroom
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context (Ballou, 2004; Braun, 2005b; McCaffrey et al., 2003; Raudenbush, 2004; Rothstein,

2007; Rubin, Stuart, & Zanuto, 2004). However, empirical research has consistently found

evidence of differences among teachers in their effects, even with methods offering controls

for many potential biasing factors such as sophisticated panel data models (Harris & Sass,

2006; Koedel & Betts, 2005) or multivariate mixed model analyses (Ballou et al., 2004;

Lockwood, McCaffrey, Mariano, & Setodji, 2007b; McCaffrey, Lockwood, Koretz, Louis, &

Hamilton, 2004; Raudenbush & Bryk, 2002; Sanders et al., 1997). Moreover, the variation

in estimated teacher effects is not necessarily strongly correlated with student backgrounds

and prior achievement and is predictive of teachers’ future students’ outcomes. Analyses of

experimental data with students randomized to classes corroborates these findings: these

studies find variability among teachers that is similar to the value-added estimates from

other studies (Nye, Konstantopoulos, & Hedges, 2004) and find that value-added estimates

predict differences among teachers on randomly assigned classes (Kane & Staiger, 2008).

In all, while the concerns about internal validity have not been solved definitively, the

evidence suggests that there are differences among teachers in their effectiveness and that

these differences can be measured with some fidelity using appropriate data and analyses.

Relatively less attention has been paid to the external validity of VAM estimates.

Current models estimate a single effect for each teacher, perhaps separately by subject

and by year when sufficient data are available. Even if VAM estimates are truly reflective

of how a teacher performed at teaching a particular subject with a particular group of

students at a particular point in time, to what extent does this provide a generalizable

inference about that teacher’s effectiveness? The use of VAM for high-stakes decisions

about teachers increases the need for the estimates to reflect something about a teacher’s

performance that is stable across units (students), outcomes (subjects and tests) and

settings (schools, school years, courses, and other contextual factors). If an individual

teacher’s effect is markedly heterogeneous across units, outcomes or settings, the credi-

bility of VAM estimates is eroded because of their sensitivity to potentially idiosyncratic
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circumstantial factors.

The limited research on the stability of estimates across outcomes and settings has

provided mixed results. In general, estimates appear moderately stable across time. For

example, Lockwood, McCaffrey and Sass (2008) consider the stability of the effects of

elementary and middle school mathematics teachers and find moderate correlations (on

the order of 0.4) of the estimated effects for the same teacher across different school years,

but given the large sampling errors a correlation of 0.4 suggests fairly stable effects for

teachers across time. McCaffrey, Han and Lockwood (2008) found similar results. Koedel

and Betts (2005) find that quintile groupings of estimated math teacher effects for the

same teachers across different years can be unstable but that teachers in the tails of the

distribution demonstrate somewhat higher stability. In the only study of the stability of

effects as teachers change context, Sanders, Wright, Springer and Langevin (2008) found

that teacher effects were relatively stable when they moved across schools serving very

different populations of students. Conversely, Lockwood et al. (2007a) found considerable

sensitivity of effects to the test, with the correlation between teacher effects estimated from

two subscales of a mathematics test to be on the order of 0.2 or less, for a small sample

of middle school mathematics teachers.

Limited research has been done on the potential heterogeneity of teacher effects across

different students. Both anecdotal evidence and experience, however, suggest that teach-

ers may be differentially effective with students of different aptitudes or other character-

istics (Dee, 2003; Hanushek, Kain, O’Brien, & Rivkin, 2005; Harris & Sass, 2006). For

example, two teachers may be equally effective on average across all students, but one may

be particularly effective with students who are generally high achieving and the other may

be particularly effective with students who are generally low achieving. Sanders (personal

communication) has claimed that through extensive analysis of Tennessee achievement

data, it is possible to identify teachers with characteristic patterns (“sheds”, “reverse

sheds” and “teepees”) of differential effectiveness across students with different average
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levels of achievement. On the other hand, Koedel and Betts (2005) tested for variation

in individual teacher effects across groups of students with prior test scores above and

below the median prior score and fail to reject the null hypothesis of no interactions, and

Hanushek et al. (2005) find moderate correlations of between 0.3 and 0.6 for average gains

made by groups of students sharing a teacher but stratified by their prior score. Using

data from a randomized experiment, Dee (2003) finds a positive effect on achievement for

students being paired with a same-race teacher.

If teachers are differentially effective with different students, understanding the nature

and magnitude of these differences is important to VAM for several reasons. First, as

noted, heterogeneity of effects across students calls into question the generalizability of

the inferences made from VAM estimates. Models that estimate a single teacher effect

implicitly are estimating a teacher’s effect on the particular group of students taught

by that teacher, and thus teachers who would be equally effective on similar students

may have different VAM estimates simply because their classrooms have different student

compositions. This would strike at the foundation of VAM because its primary purpose is

to provide fair comparisons of teachers despite the fact that teachers teach different types

of students. Second, if heterogeneity in teacher effects across different types of students

can be reliably measured, this could enhance the utility of VAM estimates for improving

education. For example, if average teacher effects can be broken down into a more fine-

grained assessment of teacher performance across different types of students, this could

provide useful diagnostic information for targeted interventions. Such information could

also lead to more efficient assignment of student/teacher pairings that leveraged each

teacher’s relative strengths.

The goal of this article is to develop a model that allows teacher effects to vary across

individual students, and to apply the model to a variety of longitudinal achievement

datasets to examine the nature and magnitude of the student-teacher interaction effects.

Of particular interest is understanding the consequences of ignoring these interactions
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given that current applications of VAM methods estimate a single effect for each teacher

and a single estimate is likely to be the basis of high-stakes decisions about teachers in

the future. The interactions in our models allow teachers to be differentially effective

with students of differing levels of achievement, as measured by their expected scores on

current year achievement tests, with predictions based on an extensive longitudinal data

series of measures of the individual student’s achievement taken from different grades,

subjects and contexts. Interactions with respect to predicted scores are an intuitively

plausible source of heterogeneity of teacher effects given that predicted scores on a test

are probably strongly related to a more general, latent construct of student ability. Also

such interactions may lead to more actionable inferences than interactions with respect

to observable student characteristics such as SES, race/ethnicity, or gender. Prior studies

that have examined teacher interactions with student achievement (Aaronson, Barrow, &

Sander, 2003; Hanushek et al., 2005; Koedel & Betts, 2005) have typically used a single

prior score as a measure of ability, and using predicted scores based on multiple prior

tests should provide more accurate and precise estimates.

The remainder of the article is organized as follows. Section 2 develops our basic

model that allows teacher effects to depend on a student’s predicted score and discusses

the specification of the model in a Bayesian framework. Section 3 discusses the data

sources we use in our investigations. Section 4 presents model diagnostics and model

selection criteria assessing the fit of the model and its performance relative to a sequence of

simpler alternatives. Section 5 presents inferences about the parameters representing the

student-teacher interactions and uses those estimates along with other features of the data

to calibrate their magnitudes. Section 6 provides a sensitivity analysis of the main findings

using an alternative approach of specifying the interactions through nonlinear regression

models. Finally, Section 7 offers some concluding remarks and discussion points.
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2 A Model for Student-Teacher Interactions

2.1 Basic Model

We begin with a simplified scenario in which I students are taught by J teachers, with

each student being taught by a single teacher. We let i = 1, . . . , I index the students and

let Yi, the outcome of interest, denote the measure of achievement for student i. We let

j = 1, . . . , J index teachers and use the notation j(i) to indicate the teacher index j of

the teacher who taught student i.

