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Abstract

Recently, a number of school districts have begun using measures of
teachers’ contributions to student test scores or teacher “value added”
to determine salaries and other monetary rewards. In this paper we
investigate the precision of value-added measures by analyzing their
inter-temporal stability. We find that these measures of teacher
productivity are only moderately stable over time, with year-to-year
correlations in the range of 0.2-0.3. However, dis-attenuated year-to-
year correlations are much higher, suggesting that much of the variation
in measured teacher performance is due to random error or “noise”
in the average test score gains of a teacher’s students. We also find
that changes to the specification of the achievement model used to
generate teacher effects generally have little impact on the stability of
the resulting value-added measures. e one exception being when
student covariates are used to represent student heterogeneity rather
than student fixed effects; in some settings this resulted in a substan-
tial increase in the cross-year correlation. is indicates there may be
non-random assignment of students to teachers based on unobserved
student characteristics that can affect the stability of teacher effect
estimates. Finally, we re-estimate the achievement model using an
alternative test score measure. e observed variation in measured
teacher performance in some cases changes significantly across tests,
implying that changes in the test instrument over time can affect
variability in measured teacher effectiveness as well.

*This paper has not been formally reviewed and should not be cited, quoted, reproduced, or
retransmitted without the authors’ permission. This material is based on work supported by a
supplemental grant to the National Center for Performance Initiatives funded by the United States
Department of Education, Institute of Education Sciences. Any opinions, 4ndings and conclusions
or recommendations expressed in this material are those of the author(s) and do not necessarily
re5ect the views of these organizations.
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I. Introduction

There is growing interest in using student outcomes to evaluate teachers when making 

decisions about teacher retention and compensation.  For any performance-based personnel 

system to provide the correct incentives and enhance teacher quality, it is necessary that there be 

a strong link between true performance and reward or retention.  Thus, at any point in time it is 

necessary that measures of teacher performance provide an accurate (unbiased) measure of 

teacher productivity.  Avoiding systematic errors in evaluating teacher performance is not 

sufficient, however.  Any errors in estimated effects, systematic or otherwise, can result in 

rewarding or retaining teachers who are not truly the most effective.   

Proposals to use measured early-career performance in tenure decisions and to adjust 

teachers’ base salaries according to their current measured performance are predicated on the 

tacit assumption that a teacher’s current performance is a good indicator of his or her future 

performance in the absence of an intervention of formal or informal training.  Consequently it is 

important to determine how errors in estimated teacher effects might contribute to inter-temporal 

instability of effects and potentially undermine policies meant to improve the teacher labor force.  

It is also important to test the tacit assumption of stability in teacher performance and identify 

sources of year-to-year variability in teacher performance in order to develop appropriate 

policies toward teacher compensation, retention and professional training. 

Only a few previous studies have measured the stability of teacher effects and none have 

analyzed the determinants of inter-temporal stability in any depth.  Ballou (2005) compares the 

rankings of elementary and middle-school teachers in a “moderately large” Tennessee school 

district across two years.  He finds that 40 percent of mathematics teachers who are ranked in the 

bottom quartile of teacher quality rankings in the first year remain in that quartile the following 
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year and 30 percent move into the top two quartiles.  At the other end of the quality distribution, 

nearly 50 percent of mathematics teachers in the top quartile in one year are also in the highest 

quartile the next year while roughly 30 percent fall into the bottom two quartiles.  Ballou also 

shows that the precision of teacher effect estimates increases with the number of annual 

observations per teacher.  Estimating teacher effects over a three-year span, 58 percent of 

middle-school math teachers have estimates significantly different from the average teacher 

effect whereas with single-year estimates only 30 percent of the estimated teacher effects for 

middle-school math teachers are significantly different than the average.

Similarly, Aaronson et al. (2007) compare the rankings of estimated teacher effects for 

Chicago public school teachers across two years.  They find that 36 percent of teachers ranked in 

the lowest quartile in the first year also rank in that quartile in second year, 29 percent move up 

to the second quartile and the remaining 35 move into the top half of the distribution.  At the 

other end of the scale, 57 percent of the teachers in the top quartile in the first year remain there 

in year two.  Another 23 move down to the third quartile and only 20 percent fall down into the 

lower half of the quality distribution. 

Koedel and Betts (2007) conduct a similar analysis, comparing the ranking of San Diego 

teachers in two years based on their fixed effect estimates.  While a large fraction of teachers 

stay in the same quintile from one year to the next, the degree of persistence is less than that 

found by Aaronson, et al. in Chicago.  Among teachers who are ranked in the lowest quintile in 

the first year, 30 percent stay in that quintile, but a nearly equal proportion (31 percent) move 

into the top two quintiles in the second year.  Similarly, 35 percent of teachers initially ranked in 

the top quintile remain there in the second year while 30 percent fall into the first or second 

quintiles of the quality distribution in year two.  These comparisons are based on estimates of 
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within-school teacher effects (i.e. achievement models which include student, teacher and school 

fixed effects).  Omitting student and school fixed effects they find the teacher effects to be more 

stable over time; 43 percent of teachers in the bottom quintile stay there in the next year and 50 

percent of teachers in the top quintile in the first year are also in the top quintile in the second 

year.  The enhanced stability could simply be due to changing from a within-school measure of 

teacher performance (when school effects are included) to an across-school measure (when 

school effects are omitted).  Alternatively, the apparent increase in intertemporal stability could 

be an indication there exists a persistent non-random assignment of students to teachers.  

Omission of the student fixed effects, which control for unobserved student heterogeneity, could 

produce estimated teacher effects that are both biased and more stable than the true teacher 

effects.