The basic model underlying our investigations is

Yi = μ + δi + θ0j(i) + θ1j(i)δi + εi (1)

The overall mean achievement is represented by μ. δi has mean zero across all students

and is defined such that μ + δi is the expected score for student i in the absence of other

inputs to current achievement; in the context of the model this is the expected score given

that the student is taught by the average teacher. Because δi is the unique component of

the student’s expected score, we focus on this value and without loss of generality refer to

it, or functions of it, as the expected score. θ0j the main effect of teacher j, defined as that

teacher’s average effect across all students, or equivalently, that teacher’s effect on students

with average expected scores (δ = 0). These effects are scaled so that they have mean

zero across the teachers in the data. We follow the convention of calling these parameters

teacher effects even though they really represent only unexplained heterogeneity among

students linked to the same teacher. Ideally this unexplained heterogeneity is primarily

a result of differential teacher performance, but there might be many sources, including

contextual effects and omitted student characteristics (McCaffrey et al., 2003; McCaffrey

et al., 2004). θ1j is the interaction term for teacher j that indicates whether this teacher is

relatively more effective with students of higher expected scores (θ1j > 0) or with students

of lower expected scores (θ1j < 0). Again these effects are scaled so that they have mean

zero across all teachers in the data. Finally, the error terms εi are assumed to be mean
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zero and be independent of the other terms in the model.

Thus, the basic model parameterizes teacher effects with two parameters: a main

effect or intercept, and a slope indicating whether teachers are more or less effective with

students of differing values of δi. In principle this linear restriction on the functional form

of the teacher effect profile as a function of δi is not necessary but it is a first natural step

and we do not consider more complex functional forms further in this article. If each δi

were known, the teacher intercepts and slopes could be estimated by OLS by regressing

Y ∗
i = Yi − δi on a grand mean, sum-to-zero constrained teacher main effects and sum-to-

zero constrained teacher slopes on the δi. The intercept terms would be identified by the

within-class means of Y ∗
i and slope terms would be identified by a within-class regression

of the Y ∗
i on δi. Teachers who tended to have more positive values of Y ∗

i (relative to their

main effect) for students with δi > 0 would have positive slope estimates.

As written, the model cannot be estimated because δi is not known. However, longi-

tudinal data can be used to estimate it, because a student’s scores on prior tests provide

relatively strong predictive information about his or her likely performance on a given test

(e.g., the Yi above). Suppose that we have p prior scores from the students (e.g., coming

from prior school years), denoted by Zip
1, and that we model these scores by:

Zip = μp + βpδi + εip (2)

Here μp is a marginal mean for the pth prior score. δi is the same term appearing in

Equation 1 but now scaled by the parameter βp to allow for a different scalings of the

past scores than the target outcome Yi. The εip are error terms treated as independent

both within and across students and as independent of the error terms εi in Equation 1

1We use the notation Zip rather than Yip in Equation 2 to emphasize the fact that when fitting the

model in practice, we standardize all prior scores using rank-based z-scores (Kirby, McCaffrey, Lockwood,

McCombs, Naftel, & Barney, 2002) defined as Zip = Φ−1(F̂p(Yip)) where F̂p is the empirical CDF of the

unstandardized scores Yip and Φ−1 is the inverse CDF of the standard normal distribution. This forces

the Zip to be marginally normal, which improves the plausibility of the linear conditional relationships

among scores assumed by Equation 2 given the variety of scales on which achievement is reported.
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(assumptions that we discuss in more detail later in the section) with a variance σ2
p that

varies across the p different scores. The notion is that the prior scores all inform the latent

predicted score δi, but differentially through the scale factors βp. In this sense, δi can be

thought of as a generalized average prior score, put onto the scale of the target score Yi.

The idea is similar to other student achievement modeling research in which latent effects

for levels and/or growth of achievement are introduced and the relationships between

other covariates and achievement are specified through these parameters (Raudenbush &

Bryk, 2002; Thum, 2003; Seltzer, Choi, & Thum, 2003, 2002; Choi, 2001).

Heuristically, our strategy is to use past test score data on individual students to

estimate δi for each student through Equation 2, and then to estimate Equation 1 to

produce estimates of the teacher intercepts and slopes. These two steps are carried out

simultaneously in the context of a joint model for the prior scores and current scores, in

which the teacher effects and student effects are estimated simultaneously. The model

is estimated in a Bayesian framework, and additional details on this specification are

provided in Section 2.3 and in the Appendix.

Equation 2 is potentially misspecified because of the assumption of the independence

of the residuals εip both among themselves and with the εi of Equation 1. The residuals

may be related within students due to similar performance on particular types of tests

(e.g., scores from reading tests may be more correlated with one another than they are

with math tests). They may also be related within and across students because of omitted

teacher effects or other contextual effects. Within a student our model is consistent with

a student’s teachers being independent across subjects and grades and their effects having

no persistence after the current year. A model with less restrictive assumptions specifies

current achievement as a function of an accumulation of past and current teacher effects,

possibly with downweighting of prior teacher effects (Lockwood et al., 2007b; McCaffrey

et al., 2004; Ballou et al., 2004; Sanders et al., 1997; Harris & Sass, 2006).

In the current application we use a more restrictive model to improve the compu-
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tational efficiency of our models and to improve the stability of the estimates of our

parameters of interest (θ0j and θ1j for the teachers in a target year). In this way our

model for the prior scores is not intended to be structural but rather descriptive, and is

chosen to allow us to extract information from prior scores for use in examining teacher

effects and interactions in the target year. The model appears to do an adequate job of

extracting this information, and we present results of a specification test in Section 4.3

that examines how much bias might be introduced into our results about teacher effects

in the target year by using this simple single factor structure with independent residu-

als rather than a more complex specification that might be closer to a structural model

for the prior achievement outcomes. Also, Section 6 presents a robustness check of the

findings from this model using more traditional regression specifications that more closely

resemble a structural model for the test scores.

2.2 Extensions for Nonlinearity and Heteroskedasticity

When applying the model to various longitudinal data sources, we found that allowing

for nonlinearity and heteroskedasticity in Equation 1 was beneficial. We allow for nonlin-

earity in Equation 1 by defining ηi as a piecewise quadratic function of δi that depends

on whether or not δi < 0, ηi = δi + (λm11δi<0 + λm21δi≥0) δ2
i and using this quantity as

our predicted score in Equation 1 to yield the expanded model:

Yi = μ + ηi + θ0j(i) + θ1j(i)ηi + εi (3)

where 1A is the indicator function of the event A. This form was suggested by exploratory

analyses and is flexible enough to capture convex, concave or sigmoidal relationships be-

tween Yi and δi. The nonlinear model allows that the latent construct captured linearly

among the prior tests is nonlinearly related to the current measure of achievement. Given

this nonlinear relationship, it seems reasonable that ηi also provides the appropriate scal-

ing for testing interactions with teacher effects. We also explored interactions defined by
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δi and obtain qualitatively nearly identical results, but we present this model because we

felt working with a predicted scores on consistent scaling would have greater face validity.