In this paper we consider the inter-temporal stability of teacher performance measures 

based on a teacher’s estimated contribution to student achievement.  We begin by examining the 

inter-temporal variation in the average achievement gain of a teacher’s students relative to the 

students’ long-run or baseline performance, using a simple student-fixed effects model to 

estimate teacher performance.  Both year-to-year correlations in the estimated teacher effects and 

year-to-year quintile rankings of teachers’ estimated value-added indicate only moderate inter-

temporal stability in measured teacher performance.  However, dis-attenuated year-to-year 

correlations, which estimate what the correlation of effects would be had they been estimated 

without random errors, are much higher, suggesting that much of the variation in observed 

performance is due to random error or “noise” in average test score gains of a teacher’s students.  

In order to better understand the sources of inter-temporal instability we decompose the variation 

in measured teacher performance into variation across teachers and within teachers over time.  
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The within-teacher variation is further divided up into the proportions that can be explained by 

variation in students and their peers, teachers and schools over time.  We find that the variance of 

teacher effects (adjusted for random errors) is greater in elementary schools than in middle 

schools, that the proportion this variance that is within-teachers also tends to be greater in 

elementary than in middle school and that the greater the within-teacher variation, the smaller the 

proportion that can be explained by variation in observed student/peer, teacher and school 

characteristics.  Next, we re-estimate the achievement model used to generate teacher effects, 

employing a variety of controls for student, peer, teacher and school characteristics.  In most 

cases the model specification has little effect on the stability of teacher effects.  The one 

exception being when student covariates are used to represent student heterogeneity rather than 

student fixed effects.  This suggests there may be non-random assignment of students to teachers 

based on unobserved student characteristics that can affect the stability of teacher effect 

estimates.  Finally, we re-estimate the achievement model using an alternative test score 

measure.  The observed variation in measured teacher performance in some cases changes 

significantly across tests, suggesting that changes in the test instrument over time can affect 

variability in measured teacher effectiveness as well. 

II.  Methods 

A. The Components of Student Achievement Gains 

Following Rivkin, Hanushek and Kain (2005) one can decompose the achievement gain 

of student i in classroom j taught by teacher k in school m at time t into a set of fixed and time-

varying components: 

ijkmtmkiijkmtA  (1) 
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The test score gain is assumed to be an additively separable function of student ( ), teacher ( )

and school ( ) fixed effects plus an error that is a composite of time-varying factors.1  Equation 

(1) does not include a time invariant classroom component because students are grouped into 

different classrooms in each time period and consequently classrooms do not persist across 

periods.  This model is based on several assumptions about the inputs into cumulative student 

achievement.  In particular, it requires that a teacher’s effect on a student’s achievement level 

does not decay over time.  Additional details on the assumptions necessary to derive equation (1) 

from a more general cumulative achievement function are found in Boardman and Murnane 

(1979), Todd and Wolpin (2003) and Harris and Sass (2006).

If we decompose the time-varying component into student ( it), classroom peer ( jt),

teacher ( kt) and school ( mt) factors plus random error ( ijkmt) and assume additive separability 

among the time-varying factors we obtain: 

ijkmtmtmktkjtitiijkmtA )()()(  (2) 

A teacher’s contribution to student learning at any given time t is the sum of the teacher 

fixed and variable components, ( k+ kt).  We refer to this as the time-varying teacher effect, kt.

The time-varying teacher effect can be expressed as the difference between the average 

achievement gain for all students taught by teacher k at time t minus the group averages of the 

other determinants of achievement gains: 

ktmtmktktktktkt A )()( , (3) 

                                                

1 The assumption of additive separability assumes that teacher productivity is independent of student characteristics 
and the school environment. 
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where ktA , kt kt m , mt , and kt  denote the average values of the corresponding 

variables averaged over all students taught by teacher k in time t. 

Of course the true achievement gains of students as well as the attributes of students, 

classroom peers and schools that determine achievement gains are never fully observable.  The 

availability of data on observable time-varying student, peer and school characteristics will vary 

across data sets.  Even in the best administrative databases the number of exogenous time-

varying student, peer and school characteristics is typically quite limited.  In order to see how 

data availability and other sources of error contribute to variation in time-varying teacher effects 

we begin with a scenario where no time-varying teacher, peer or school components are 

observable.  We also exclude school fixed effects in order to allow for comparison of teachers 

across schools. Thus the time-varying teacher effect becomes: 

ktktktkt A  (4) 

where ktmtmktktkt

The estimated time-varying effect for teacher k at time t, kt
ˆ , equals the average student gains for 

teacher k in time t relative to those students’ baseline gains or “fixed effects”, ktktA .  To 

study the inter-temporal variability in estimated teacher effects we can decompose kt
ˆ into its 

components: 

.

ˆ

ktmtmktktktk

ktktkt  (5) 
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Hence the sources of variance in estimated effects are:  time-invariant teacher attributes, time-

varying teacher variables, aggregates of time-varying student variables, time-varying peer 

variables, time-invariant school variables, time-varying school variables and random errors.

Variability in each of the components contributes to variability in estimated effects 

among teachers and to year-to-year variability of estimates within teachers to the extent that each 

component varies among and within teachers.  The variability in the non-teacher components are 

of two types: individual student-level errors which are independent across students and errors 

that are correlated across students within a teacher.  The later could result from individual-level 

student shocks that are correlated within a teacher or from more aggregate classroom-level or 

school-level shocks that impact all students within a classroom or within a teacher in a given 

year.

Errors that are independent across students could include things like whether a student 

had a good sleep the night before the exam or whether they are bothered by personal issues on 

the day of the exam.  They also include variability due to potentially observable student 

characteristics which are not accounted for by the model, but only to the extent these variables 

vary like they would if students were randomly assigned.  Any excess heterogeneity at the 

teacher level is not included in this source of variability. 