We also extended the model to address heteroskedasticity in the error terms εi in

Equation 1. A common byproduct of the design and scaling of standardized achievement

tests is that the measurement error of high or low scores is larger than intermediate scores.

To approximate this relationship 2 we estimated a variance function that allowed Var(εi)

to depend on δi as

Var(εi|δi) = σ2exp [δi(λv11δi<0 + λv21δi≥0)] (4)

This variance function is non-negative. With λv1 = λv2 = 0 it reduces to homoskedasticity.

Values of λv1 < 0 and λv2 > 0 generate various convex error functions with minimum value

σ2 at the average general achievement value δi = 0.

The term “complete model” in the remainder of the article refers to the model that

allows for both nonlinearity as specified in Equation 3 and heteroskedasticity of the error

term as specified in Equation 4, along with the model for the prior scores in Equation 2.

In Section 4.1 we show that the complete model is more appropriate for the data than a

sequence of simpler alternatives, and so all of the substantive results about interactions

that we report are based on the complete model.

2.3 Bayesian Specification

We estimate the complete model using a Bayesian specification (Carlin & Louis, 2000;

Gilks, Richardson, & Spiegelhalter, 1996; Gelman, Carlin, Stern, & Rubin, 1995) imple-

mented in the Bayesian modeling software WinBUGS (Lunn, Thomas, Best, & Spiegel-

halter, 2000). The Bayesian framework specifies a conditional probability distribution

2Classical test theory would motivate a model where the “true score” ui would be given by the entire

right-hand side of Equation 3 except for the error term εi, and the variance of εi would be a function

of ui. We considered such models but they led to convergence problems in the model for some of our

datasets, so we opted to keep the simpler specification where the variance of εi depends on δi.
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of the data given all unknown parameters (the “likelihood”) and a probability distribu-

tion for the unknown parameters (the “prior distribution”). These lead to a conditional

probability distribution for all of the unknown parameters given the observed data (the

“posterior distribution”), from which all inferences about the unknown parameters are

derived. In this section we discuss the Bayesian specification of the model. Additional

details on the prior distributions are provided in the Appendix. The WinBUGS code we

used to fit the model is available from us by request.

The modeling assumptions for the student and teacher effects are that δi are iid N(0, ν)

and (θ0j, θ1j)
′ are iid N(0,G) and independent of δi, where both ν and G have prior dis-

tributions that allow their estimates to be driven by the data. G is the (2× 2) covariance

matrix of the teacher main effects and teacher slopes with the variance of the main ef-

fects denoted by τ 2
0 , the variance of the slopes denoted τ 2

1 , and correlation r so that the

covariance between the slopes and intercepts is rτ0τ1. Most of the important inferences

about interactions that we report later are based on functions of ν and G.

The assumption of independence among student and teacher effects is questionable,

but the results of Lockwood and McCaffrey (2007) indicate that when many prior scores

are available for estimating δi (as is the case in our applications) the independence as-

sumption is not consequential and the student and teacher effects can be estimated with

minimal bias even in the presence of selection of students to teachers (e.g., that students

with higher values of δi are more likely to be assigned to the same classes than to classes

with lower achieving students).

For the remaining terms in the model for the target year scores, the overall mean μ

and the parameters λm1 and λm2 governing the nonlinearity are modeled with minimally

informative independent normal priors. The error terms εi are modeled as independent

mean-zero normals with variance given by Equation 4, where σ2 and the parameters λv1

and λv2 governing the heteroskedasticity are given minimally informative priors. For

the parameters in the distribution of the prior scores in Equation 2, we modeled the μp
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with minimally informative normal priors, and the βp as Γ(1, 1) which has mean 1, a

specification that made sense given that both the current and prior scores were normed to

have the same marginal variance and so the coefficients on the prior scores should be on

the order of 1 or less. The error terms εip are modeled as independent mean zero normals

with variances σ2
p, with the σ2

p given minimally informative priors.

Given the large number of prior scores that are used in our applications, many students

do not have all prior scores observed due to mobility and missed testing. Thus, some

students have a lot of information from which to estimate δi and others relatively less.

The missing prior scores are handled via data augmentation (van Dyk & Meng, 2001;

Schafer, 1997; Tanner & Wong, 1987), which is automatically implemented in WinBUGS

under an assumption that the missing scores are missing at random (Little & Rubin,

1987). This algorithm accommodates arbitrary missing data patterns for the prior scores,

and allows students to contribute to the estimated teacher effects and interactions in

proportion to how much information the data provide about their individual δi.

3 Data

We use three different longitudinal achievement datasets to investigate the interaction

model presented in Section 2. The datasets come from three different large urban school

districts referred to as A, B, and C throughout the remainder of the article. The datasets

cover different grade ranges and achievement outcomes but otherwise have similar struc-

tures. District A data are from a single cohort of about 9200 students followed from

grades 1 through 5, with students linked to their teachers each year and with students

tested in math and reading at each grade. For the analyses we focus on teachers from

grades 3 to 5. District B data are from a single cohort of about 3400 students followed

from grades 5 to 8 with students linked to their math teachers and students tested in

math in each grade, and with a variety of other test scores available including science and
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reading. For the analysis we focus on math teachers in grades 7 and 8. Finally District

C data are from four cohorts of students who were in grades 5 to 8 during the 2006-2007

school year. The approximately 26000 students are linked to their mathematics teachers

from 2006-2007, and those students’ achievement measures in math, science, reading and

social studies are available back to the 2002-2003 school year 3 and as early as grade 3.

This leads to between 8 and 14 prior scores available for students who where continuously

enrolled in the district and who did not miss any testing in prior grades.

As noted in Section 2, we consider the interaction model for students linked to a set

of target teachers in a single target grade, and treat all scores prior to that grade as prior

scores under Equation 2. To be included in an analysis, a student must be linked to a

teacher in the target grade and must have the target grade achievement outcome observed.

We also enforce that the student must have at least two observed test scores prior to the

target grade so that at least some information about his or her δi is available. In most

cases, the vast majority of students have many more than two prior scores available.

In total from districts A, B, and C we consider twelve groups of target teachers and

their associated effects. Some summaries of these twelve groups are presented in Table 1,

including the district, the target grade, the target subject (math or reading), the number

of teachers, the number of students, and the maximum and mean numbers of prior scores

available for the students. The target teacher groups from District B bridge an interesting

gap between those from Districts A and C because the math achievement outcome from

district B is the same as that from District A (same test developer, test edition and scale)

but the grade ranges available from District B overlap with district C. As discussed further

in the results, this helps to resolve one of the differences in the results about interactions

between Districts A and C.

[Table 1 about here.]

3Social studies and science tests are not available for the 2002-2003 school year.
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4 Model Assessments

4.1 Comparisons of Complete Model to Simpler Alternatives

We were first interested in establishing whether the model that includes the student-

teacher interaction terms is a more appropriate model for the data than simpler alter-

natives. To do this we fit a sequence of five increasingly complex models to each of the

twelve target teacher groups, culminating in the complete model that allows for non-

linearity, heteroskedasticity, teacher main effects, and teacher-student interactions. We

then compared the models with the Deviance Information Criterion (DIC) (Spiegelhalter,

Best, Carlin, & van der Linde, 2002) which is a model comparison criterion for complex

Bayesian models that heuristically combines a measure of model fit and model complexity

to indicate which, among a set of models being compared, is preferred (as indicated by

the smallest DIC value).

The five models that we compared start with the simplest case (“Model 1”) in which

there are no allowances for nonlinearity and heteroskedasticity (λm1 = λm2 = λv1 =

λv2 = 0) and no teacher effects at all in the target year (τ 2
0 = τ 2

1 = 0). Model 2 retains

these restrictions but allows for nonlinearity. Model 3 allows for both nonlinearity and

heteroskedasticity, but again has no teacher effects. Model 4 allows for nonlinearity,

heteroskedasticity, and teacher main effects only (τ 2
1 = 0). Finally, Model 5 is the complete

model that allows for nonlinearity, heteroskedasticity, teacher main effects, and teacher-

student interactions.

The DIC values for each of the models are presented in Figure 1 and demonstrate

that the complete model is preferred in all twelve target teacher groups. To facilitate

comparisons across the twelve groups, DIC values for Model n are presented as (DICn −
DIC1)/DIC1 so that all groups have a value of 0 for Model 1. In general, each successively

more complex model is preferred over the simpler alternatives as indicated by decreasing

DIC values. The largest improvements generally occur between Models 3 and 4 with the
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introduction of teacher main effects. The student-teacher interaction terms provide an

additional benefit which is generally smaller than the incremental improvements provided

by the other model features, but is consistent across all twelve target teacher groups.

The formal model comparisons are based on incremental improvements in DIC on

an absolute rather than relative scale. The smallest incremental improvement between

Models 4 and 5 is about 14 DIC points, for District C grade 5 math, while the largest

improvement is about 286 DIC points for District A grade 3 math. The median improve-

ment across the groups is about 85 DIC points. A typical rule of thumb is that DIC

improvements of between 5 and 10 points are substantial, so it appears that the complete

model allowing student-teacher interactions is uniformly more appropriate for the data

than a model that includes teacher main effects alone.

[Figure 1 about here.]

4.2 Model Fit

For each of the twelve target teacher groups we performed various posterior predictive

checks (Gelman, Meng, & Stern, 1996; Gilks et al., 1996) that assessed how well the

complete model captures important features in the data. Posterior predictive checks use

the posterior distribution of the model parameters to generate new hypothetical data that

in principle should look like the actual observed data if the model is adequate. The idea

is that if the model is a close approximation to the data generating mechanism, then the

observed data should look like a typical realization from this mechanism.

The simplest posterior predictive check that we examined was whether the model was

able to capture the relationship between the average prior scores for the students (the

average of whichever of Zip in Equation 2 are observed for student i) and Yi. For each

parameter vector in the MCMC sample, we generated values of Zip for each student using

the current estimate of his or her δi and the other parameters governing the distributions

of the Zip. We then took the average Z̄i of these over the p components that were actually
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observed for student i. Similarly, we generated a value of Yi for each student under the

model for the scores in the target year, including accounting for whatever nonlinearity,

heteroskedasticity, and teacher main effects and interactions are implied by the values

of the parameters in the particular MCMC iteration. For each iteration of the MCMC

algorithm, this results in a realization of (Z̄i, Yi) sampled from the posterior predictive

distribution of the data for these students. From these samples, pooled across MCMC

iterations, we calculated pointwise 0.025, 0.50 and 0.975 quantiles of the conditional dis-

tribution of Yi given Z̄i, and compared these bounds to the observed data.

Figure 2 shows representative examples of the results for a subset of the twelve target

teacher groups; results for groups not shown are similar. Each frame of the figure plots

the posterior predictive bounds described above, along with the corresponding (Z̄i, Yi)

pairs for the observed data. The close correspondence between the bounds and the actual

data indicates that the model is adequately capturing features of the relationship between

the average prior scores and the scores in the target year, including nonlinearity and het-

eroskedasticity. The numbers in parentheses at the top of each figure give the percentage

of the observed data pairs that fall outside of the predictive bounds. These percentages

are very close to the target values of 5%.

[Figure 2 about here.]

We carried out similar checks at the level of individual teachers to ascertain that

the model was capturing features of the achievement of the students in each teacher’s

class. In particular we were interested in seeing whether the estimated values of main

effects and intercepts for teachers implied a profile of effectiveness as a function of δ that

was consistent with the achievement patterns evident in the data. Figure 3 provides an

example for selected teachers from District B’s grade 8 math teachers. The gray lines

indicate the model estimate of E(Y |δ) in the absence of any teacher effects, while the

black lines indicate the model estimate of E(Y |δ, j) for a given teacher j accounting for

the estimated main effect and slope for that teacher. The points in each frame are the
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actual Yi values for students linked to that teacher, plotted as a function of posterior mean

of δi for those students. These particular teachers were chosen to illustrate a teacher with a

positive estimated slope (top frame), a zero estimated slope (middle frame) and a negative

estimated slope (bottom frame), and these estimates seem to capture the achievement

patterns of the students linked to each class. For the teacher with the negative slope

estimate, the students with higher values of δi are scoring generally less well in this class

than would be predicted in the absence of teacher effects compared to students with lower

values of the δi. The opposite is true for the teacher with the positive slope estimate.

Analogous checks carried out for all teachers in the twelve target teacher groups showed

similar correspondence between model estimates and data.

[Figure 3 about here.]

4.3 Assessing Potential for Misspecification Bias

Given the simple structure of our model for prior scores in Equation 2, it was impor-

tant to assess whether the model appeared to be ignoring information contained in the

prior scores that might be biasing the estimates of the teacher effects in the target year.

For example, since the prior scores are from tests across a mixture of subjects, specific

information about math achievement, for example, might be omitted from the estimate

of δi and thus may lead to biased estimates of the teacher effects in the target year if it

clusters at the teacher level. We wanted to ensure that this bias was sufficiently small to

leave our substantive conclusions unaffected.

We investigated this for the nine target teacher groups where math was the target

outcome as follows. For each student, we obtained the posterior mean of δi under the

model, regressed the math score from the year immediately prior to the target year on

these values 4, and obtained the residuals from this regression. If there is important

information about math achievement in the target year that could have been predicted

4The R2 from this regression varied between 0.72 and 0.81 across the twelve groups.
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from past scores but is not already captured by δi, the math score from the immediate

prior year is probably the best source of that information, and the residuals from the

regression on δi isolate it. In order to indicate a source of bias, these residuals need

both to be related to target year scores and to vary across teachers. To assess this, we

regressed the target year math scores on these residuals and fixed effects for target year

teachers to obtain a within-teacher estimate of the relationship between the residuals and

target year math scores, and we also estimated the between-teacher variance component

of the residuals. The squared regression coefficient times the between-teacher variance

component indicates the variance in mean target year scores across classes that could be

due to the omitted biasing factor. We compared this value to the estimate of the teacher

main effect variance τ 2
0 to calibrate how much of the estimated between teacher variance

might be due to the omitted factor.