These independent student-level errors are the only component of student error accounted 

for by the standard errors of the estimated teacher effects because, almost universally, estimation 

methods assume independent random errors.  Methods that account for the standard errors when 

making inferences about teachers (e.g., confidence intervals, significance tests, and empirical 

Bayes shrinkage) will mitigate the contributions of independent student-level errors to inferences 

about teachers. Moreover, independent student-level errors are by definition uncorrelated with 
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classroom assignment and do not contribute to bias in the estimated teacher effects.  The 

variability in these errors will decrease with the number of students used to estimate a teacher’s 

effect. 

Aggregate or teacher-level errors are individual-level errors that are correlated across 

students in the same class or errors from more aggregate-level shocks to classrooms or schools.  

Unlike independent student-level errors, errors that are common across students within a teacher 

are not accounted for by the standard errors of estimated teacher effects since the standard errors 

are estimated under the assumption that random errors in equation (5) are independent.  

Consequently they are a potential source of inter-temporal variance that affect year-to-year 

correlations among estimated teacher effects even after adjustments are made for attenuation of 

the correlation because of independent student-level errors.   

Errors that are correlated across students within a teacher can be caused by either random 

shocks or by non-random selection.  Random shocks could be student-level errors that are 

correlated within a teacher.  For example, given physical proximity, the likelihood a child is ill 

when taking the exam may be correlated across students within a class.  Alternatively, random 

classroom-level shocks, such as the classroom’s air conditioning failing on exam day or the oft-

imagined barking dog outside the classroom would produce a common error among students in a 

classroom.  Likewise, school-level random shocks, like a car crash on the street beside the school 

or the school’s entire heating system malfunctioning on exam day would create a common error 

within a teacher. 

These correlated or common shocks are one-time events that occur during a single year of 

testing and which do not persist overtime.  Because they simultaneously affect multiple students 

they are not accounted for by the estimated standard errors of teacher effects.  However, because 
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they do not persist across years and are by definition unrelated to student background variables, 

these shocks contribute to inter-temporal variability but not to bias.  In general, increasing the 

number of students per classroom will not reduce the contribution of these shocks to inter-

temporal variation in measured teacher performance.  However, if the shocks are at the 

classroom level (and not at the school level), then teachers who teach multiple classes per year 

(eg. middle school teachers) would experience less variability in their measured performance 

than would teachers who teach a single class (e.g., elementary school teachers). 

Correlated or teacher-level errors can also result from the non-random assignment of 

students to teachers or teachers to schools.  For example, consider the matching of students to 

teachers in classrooms.  In any given year, some teachers might be consciously assigned 

relatively well-behaved students, which leads to fewer classroom disruptions, more learning time 

and higher average test score gains.  To the extent that student behavior is not observed and 

taken into account, the estimated teacher effects for the teachers with well-behaved students 

would be greater than the teacher’s true effect.   

The effect of this non-random error on the stability of measured teacher effects depends 

on the degree of inter-temporal variation in the underlying scheme of assigning students to 

teachers.  If the assignment rule is constant over time (i.e., the same teachers get the best-

behaved students year in and year out) then the teacher effects would appear to be more stable 

then they actually are due to the stability in the underlying student behavior that is being falsely 

attributed to the teacher.  In contrast, if the assignment rule changes over time, this could 

decrease the inter-temporal stability of measured teacher effects.  For example, suppose that 

some principals tend to assign the most unruly students to the most proficient teachers whereas 

other principals do the opposite and saddle the least productive teachers with the most disruptive 
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students.  A high degree of principal turnover would lead to large swings in the behavior of 

students a teacher faces from year to year and consequently (to the extent that student behavior is 

not explicitly accounted for) produce large within-teacher variation in measured effectiveness 

over time.  The contribution of errors from selection to inter-temporal variability could be large 

even for teachers with large classes because the variance of these errors does not decrease with 

increases in class size. 

Beyond their contributions to inter-temporal instability, time-varying errors from 

selection, like time-invariant errors from selection, contribute to systematic errors in estimated 

teacher effects in which the differences between the estimated and true effects are correlated with 

student or school characteristics even after accounting for the standard errors of the estimated 

effects.  By falsely attributing the effects of unmeasured student or school characteristics to 

teachers, such systematic errors and the resulting fallacious inference about teachers could be 

problematic for any system that uses value-added performance measures for high stakes 

decisions.  Stakeholders could rightly argue that rewards are determined by assignments of 

teachers to schools and assignments of teachers to classrooms within schools, rather than to true 

differences in teacher productivity.  Thus errors from selection could limit the utility of estimated 

teacher effects even beyond any problems caused by their potentially large contribution to inter-

temporal variability in estimated effects.   

The decomposition in equation (5) is motivated by models (1) to (4) and the fixed effects 

estimators used in this paper.  However, the decomposition is generic and the sources of error we 

identify are the sources that will contribute to the variability in estimated teacher effects 

generated using any estimation method.  The relative contributions of the various components 

will depend on the data and estimation method but the decomposition applies generally.   
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The decomposition also applies when the model used to generate estimated teacher 

effects is misspecified.  For example, misspecification might result if student gains are not 

additively separable because teacher effects depend on the students’ characteristics or because of 

unique interaction between teachers and their classes.  Misspecification also might result if the 

assumptions about the persistence of the inputs used to derive model (1) are incorrect.  The 

misspecification would contribute additional errors in the estimated effects and these errors 

would also contribute to inter-temporal variability of estimated effects.  However, the 

contributions of errors due to misspecification could be decomposed into the same components 

used in Equation 5, so that the decomposition still holds.  Misspecification could change the 

potential contributions of various sources, however.  For example, if the model is misspecified, 

then observable student variables might contribute to inter-temporal variability even if they are 

used in the estimation process.  Consequently, studying the contributions of various components 

to inter-temporal variability might be useful even if a very rich model were used in the 

estimation. 