The results indicate that the size of this bias is quite small. The worst cases are in

Districts B and C, grade 8, where the bias could account for about 2% of the estimated

between-teacher variance estimated from the model. The values in the other target teacher

groups were all 1% or less. This suggests that our restricted model for the prior scores is

not leading to appreciable bias in our estimates of teacher effects in the target year.

5 Results on Teacher Effects and Interactions

5.1 How Large are Teacher Effects and Interactions?

Table 2 summarizes the main results regarding the teacher effects and interactions,

based on the complete model fit to each of the twelve target teacher groups. The first

column contains the posterior means of the teacher main effect variances τ 2
0 along with

0.025 and 0.975 quantiles of its posterior distribution. This 95% credible interval is an

analog to a 95% confidence interval in a classical analysis but in the Bayesian framework

it is constructed so that there is 0.95 posterior probability that the parameter is this
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interval. When fitting the model to each target teacher group, the target year outcomes

Yi were standardized by subtracting their mean and dividing by their standard deviation

so that the target year outcomes have marginal variance 1. This standardization of the

outcomes is different than the rank-based z-scores applied to the prior scores because it

does not force the scores to have marginal normality; rather it forces a marginal variance

of 1 without distorting other properties of the achievement scale which we assume are

meaningful and take at face value. Forcing marginal variance of 1 makes the values of τ 2
0

interpretable as the fraction of the marginal variance of the scores accounted for by the

variance of the teacher main effects.

The results indicate that teacher main effects account for on the order of 10% of the

marginal variance of the target year outcomes, with somewhat higher values in the early

elementary grades of District A and somewhat lower values in District C. These results

are roughly consistent with the teacher variance percentages reported in other analyses

(Rowan, Correnti, & Miller, 2002; Nye et al., 2004).

[Table 2 about here.]

Calibrating the magnitudes of the interaction terms is more difficult because their

magnitudes depend both on τ 2
1 as well as φ, the marginal variance of ηi. The simplest

way to calibrate the size of the interactions is to imagine a teacher with main effect θ0

and slope θ1, a student with predicted score η, and to calculate the total effect that the

teacher would have on this student, which under the model is θ0 + ηθ1. The variance of

this quantity under random sampling (i.e., independent sampling assuming no selection)

of both the teacher and the student is τ 2
0 + φτ 2

1 . The part of this total variance that

is due to the interaction effects is φτ 2
1 , which motivates the quantity γ =

φτ2

1

τ2

0
+φτ2

1

loosely

interpreted as the fraction of the total teacher effect variance that is due to interactions.

The posterior means and 95% credible intervals for γ are reported in the second column

of Table 2. These values were obtained by calculating the value of γ for each iteration of

the MCMC sample and then calculating summaries of the distribution of this quantity.
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For the most part, the values are quite consistent across the target teacher groups, on

the order of 0.10, with somewhat higher values in the upper grades. A value of 0.10 can

be interpreted as 10% of the total variance in teacher effects across all students is due

to the interaction terms, with 90% due to main effect variance across teachers. This is

not large, but the consistency across different data contexts does suggest the presence

of interaction effects. Target groups C7, C8 and B8 have markedly higher values of

0.25, 0.15, and 0.15, respectively. Sensitivity analyses (not shown) based on dropping

students with the lowest possible score, and based on considering teachers with no fewer

than 10 linked students, did not lead to appreciable changes in these values. The fact

that these three largest values are from mathematics in middle school grades (7 and 8)

suggests the possibility that there is something particular about the context of middle

school mathematics (e.g., specialized curricula) leading to the larger interaction effects,

but this would require further investigation using data not available for this analysis.

The amount that interaction effects might matter in practice, however, depends on

how heterogeneously students are grouped across classes. Under the model the average

effect that a teacher has on a class is θ0 + θ1η̄ where η̄ is the average value of ηi across the

students linked to that teacher. A model that ignores the interactions and estimates only

teacher main effects, but is otherwise correctly specified, is likely to produce an estimate

of the main effect that is close to θ0 + θ1η̄. If all classes had the same value of η̄, then

the resulting comparisons of the teacher effects would not be misleading in the sense that

teachers with equal values of θ0 and θ1 would not get systematically different estimates

due to having different types of students. On the other hand, if η̄ varies substantially

across classes, there is potential for misleading comparisons. Thus, the degree to which

the interaction effects matter in practice depends not only on their plausible magnitude

(addressed previously), but also on how different η̄ is across classes.

To investigate this, we began by using the model to gauge how heterogeneous are

groupings of students linked to different teachers. If ηi for each student were known, this
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simply would require calculating the between-teacher variance component of the ηi. In

practice the ηis are not known, but the model estimates can be used in their place. So

for each iteration of the MCMC, we estimated the percentage of the total variance of the

ηi that was between classes using a one-way random effects model, which gives rise to the

posterior distribution of this quantity. The posterior means and 95% credible intervals

of these percentages are given in column 3 of Table 2. The results indicate that about

20-30% of the variance in ηi is between teachers for Districts A and B, with notably larger

values between about 50 and 60% for District C.

Thus students appear to be heterogeneously grouped, and so it made sense to examine

the magnitude of the interactions with respect to the empirical results about this hetero-

geneity. Our strategy for doing this was the following. For each iteration of the MCMC

algorithm, we calculated η̄k for each of the K classes in the data that had 10 or more

students. For each teacher, we then calculated θ0j + θ1j η̄k - that is, the effect that each

teacher would have on each of these K classes of 10 or more students, given the current

values of all model parameters. If students were not heterogeneously grouped, η̄k would be

roughly constant across classes and so these plausible effects on different classes would all

be nearly equal. On the other hand, if students were strongly heterogeneously grouped,

then η̄k would vary substantially across classes and thus the plausible effects θ0j + θ1j η̄k

would be more dissimilar within teachers. For each MCMC iteration, we thus calculated

JK plausible effects of the J teachers across the K classes in the data with 10 or more

students, and calculated the fraction of the variance of these JK plausible effects that

was within teachers using a method of moments variance component calculation appro-

priate for balanced data (Searle, 1971). This quantity is analogous to γ discussed earlier,

but rather than using φ, the marginal variance of ηi, uses something more akin to the

between-class variance component of ηi but which is more closely tied to the actual class

groupings of students.

We label this quantity γ∗ and its posterior mean and 95% credible interval are given
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in column 4 of Table 2. The values reflect the patterns evident with γ but are smaller,

reflecting the fact that class means of the ηi are not as variable as the ηi themselves.

The values for most of the target teacher groups are from 0.03 to 0.04, with the excep-

tions of C7, C8, and B8 which again are higher at 0.17, 0.09, and 0.06, respectively. In

general these values are small and suggest that estimates made from VAMs that do not

account for interactions are probably not grossly misleading for most teachers because

of ignoring student-teacher interactions. The variation in main effects is typically large

enough relative to the magnitudes of the interactions and the amount that those interac-

tions would manifest due to heterogeneous classroom groupings that the variation due to

ignoring these interactions would not lead to substantive differences in inferences about

most teachers. However, teachers with relatively large interaction effects, and who are

assigned to classes with η̄k in the relative extremes of the η̄k distribution, could receive

estimates that are substantially different from those that might have been obtained had

the teacher taught a much different group of students. And again, there is some evidence

of potentially larger differences for middle school mathematics.