B.  Additional Value-Added Models of Teacher Quality 

Equation 4 presents a model with no observable measures on students, peers, or schools.  

We use that model to generate estimated effects and decompose the potential sources of error and 

inter-temporal variance in estimated teacher effects. As just discussed, the decomposition 

identifies the sources of errors from omitted variables and potential misspecification. To 

understand the effects of omitted variables, we also fit a series of models that include additional 

factors and calculate correlations between the resulting estimated effects from adjacent years.  

These correlations provide a means of interpreting the decomposition and provide direct 

estimates of stability in estimated effects from alternative models. 
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The additional value-added specifications we explore are variants of the following model: 

ijkmtktimtktijtititA e4321 STPX  (6) 

which includes time varying student/family inputs, Xit, classroom peer characteristics, P-ijmt

where the subscript –i denotes students other than individual i in classroom j in school m, and 

school-level input, Smt, unmeasured time-invariant student/family characteristics, represented by 

a student fixed effect, i, time-varying teacher characteristics captured by a year-specific teacher 

effect, kt, and a random error term.  Different specifications include various permutations of the 

student, school and peer variables.    

C. Estimation of Teacher Effects 

To estimate equations (4) and (6) we use standard fixed-effects regression techniques, 

including fixed effects for both students and teachers along with additional explanatory variables 

as determined by our particular specification.  Because the data include test scores from students 

at multiple grade levels each year, the model also includes separate means by grade level by 

year.

In addition to the standard teacher fixed effect estimates, we also generate Empirical 

Bayes (EB) shrunken estimates of the teacher effects.  Given we are making many estimates of 

similar quantities (i.e. estimating effects for many teachers, kt
ˆ ), the accuracy of the estimates 

can be improved using the estimates ktktkt B ˆ~ , rather than kt
ˆ  (Morris, 1983).  The factor Bkt = 

A/(A + sekt
2), where A equals the variability of the true values of the teacher effects, the kt.

Because Bkt is less than or equal to one, kt
~ is shrunken back toward zero relative to kt

ˆ  and these 

estimates are referred to as shrunken estimates. The estimates are often referred to as Empirical 
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Bayes estimates because they can be motivated as solutions to a Bayesian estimation process 

with some prior distributions replaced by parameters estimated from the data.  The challenge in 

creating EB estimates is estimating A.  A method of moments approach is commonly used 

(Morris, 1983) as is maximum likelihood (Carlin and Louis (2000)).  We use maximum 

likelihood estimates described below in Section D. We produce EB estimates for every teacher 

from each district each year and study the stability of these estimates along with the raw 

estimates. 

Several inter-related complications arise when estimating annual fixed effects for a large 

sample of teachers.  The primary problem arises because the estimation method cannot uniquely 

estimate an effect for every teacher while simultaneously controlling for fixed effects for all the 

individual students.  The inability to uniquely estimate every parameter is known as a lack of 

identification of the teacher effects. Provided no other complications arise, the lack of 

identification is no different than the lack of identification for estimating effects for any 

categorical variable using linear regression models.   

The standard solution for the lack of identification is to estimate contrasts of teacher 

effects rather than individual teacher effects. For example, the default solution taken by most 

statistical software packages is to contrast all teachers to an arbitrary holdout teacher such as the 

teacher with the highest or lowest identification number in the data set.  An alternative is to 

contrast all teachers to the average teacher effect.  As we describe below we believe this 

alternative is strongly preferable to contrasting teachers to an arbitrary holdout teacher. 

However, features of our test scores data require additional restrictions for identification 

of teacher effects. In some years elementary and middle school grade teachers are disjoint in that 

there are no teachers who teach both elementary and middle school students.  When the groups 
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are disjoint, we cannot uniquely determine grade-level means by year and teacher effects by 

year.  To identify teacher effects we must use contrasts of teacher effects among teachers in the 

same grade-level group, e.g., among elementary school teachers or among middle school 

teachers.  Hence we define the teacher effect to be the difference between the mean for an 

individual teacher and the mean for all teachers in the same grade-level group (elementary or 

middle) for a given year.     

A second feature of the data that results in additional constraints on our estimated effects 

is stratification (McCaffrey et al. (2004)) or lack of connectedness (Searle (1971)).  Stratification 

occurs when estimating models with both student and teacher fixed effects if there are groups of 

students and teachers in which none of the students in one group ever shares a teacher with any 

of the students in the other groups.  This problem has also been identified in the economics 

literature on the estimation of employee and firm effects (Cornelißen (2006), Abowd et al 

(2002)).  However, in that literature, firm effects are assumed to persist across years, whereas in 

our problem we wish to estimate separate teacher effects each year.   

When stratification occurs, unique teacher-effect contrasts can only be estimated relative 

to the other teachers in each stratum.  Because teachers in different strata do not share any 

common students we cannot distinguish between differences among the average student across 

strata and differences among the average teacher effects across strata.  Hence we estimate effects 

that equal the difference between a teacher’s effect and the average of all teachers in his or her 

stratum and grade-level group (elementary or middle school) by year.   

There are several advantages to estimating the effects as we have parameterized them.  

Given the constraints of stratification and grade-level groupings of teachers, the estimated effects 

must be relative to strata and grade-level groupings.  Defining the estimates relative to the mean 
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of the teachers within a grade-level group has substantive justifications.  Under the appropriate 

assumptions, these estimates can be interpreted as causal effects of a teacher in the sense that 

they are the difference between the student’s potential outcomes when taught by their observed 

teacher and their potential outcome when taught by the average teacher in the stratum and group.  

Given that students will not change grade-level groupings within a year, restricting the 

comparison to teachers within the same grade-level group seems appropriate.  Similarly, from a 

substantive standpoint, comparing a teachers’ performance only to other teachers teaching the 

same grade level helps ensure that we compare teachers performing similar functions in similar 

environments.  Even if we want to compare across grade-level groups, it seems reasonable to do 

so using teachers’ performance relative to their peers teaching in the same grade-level group. 

There is no obvious substantive justification for contrasting teachers to the strata means 

but this choice can make estimates invariant to arbitrary decisions on which teacher to use as a 

holdout and removes certain types of inter-temporal instability from estimated effects. 

Alternatively, contrasting teachers to different arbitrary holdout teachers each year could lead to 

considerable inter-temporal variability in any given teachers’ estimated effects.  Provided we 

constrain our estimates to within strata, this inter-temporal variability would not affect a 

teacher’s relative position in the distribution of estimated performances. It would not affect 

rankings and cross-year correlations, nor would it add to instability in bonuses based on relative 

position. However, teachers’ raw estimates could vary greatly from year and this could cause 

teachers great confusion.  Post hoc centering of effects could remove this source of inter-

temporal variability but then the estimated standard error of the estimates would be wrong and 

computationally challenging to correct with large samples of teachers.  If data are pooled across 



17

strata, then the choice of an arbitrary holdout would affect a teacher’s relative position in the 

distribution of teacher effect estimates.   

Contrasting teachers to the average teacher within the strata might not completely 

eliminate these problems, but should greatly mitigate them.  For every teacher, changes in the 

average of the performance of the other teachers in his or her stratum will change the estimate of 

his or her performance in any given year.  However, in the data used in this study, in each 

county, year, and grade-level, there is one large stratum with well over 90 percent of the teachers 

and students and a few small strata with very small numbers of teachers and students in each one.  

Hence, year-to-year variation in the strata means should be inconsequential for nearly all 

teachers.  By contrasting teachers to the strata means, both relative performance and raw 

estimates of performance will not be influenced by the selection of an arbitrary holdout teacher 

and the standard errors will be correct without complex additional computations. 

Our parameterization has even greater advantages if one wishes to use Empirical Bayes 

shrinkage post hoc to improve the precision of estimates.  EB estimates shrink the teacher effects 

back to zero.  When effects are relative to an arbitrary holdout teacher (as is the case in most 

popular statistical software packages), EB estimates shrink each effect to the effect of the 

holdout teacher, which could be any value.  The rank ordering of teachers, cross-year 

correlations, and inter-temporal stability of estimates can all be sensitive to the chosen holdout. 

Furthermore simple post hoc re-centering of EB estimates will not remove the inter-temporal 

instability introduced by using an arbitrary holdout teacher.  Re-centering would need to occur 

before EB shrinking, but this would make the standard errors and the resulting shrinkage factors 

incorrect, unless cumbersome and computationally intensive adjustments were made to the 
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standard error.  These problems are all avoided by our chosen parameterization of teacher 

effects.

D. Estimating Stability and Sources of Variance 

As in previous research (Ballou (2005), Aaronson et al. (2007), Koedel and Betts (2007)), 

we use the correlation between estimated teacher effects from adjacent years and the stability of 

teacher rankings to describe the stability of estimated teacher effects.  The value of these 

measures is they provide a summary of how stable raw annual teacher effect estimates are likely 

to be and provide guidance to researchers and policy makers on the potential limitations of such 

estimates.  The disadvantage of these measures of stability is that they provide no information 

about the sources of instability.   

 We conduct two additional analyses to unpack the sources of the instability.  The first 

explores how much independent student errors contribute to instability.  We model each 

estimated teacher effect as the sum of two components: ktktkt
ˆ , where kt is the error due 

to independent student errors, with variance equal to the standard error squared, and kt contains 

all other sources of variance in the estimated effect.  Given this decomposition, we assume that 

the estimates for teacher k in years t and t+1, )(~ˆ,ˆ
1 V,Nktkt , where  is a vector means for 

years t and t + 1, and V =  + , with  = 
111

1

tttt

tttt ,  = 2
1

2

0
0

kt

kt

se
se , and 2

ktse , 2
1ktse

equal to the squared standard errors of the estimated teacher effects provided by the statistical 

software under the assumption of independent residual errors among students from the same 

classroom.  We estimated the components of and  using maximum likelihood methods to 

calculate r = 111 ˆˆˆ tttttt , which equals the correlation of the effects had it not been 
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attenuated due to the presence of independent student-level errors.  We call r the dis-attenuated 

correlation.

 To estimate the sources of variance presented in Equation 5, we first decompose each 

estimated teacher effect into ktktkkt
ˆ , where again kt is the error due to independent 

student-level errors and we now distinguish between time-varying sources of variability, kt.,

including classroom level-shocks, and time-varying errors from selection for students and 

schools, and variation due to time varying teacher variables or other year-to-year variation in true 

teacher performance, and time-invariant sources of variability among teachers, k, including 

time-invariant teacher attributes and performance, and time-invariant errors from selection of 

students or schools.  We assumed that k ~ N(0, 2) and kt ~ N( t, 2) and kt has variance equal 

to the square of the standard error for the estimated effect.  These assumptions yield a joint 

normal likelihood function for the estimated effects and we maximize this function to develop 

estimates of 2 and 2.2

We explore the contribution of classroom averages of observed time varying student 

variables, Xkt, and time-varying teacher characteristics, Zkt, to this component of variability.  