5.2 Sensitivities to Scaling

The final column of Table 2 gives the posterior mean and 95% credible interval for r,

the correlation between the teacher main effects and teacher slopes. A positive value of r is

interpreted as teachers who are effective on average are particularly effective with students

of above-average predicted scores, while a negative value indicates that teachers who are

effective on average are particularly effective with students of below-average predicted

scores. From a substantive standpoint, this correlation is potentially interesting because

it provides insights into the nature of the effects that teachers have on students.

Unfortunately it appears to be difficult to learn about this correlation in a way that

is not strongly tied to the way the tests are scaled. Note that the point estimates of

the correlations for Districts A and B are all positive, while those from District C are
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all negative. Recall from Section 3 that the test in Districts A and B are from the

same test developer and on the same scale. In fact District B was included in the analysis

specifically to resolve the discrepancy between Districts A and C because it was impossible

to disentangle whether the different correlations in those districts were due to the different

grade ranges (note that grade 5 in District C is actually a middle school grade, while

grade 5 in District A is an elementary school grade) or different tests. District B has

grade ranges overlapping with District C but the same test as District A, and the fact

that the correlations more closely resemble those in District A suggests that the difference

is due to the nature and scale of the test.

The posterior predictive plots in Figure 2 demonstrate some of the differences in the

tests; the test in Districts A and B has a more pronounced nonlinear relationship with δ

and less pronounced heteroskedasticity than the test in District C. Further evidence that

the differences are due to the test was provided by refitting the complete model in District

A using a rank-based z-score transformation of Yi which forces the scale to be marginally

normal. The estimated variances due to the interactions in this case were similar to

those obtained from the original scale, but the correlations changed from being positive

to either zero or slightly negative. And the estimates of the slopes for individual teachers

were markedly different depending how the data were scaled, while the estimates for the

main effects were virtually identical (correlations of approximately 1). This indicates

that inferences about the relationship of the interaction terms to the main effects, and,

accordingly, the inferences about the slopes for individual teachers, can be highly sensitive

to the properties of the test scale.
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6 Alternative Approach To Estimating Interactions

6.1 Nonlinear Regression Specification

An alternative approach for examining student-teacher interactions of the kinds dis-

cussed previously is through nonlinear regression models. This starts with the more

standard econometric approach of estimating teacher effects through a linear regression

model and augments that model to include interaction terms that turn out to make the

model nonlinear. Following the structural model of many authors (c.f. Aaronson et al.

(2003); Harris and Sass (2006)) but without assuming a predetermined value for the per-

sistence of prior educational inputs, we begin with the following linear regression model

for the outcomes in the target year:

Y = Xβ + Zθ0 + εi (5)

Here Y is the n-vector of student achievement scores, and X is a (n × p) matrix of

regressors including an intercept, polynomial functions of prior test scores, and other

observable student or peer characteristics, with associated parameters β. Z is the matrix

of teacher indicators with associated effects θ0. The models we implement use a sum-to-

zero constrained parameterization for Z, in which if there are k teachers, Z is (n×(k−1))

where without loss of generality teacher k is held out and students linked to teacher k have

values of -1 for the indicators for all other teachers. With this parameterization teacher

effects are defined as differences between the expected outcomes for students with a given

teacher and their expected outcomes with the average teacher (Lockwood, McCaffrey, &

Sass, 2008). This parameterization is consistent with the parameterization of teacher

effects in the models of Section 2. Models analogous to those in Equation 5 have been

used extensively in the value-added modeling literature (McCaffrey et al., 2004; McCaffrey,

Han, & Lockwood, 2008; Lockwood, McCaffrey, Hamilton, Stecher, Le, & Martinez, 2007a;

Sanders, 2006; Rothstein, 2008)

Under this model, the predicted score for student i if he or she were to be taught
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by the average teacher is ψi = X
′

iβ, which is the analog to ηi in Equation 5. Following

the logic of that model, we define student-teacher interaction effects with respect to this

predicted score. That is, we allow teacher inputs to be differentially effective with respect

to student achievement as measured by the expected score on the target test. We thus

extend Model 5 as

Yi = Xβ + Zθ0 + ΨZθ1 + ε∗i (6)

where Ψ is a (n × n) matrix with the ith diagonal element equal to ψi and all off-

diagonal elements equal to zero, so that parameters θ1 represent within-teacher regression

coefficients of residualized scores on predicted scores. Finally ε∗i is an error term assumed

to be orthogonal to other terms in the model in order for the model to have a structural

interpretation. Because ψi = X
′

iβ and this term is multiplied by θ1, the model is a

nonlinear function of its parameters.

6.2 Implementation

We implemented Model 6 for our twelve target teacher groups using the nonlinear least

squares function nls available in the R environment (R Development Core Team, 2007).

Following Aaronson et al. (2003), for each of the twelve target teacher groups, the model

used as covariates all the available test score information from the previous two years

to control for the contributions of prior educational, student, and family inputs to the

current level of achievement5. In District A this information included math and reading

scores for a total of four prior scores. In District B this included math and reading

scores from a district test in the previous two years, as well as multiple choice math

5Using prior scores as covariates in the linear and nonlinear models could result in omitted variable

bias in estimated teacher effects. For instance, the existence of time-invariant student characteristics

could result in correlation between the prior year test scores and the error term. However, given recent

results of Rothstein (2008) which demonstrate that time-invariant student variables are insignificant in

models that control for multiple prior test scores, we believe that any correlation between prior scores

and error is small, mitigating the potential for omitted variable bias.
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and science test scores, and open-ended math test scores, from a commercial, nationally-

normed test from the immediate prior year, for a total of seven prior scores. In District

C this included math, reading, science, and social studies scores from the previous two

years for a total of eight prior scores. In Districts B and C the models also included

student demographic information (no demographic information was available in District

A). In District B the demographic variables included race/ethnicity, gender, and indicators

of limited English proficiency, special education, participation in free or reduced price

lunch programs, and grade retention during some prior school year. In District C they

included race/ethnicity, gender, and indicators for limited English proficiency and special

education. In all districts, only students with complete data were used in the analysis, and

to avoid potential convergence problems with our optimization algorithm, we restricted the

analysis to teachers who had five or more students with complete data. These restrictions

reduced the number of students included in the nonlinear analyses to between 61 and

83% of the student totals reported in Table 1, with a median of 74%, and the number of

teachers to between 68 and 92% of the teacher totals reported in Table 1, with a median

of 80%.