Using variables described below we fit the linear model kt
ˆ = ak + X’kt  + Z’kt  + ekt using fixed 

effects for individual teachers and weighting the observations to account for the 

heteroskedasticity in ekt.  We then calculate the within-teacher variance of zkt= Z ˆ'kt , 2ˆ z . We 

also calculate xktj = X ˆ'ktj  for every student in every teachers’ classroom for every year.  We 

                                                

2 To improve estimation we estimated the natural log of 2 and the natural log of the ICC/(1-ICC), where ICC= 2/( 2

+ 2).
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decompose the variance in xktj into the within-classroom-and-year component which is 

independent student-level error and a component of the standard errors, the within teacher-

between year component, 2ˆ x , which is a potential source of time-varying error due to selection 

and contributes to 2, and the between-teacher component, which is a source of time-invariant 

error due to selection and contributes 2.   We calculate the ratio of 2ˆ z  and 2ˆ x  to our estimate of 

2 to determine the share of the inter-temporal variance explained by observed teacher and 

observed time-varying student characteristics. 

III. Data 

We utilize data from the Florida Education Data Warehouse (FL-EDW), an integrated 

longitudinal database that covers all public school students and teachers in the state of Florida.3

From this statewide database we select data from four large school districts in the state, Duval, 

Hillsborough, Orange and Palm Beach.  Each of the four districts enrolled 100,000 or more 

students in the 2004/05 school year and was among the 20 largest school districts in the United 

States.  In addition to lowering computational costs compared to working with the data from the 

entire state, selection of these four large districts allows us to determine how the stability of 

teacher effects varies across school districts and facilitates comparisons with the previous single-

district studies in California, Illinois and Tennessee mentioned above. 

The Florida data link both students and teachers to specific classrooms at all grade levels.  

However, achievement tests are only administered in grades 3-10 and thus current and lagged 

achievement are only observed in grades 4-10.  The linkage between course content and what is 

                                                

3 Detailed descriptions of the Florida data are provided in Sass (2006) and Harris and Sass (2008b). 
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tested on statewide exams may not be as strong for all high school students as it is in elementary 

and middle school.  We therefore focus our analysis on students in grades 3-8 and estimate 

teacher effects for elementary and middle school math teachers.4  We select math teachers for 

our analysis because most studies of student achievement find a stronger correlation between 

school inputs and student achievement in math than in reading. 

The State of Florida administers two achievement tests.  The “Sunshine State Standards” 

Florida Comprehensive Achievement Test (FCAT-SSS) is a criterion-based exam designed to 

test for the skills that students are expected to master at each grade level.  It is a “high-stakes” 

test that is used to assign school grades and make student retention decisions.  In our application 

the scores are normed to have mean zero and standard deviation one each grade and year. The 

FCAT-SSS has been used in selected grades since the 1998/99 school year, but was not 

implemented in all grades 3-10 until the 2000/01 school year.  The second test is the FCAT 

Norm-Referenced Test (FCAT-NRT), a version of the Stanford Achievement Test used 

throughout the country.  Version 9 of the Stanford test (the Stanford-9) was used in Florida 

through the 2003/2004 school year.  Version 10 of the Stanford test (the Stanford-10) has been 

used since the 2004/05 school year.  To equate the two versions of the exams we convert 

Stanford-10 scores into Stanford-9 equivalent scores based on the conversion tables in Harcourt 

(2002).  The scores on the Stanford-9 are scaled to a single developmental scale so that a one-

point increase in the score at one place on the scale is meant to be equivalent to a one-point 

increase anywhere else on the scale.  The Stanford-9 is a vertically scaled exam, thus scale scores 

typically increase with the grade level.  We rely primarily on the FCAT-NRT exam since it 

                                                

4 Middle school math courses are defined as math courses in which 90 percent or more of the enrolled students take 
either the 6th, 7th or 8th grade math achievement exam.  
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provides an additional year of data.  However, we also make comparisons across the two exams 

to determine how test differences may affect measured teacher performance. 

The available data cover school years 1995/1996 through 2004/2005.  However, given 

that testing of math achievement in consecutive grades did not begin until the 1999/2000 school 

year (for the FCAT-NRT) and the need to account for both current and lagged test scores, our 

analysis is limited to the five-year period, 2000/01 through 2004/05. 

To avoid problems of attribution, we restrict our analysis of student achievement to 

elementary students in “self-contained” classrooms and middle-school students who are taking 

only one math course.  We also exclude students who are repeating a grade.  However, all 

students enrolled in a course are included in the measurement of peer-group characteristics used 

in our analyses of the sources of year-to-year variance in estimated effects.  To avoid atypical 

classroom settings and jointly taught classes we consider only courses in which 50 or fewer 

students are enrolled and there is only one “primary instructor” of record for the class.  Finally, 

we eliminate charter schools from the analysis since they may have differing curricular emphases 

and student-peer and student-teacher interactions may differ in fundamental ways from 

traditional public schools. 

Our data contain a relatively rich set of time-varying observable characteristics of 

students, peers, teachers and schools.  At the student level we observe student mobility, 

measured by the number of schools a student attends within a year, whether a student engages in 

a “structural move” between years (one in which at least 30 percent of his fellow students in the 

same grade at the initial school move to the same school) and whether a student undergoes a 

“non-structural” (where fewer than 30 percent of students in the same initial school and grade 

made the same move).  Five variables capture important elements of classroom composition:  the 
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proportion of classmates who are female, the proportion who are black, the proportion who 

changed schools from the previous year, the average age of classroom peers and the total number 

of students in the class.  For teachers we observe their experience (captured by a set of six 

indicators representing 1-2, 3-4, 5-9, 10-14 15-24 and 25+ years of experience), their recent in-

service professional development (non-content and content oriented training hours in the 

previous two years), educational attainment (captured by an indicator for possession of an 

advanced degree), and an indicator of whether or they are fully certified or hold a temporary 

license.  At the school level with have time varying data on the experience of the principal in 

administrative positions, the principal’s experience squared and whether the principal is in her 

first year as a principal at the school.  When student covariates are used instead of student fixed 

effects to measure student heterogeneity we employ the following time-invariant (or nearly time-

invariant) student variables: gender, race/ethnicity, free/reduced-price lunch status, gifted 

program participation, limited English proficiency program participation and indicators for 

students with speech/language, learning, cognitive, physical, emotional and “other” disabilities. 