For each target teacher group, the elements of the X matrices included an intercept,

linear and quadratic terms for rank-based z-scores transformation of all prior scores (cubic

terms were also included in Districts B and C because of the nature of the nonlinearities

in those districts), and linear adjustments for all available demographic variables. We

also examined the inclusion of peer variables, defined for each variable and each student

as the mean of that variable across all other students sharing the same teacher. Under

Model 5 the R2 values excluding peer variables ranged from 0.72 to 0.81 across the target

teacher groups, and the incremental increases to the R2 by including the entire block of

peer variables was typically on the order of 0.001 and was always less than 0.004; the

null hypothesis of no peer effects was rejected at the 0.05 level (with p-values of 0.04) for

only two of the twelve groups. Given the minimal increase in predictive value provided
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by the peer variables, as well as the fact that including these variables greatly inflated

the estimation error in the teacher effects due to their near collinearity with the teacher

indicators, we excluded the peer variables from the nonlinear regression analyses.

With the X matrices defined above, we estimated Model 6 using two iterations of

iteratively reweighted least squares to deal with heteroskedasticity of the residuals (Car-

roll & Ruppert, 1988). For each target teacher group, we first estimated Model 6 using

ordinary (nonlinear) least squares. We then obtained the residuals ri from this model

and regressed r2
i on a piecewise cubic function of the standardized fitted values fi where

the parameters of the cubic were allowed to be different depending on whether fi was

greater or less than zero and the function was forced to be continuous at fi = 0. This

is similar to the approach used to deal with heteroskedasticity in the Bayesian model.

We then obtained approximate precision weights as the inverses of the fitted values from

this regression, and re-estimated Model 6 with these weights. We repeated this procedure

once more using the updated model fit and updated precision weights. These updated

precision weights were then used to fit Model 5 so that approximately correct F−tests

comparing Model 5 to Model 6 could be obtained.

The primary goal of this sensitivity analysis was to take an alternative approach to

estimating the percentage of variation in estimated teacher effects that is due to the

student-teacher interactions - that is, values analogous to γ∗ in Table 2. We constructed

this analog from the nonlinear regression model for each target teacher group as follows.

First, using the estimated teacher intercepts θ̂0 and slopes θ̂1 as well as their estimated

standard errors, we calculated estimates τ̂ 2
0 and τ̂ 2

1 of the true between-teacher variance

components of the intercepts and slopes using method of moments (DerSimonian & Laird,

1986). These are analogous to the variance parameters of the Bayesian model. Next, we

calculated ψ̂i = X
′

i β̂ for each student and estimated the between-teacher variance com-

ponent ν̂ of these values using a one-way random effects ANOVA. Finally we calculated

the quantity γ∗
nls =

ν̂τ̂2

1

τ̂2

0
+ν̂τ̂2

1

which is analogous to γ∗ in Table 2.
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6.3 Results

F−tests comparing Model 5 to Model 6 reject the null hypothesis of no interactions

at the 0.05 level in nine of the twelve target teacher groups, with two more groups having

p < 0.10 and the remaining (C5) having p = 0.21. The p-values closely corroborate the

findings of the DIC model comparison in Figure 1, with the four target teacher groups

with p > 0.01 also being the four that have the smallest relative DIC improvements from

Model 4 to Model 5. Overall, this suggests that the nonlinear regression models are

supporting the same general conclusions of the Bayesian model. Also, the magnitudes

of the interactions estimated from the nonlinear regression models, as measured by γ∗
nls,

are not substantively different from the values of γ∗ estimated from the Bayesian model.

Table 2 provides the estimates of γ∗
nls in the final column. The point estimates of γ∗

nls

and γ∗ are extremely close for all twelve target teacher groups. Thus a more traditional

econometric approach to the problem of estimating the magnitudes of the student-teacher

interactions corroborates the findings of the Bayesian approach.

Finally, the correlations of the estimated slopes and intercepts within teachers are

generally consistent with the correlations estimated from the Bayesian model. Although

this correlation is not parameterized in the nonlinear regression model because it treats

the slopes and intercepts as fixed effects, it is possible to examine it post-hoc through the

correlation between the empirical Bayes estimates θ̂0 and θ̂1 obtained by shrinkage using

the standard errors of the estimates along with τ̂ 2
0 and τ̂ 2

1 . Correlations of the shrunken

estimates are attenuated toward zero relative to the correlation of the true values, but

maintain the correct sign. And these signs are consistent with the values of r obtained

from the Bayesian model and reported in Table 2 - the correlations of the shrunken

estimates from the nonlinear models are generally positive for Districts A and B and are

negative for District C.
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7 Summary and Discussion

A primary goal of VAM is to provide fair comparisons of teacher performance using

statistical adjustments to account for differences of students taught by different teachers

in the other inputs to education, including family and individual contributions. Using

VAM estimates for some types of high-stakes decisions about teachers is likely to require

that the estimates provide inferences about teacher performance that are generalizable

across settings, outcomes, and units (students). If how a teacher performs with one group

of students is not indicative of his or her likely performance with another group of students

with different characteristics, then comparisons of teacher performance based on value-

added information are potentially misleading and undermine the goal of trying to provide

fair comparisons of teachers teaching different types of students.

This article develops a value-added model specifically designed to estimate student-

teacher interactions. The model specifies interactions with respect to a student’s predicted

achievement, and estimates an average effect for each teacher as well as a parameter

that indicates whether individual teachers are more or less effective, relative to their

average effect, with students of different predicted scores. Interactions of this type are an

intuitively sensible source of heterogeneity in teacher effects, and if present would provide

both challenges and opportunities for the use of VAM estimates.

Using various longitudinal data sources, we find evidence of interactions of teacher

effects with students’ predicted scores appear to be of relatively consistent magnitude

across different contexts. The magnitude is modest, accounting for on the order of 10%

of the total variation in teacher effects across all students, with some evidence of larger

values in middle school mathematics. The amount that ignoring these interactions could

be biasing VAM estimates of teacher effects depends on how different are the groups of

students taught by different teachers. Using empirical estimates of the heterogeneity of

students across teachers, we find that the interactions account for on the order of 3%-4%

of total variation in teacher effects on different classes, with larger values ranging from
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6%-17% in several cases of middle school mathematics. These values are corroborated by

the nonlinear regression analyses in Section 6 and suggest that ignoring these interactions

is not likely to lead to appreciable bias in estimated teacher effects for most teachers

in most settings. However, the interactions are estimated to be somewhat larger in a

few of our target teacher groups, and even with small interactions, estimates for teachers

with particularly strong interaction effects who are teaching classes in the extremes of

the distribution of average class predicted scores could receive estimates that are not

indicative of how they might perform on different classes. Thus, further research on

interaction effects in other contexts is warranted, and the results underscore the notion

that using any type of statistical adjustment to compare teachers teaching very different

types of students is potentially error-prone.

A further complication with estimating the interactions is the evident sensitivity of

features of the interactions to idiosyncracies of the scale on which achievement is measured.

Our investigations indicate that while the overall magnitude of the interaction effects is

not overly sensitive to the scale of the test, the relationship of the interaction effects to

teacher main effects is sensitive to the scale, as are the inferences that would be made

about the interaction effects of individual teachers. This is in contrast to the findings

about teacher main effects which are essentially invariant to rescaling of the tests. This

suggests that obtaining generalizable information about the nature of student-teacher

interaction effects, particularly of the kind investigated here, might not be possible given

the current limitations of achievement scales.

Future research might consider interaction effects with other student characteristics

such as discipline information or other measures of student personality or disposition.

Large-scale data on these factors are not generally available, but with the increasing scale

and scope of student data collection, the potential to examine interactions with respect to

other types of student characteristics will grow. Future research might also try to adapt

the estimation of student-teacher interactions to more complex value-added models that
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account for the complete history of a student’s teacher. We suspect that such modeling

would have relatively minimal effect on the qualitative results of our study, but only

further research with more complex models could confirm our suspicion. Finally, future

research should follow up on our findings of potentially larger interaction effects in upper

grades relative to elementary grades. Such investigations may provide insights into the

nature of teacher effects on student achievement that could inform potential limitations

about the contexts in which VAM can be used appropriately.
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9 Appendix - Additional Details on Prior Distribu-

tions and MCMC Results

All of the variance components in the model (ν, the variance of δi; τ 2
0 , the variance

of the teacher main effects; τ 2
1 , the variance of the teacher slopes; σ2, the variance of

the residual error terms for the target outcome; and σ2
p, the variances of the residual

error terms for the prior scores) were given prior distributions that were uniform on their

square roots (standard deviations). The target year test scores were standardized to have

mean zero and variance one and all prior distributions were chosen to be consistent with

scores on this scale.
√

ν was modeled with a U(0.5, 0.9) distribution, consistent with the

student effects accounting for between about 25% and 80% of the marginal variance of the

target year outcomes. τ0 and τ1 were modeled as independent U(0.0, 0.7) consistent with

teacher effects accounting for no more than 50% of the marginal variance of the target

year scores. σ was modeled as U(0, 0.7) consistent with factors other than student and

teacher effects accounting for no more than 50% of the marginal variance of the target

year scores. However, the σp were modeled with independent U(0, 1) priors to allow the

possibility that some prior scores (which were normed to have marginal variance one)

were only weakly related to δi and thus essentially all of the variance is unexplained.

The parameters λm0 and λm1 governing the nonlinearity were given independent nor-

mal priors with mean zero and standard deviation 0.25, which made values larger than

0.5 in absolute value relatively unlikely under the prior distribution. Such a restriction

was consistent with the likely strength of nonlinearities given the scaling of the data and

δi. The parameters λv0 and λv1 governing the heteroskedasticity were given independent

normal priors with mean zero and standard deviation 0.5, again essentially restricting the

parameters from taking on values that would imply extreme heteroskedasticity inconsis-

tent with what is expected with achievement scores. Finally, the correlation r between

the teacher intercepts and slopes was modeled as U(−1, 1) to allow the correlation to take
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on any possible value.

All models were fitted in WinBUGS (Lunn et al., 2000) using three parallel chains.

Each chain was burned in for 7,500 iterations, a value chosen based on preliminary in-

vestigations and convergence diagnostics. Then, each chain was run for 10,000 iterations

and 1,000 evenly-spaced iterations were saved from each chain, totaling 3,000 posterior

samples for each model fit to each target teacher group. All inferences reported in the

article are based on summaries of these sets of 3,000 samples other than the DIC values,

which were based on the full 30,000 post-burn in iterations from each model fit. Conver-

gence was assessed using the diagnostic statistic for multiple parallel chains of Gelman

and Rubin (1992) as implemented in the CODA package for the R Environment (Best,

Cowles, & Vines, 1995).
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Figure 1: DIC for sequence of five increasingly complex models, scaled for Model n as
(DICn − DIC1)/DIC1. Smaller (i.e., more negative) values indicate preferred models.
Model 5 is the complete model that includes nonlinearity, heteroskedasticity, teacher
main effects and teacher-student interaction terms.
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Figure 2: Posterior predictive checks on the relationship between the average prior score
and Yi for selected target groups. Solid line gives conditional median and dotted lines give
conditional 0.025 and 0.975 quantiles. Numbers in parentheses at the top of each figure
give the percentage of the observed data pairs that fall outside of the predictive bounds.
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Figure 3: Examples of checks made on individual teachers. Gray lines indicate estimated
expected value of Yi as a function of δ in the absence of any teacher effects. Black lines
give the estimated expected value of Y as a function of δ accounting for the effects of a
particular teacher. The points in each frame are the actual Yi values for students linked
to that teacher, plotted as a function of posterior mean of δi for those students. Posterior
means of the slope parameters for those teachers are given at the top of each plot.
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Max # Mean #
Group District Grade Subject # Teachers # Students Prior Scores Prior Scores
A3M A 3 math 302 4028 4 3.3
A4M A 4 math 320 4539 6 4.6
A5M A 5 math 254 3633 8 6.4
A3R A 3 reading 301 3991 4 3.3
A4R A 4 reading 319 4476 6 4.6
A5R A 5 reading 254 3599 8 6.4

B7 B 7 math 39 1443 8 7.2
B8 B 8 math 35 1424 11 8.6
C5 C 5 math 193 3617 8 7.4
C6 C 6 math 170 3972 12 10.8
C7 C 7 math 142 4170 14 12.3
C8 C 8 math 133 4030 12 10.8

Table 1: Summary information about the twelve target teacher groups examined in the
analyses. The descriptive labels in the first column are used in the presentation of the
results.



TABLES 43

% Var(ηi)
Group τ 2

0 γ Between teachers γ∗ r γ∗
nls

A3M .20 (.16,.23) .11 (.07,.16) 22.9 (21.7,24.2) .03 (.02,.05) .19 (-.02,.39) .03
A4M .13 (.11,.16) .11 (.06,.16) 30.3 (29.1,31.6) .03 (.02,.05) .48 (.28,.67) .03
A5M .11 (.09,.14) .12 (.07,.18) 30.6 (29.3,31.9) .04 (.02,.07) .55 (.32,.77) .03
A3R .14 (.11,.17) .11 (.05,.16) 24.1 (22.7,25.4) .03 (.02,.05) .24 (-.02,.48) .03
A4R .14 (.11,.16) .10 (.05,.15) 30.5 (29.3,31.7) .03 (.01,.05) .36 (.13,.60) .05
A5R .11 (.09,.13) .08 (.03,.13) 30.6 (29.3,31.9) .03 (.01,.05) .52 (.22,.82) .02

B7 .08 (.05,.13) .10 (.01,.25) 28.3 (26.9,29.9) .03 (.00,.08) .57 (.06,.95) .02
B8 .10 (.06,.17) .15 (.05,.30) 32.8 (31.6,34.1) .06 (.02,.11) .64 (.20,.92) .05
C5 .08 (.06,.10) .10 (.00,.22) 48.5 (47.3,49.7) .04 (.00,.09) -.22 (-.62,.22) .04
C6 .08 (.06,.11) .08 (.00,.18) 52.0 (50.8,53.2) .03 (.00,.08) -.30 (-.75,.37) .05
C7 .05 (.03,.08) .27 (.16,.42) 61.5 (60.4,62.6) .17 (.09,.27) -.39 (-.67,-.07) .15
C8 .07 (.04,.10) .15 (.05,.28) 59.5 (58.2,60.8) .09 (.03,.16) -.64 (-.90,-.33) .07

Table 2: Posterior means and 95% credible intervals for key parameters for each of the
twelve target teacher groups. The values in the final column are discussed in Section 6.
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