To ensure comparability across analyses, including those that do and do not involve the 

observed time-varying variables, we restrict the sample to only those student observations with 

non-missing data on all of the student, peer, teacher and school variables.  This ensures that both 

our student and teacher samples are the same for all analyses.  For analyses comparing the 

FCAT-SSS and FCAT-NRT exams (Table 6) we exclude any observations that lack valid data on 

both exam scores, ensuring comparability in the estimation samples. 
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IV. Results

A. Baseline Model 

Table 1 provides estimated cross-year correlations of the time-varying teacher effect with 

no controls other than student fixed effects (equation (4)).  Student achievement gains are 

measured by the annual change in “normed” FCAT-NRT scores (i.e., prior to calculating gain 

scores the FCAT-NRT scores were linearly transformed to have mean zero and standard 

deviation one for each grade level for each year).  The estimation of teacher effects is repeated 

for each of our four districts, with separate effects estimated for each teacher in each year.  

However, all years of data within a district are analyzed simultaneously to make the most 

efficient use of the longitudinal achievement data for individual students.  Since fourth graders in 

2004/05 are only observed for a single year, they have only one observed achievement gain and 

thus drop out of the model with student fixed effects.  Consequently, we do not report the 

correlation in estimated teacher effects at the elementary level for the final pair of years. 

The correlations are generally moderately low to moderate, mostly in the range of 0.2 to 

0.3.  There are no obvious patterns across time or across school districts.  Table 1 also presents 

dis-attenuated correlations, which are generally much higher, usually falling between 0.5 and 

0.8, suggesting that independent student-level variation is a significant source of instability in 

estimated teacher effects.  In some cases the dis-attenuated correlations approach a value of one.  

Typically this occurs in situations where the variance from all sources other than independent 

student-level variation is very small, thereby producing general instability in the estimated dis-

attenuated correlation.  Very high values might also indicate that some of the assumptions used 

in estimating the dis-attenuated correlations may be incorrect.  However, the qualitative findings 

are clear:  independent student-level variation is a significant source of the variability in teacher 
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effects; and in some settings there is very little evidence of variance in estimated effects among 

or within teachers beyond that caused by these random individual-level shocks. 

Table 1 also presents the cross-year correlation of the estimated effects that were adjusted 

by EB shrinkage. Although EB shrinkage increases the precision of the estimates so that any 

given teacher’s effects will vary less from year to year, it has a relatively limited effect on the 

cross-year correlation. For middle school teachers, EB shrinkage consistently improves the 

correlation whereas for elementary school teachers the shrinkage procedure sometimes increases 

the cross-year correlation but also sometimes decreases it.  The difference comes about because 

middle school teacher effects have less variance after accounting for noise than do elementary 

school teachers.  Consequently, the shrinkage is greater for middle school teachers and it reduces 

the influence teachers in the extremes of the distribution have on the correlation. The shrinkage 

tends to be smaller for elementary school teachers and has less impact on the correlations.  

Following the previous literature on the stability of effects, we also track how the relative 

rankings of teachers change over time.  Table 2 provides a tabulation of teacher rankings by 

quintile in the first two years, 2000/01 and 2001/02, for the largest school district in the sample, 

Hillsborough County.  The table has raw counts of teachers in each cell, along with row 

percentages in brackets. The results are comparable to those reported by Aaronson, et al for 

Chicago and Koedel and Betts for San Diego.  Table 3 provides one cell from the teacher ranking 

cross-tabulation, the proportion of teachers ranked in the top quintile in one year who are also 

ranked in the top quintile the following year.  This is done for each county and each pair of 

years.  In general, about one-third of teachers ranked in the top 20 percent one year are also 

ranked in the top quintile the following year.  This proportion varies somewhat across districts 

and time periods, however, ranging from a low of 22 percent to a high of 47 percent. 
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B.  Variance Decomposition 

In order to gain a better understanding of the sources of variation in teacher effects, we 

empirically decompose the variance in the teacher effects derived from the baseline model after 

removing the variation due to independent student-level errors.  We begin by distinguishing 

between the variance between and within teachers.  We then break down the within-teacher 

variation into the components depicted in equation (5).  Results are presented in Table 4. 

The numbers in the first column of Table 4 indicate the absolute variance in teacher 

effects (expressed as average gains in test scores which are measured in standard deviation units) 

after accounting for independent student-level errors through maximum likelihood estimation..  

We call this the total adjusted variance.  For any given county, the numbers are two to six times 

larger in elementary school than in middle school, indicating much greater variation in measured 

teacher quality among teachers in the elementary grades.   

 Not only is the total adjusted variance in teacher effects greater in elementary school 

than in middle school, the proportion that is within teachers is much greater as well.  With the 

exception of Orange County (where there is little difference between elementary and middle 

school), the proportion of variance that occurs within teachers is roughly twice as high at the 

elementary school level than at the middle school level.

The larger proportion of adjusted variance among estimated effects within elementary 

school teachers compared to middle school teachers does not appear to be due to greater 

variability in observed teacher, school, student, or peer effects.  For Duval, Hillsborough and 

Palm Beach Counties we can explain about four to seven percent of the within-teacher variation 

in teacher effects in elementary schools with our observed variables.  In contrast, for middle 

school teachers in those counties we can explain 15 to 37 percent of the within-teacher variance 



27

in estimated teacher effects.  A large portion of the adjusted variance remains between teachers 

and is unaccounted for amongst elementary school teachers.  There are many possible sources 

for this variance such as true variability in teacher performance, omitted variables, aggregate 

shocks, or variance due to student teacher interactions that violate the assumption of additively 

separable effects.   

C. Controls for Student, Peer and School Heterogeneity 

In order to explore the effects of model specification on the stability of estimated teacher 

effects, we estimate a variety of achievement model specifications and then compute the year-to-

year correlations in the resulting teacher effect estimates.  Results are presented in Table 5.  We 

begin by repeating the results of the baseline model that only includes student fixed effects in the 

first row.  The second through fourth rows report two-year correlations of teacher effects derived 

from models in which observable time-varying student, peer and school characteristics are 

additively included in the achievement model.  For both elementary and middle school, we see 

virtually no change in the inter-temporal stability of the teacher effect estimates as additional 

student, peer and school controls are added to the achievement model.  This result is not 

surprising, given the very small portion of the adjusted within-teacher variance explained by 

these variables.  

Rows 5 through 7 in Table 5 report cross-year correlations of teacher effects when either 

student heterogeneity is ignored entirely (row 5) or when student covariates, rather than student 

fixed effects, are used to control for student characteristics in the achievement model.  Although 

the correlations remain virtually unchanged in the elementary school models for Duval, 

Hillsborough, and Orange counties, they increase somewhat in Palm Beach County for 

elementary school teachers.  They increase substantially for middle school teachers in Duval 
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County, more than doubling when there is no adjustment for student heterogeneity.  One likely 

explanation is that errors from selection are large when student fixed effects are omitted and the 

underlying rules for matching students to teachers are fairly stable over time.  Thus the apparent 

increase in the inter-temporal stability of teacher effects we observe when student fixed effects 

are omitted is possibly a result of a stable bias in measured teacher effectiveness rather than 

stability in the true underlying teacher productivity.  This suggests that achievement models that 

exploit student fixed effects to control for both observed and unobserved student characteristics 

that are time-invariant (Betts, et al. (2003), Clotfelter, et al (2007a, 2007b), Hanushek, et al., 

(2005)) may, in some cases, be less subject to bias than models that employ time-invariant 

student covariates to capture student heterogeneity (eg. Aaronson, et al. (2007), Kane, et al. 

(2006)).

In Hillsborough and Orange counties the correlations between middle school teacher 

estimates actually decrease substantially when student fixed effects are dropped from the model.  

This sort of precipitous drop in correlations is consistent with time-varying errors from selection 

in which there is heterogeneity in classroom assignments that is captured by the student fixed 

effects but this heterogeneity is not constant across years. For these conjectures to hold the 

assignment of students to classrooms must differ across counties and grade-levels.  In Duval 

elementary schools, teachers must be consistently more likely to be assigned students who differ 

in terms of stable predictors of achievement.  In Hillsborough and Orange counties there must be 

heterogeneity among classrooms on such factors but they are not consistently assigned across 

teachers.  That is, there are relatively greater time-invariant errors from selection in Duval 

elementary classrooms and relatively greater time-vary errors from selection in Hillsborough and 

Orange middle school classroom. Regardless whether these conjectures are true or not, the 
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results suggest that in some cases controlling for fixed effects might improve the stability of 

teacher effects by reducing excess variability due to unmeasured student characteristics. 

D. Variations in the Dependent Variable 

The dependent variable employed in value-added analyses often varies across studies due 

to differences in scaling of test scores and differences in the test used to measure student 

achievement.  Often researchers normalize test scores by grade and year in order to minimize the 

effects of differing exams or changes in the difficulty of exams over time.  Although such 

normalizations are linear transformations of the underlying scale scores within a given grade-

level, teacher effects combine data across grades so that inter-temporal correlations could be 

sensitive to such “norming.”  To gauge the impact of normalizing test scores we compare inter-

temporal correlations of teacher effects from the baseline model with gains in normalized FCAT-

NRT scores and an alternative model that uses gains in the raw FCAT-NRT scale scores in Table 

6.5

Using the gains in the raw FCAT-NRT scores rather than the normalized scores has 

almost no appreciable effect on the inter-temporal correlation between 2001/02 and 2002/03.  

The difference in the correlations between estimates based on raw and normed scores typically 

0.01 or 0.02 and 0.05 or less except for middle school teachers in Duval county were the 

correlation with the normed scores was 0.23, but the correlation with the raw scores was 0.31.

As noted by Lockwood et al. (2007) and Harris and Sass (2008a), estimates of teacher 

quality can vary depending on the exam used to measure student achievement.  If different tests 

                                                

5 The FCAT-NRT is the Stanford achievement test, which is a vertically scaled exam that is designed so that a one-
point change anywhere along the scale is equivalent.  Consequently, it is valid to analyze changes in scale scores. 
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emphasize different kinds of material or have different effective maximums or “test ceilings” the 

measured effect of a teacher can vary depending on the test instrument being used.  Likewise, if 

skills tested or ceiling effects change more often for one test relative to another, then inter-

temporal stability of estimated teacher effects can vary across tests.  

As indicated in Table 6, using gains in the normed FCAT-SSS, rather than gains in the 

normed FCAT-NRT, to estimate the teacher-by-year effects makes relatively little difference in 

the inter-temporal stability of the estimates for Hillsborough and Orange Counties.  The cross-

year correlations for 2001/02 and 2002/03 differed between the two sets of estimates by at most 

0.08 for the two counties.  In contrast, changing the test instrument produced some rather large 

differences in the inter-temporal stability of the teacher effect estimates for Duval and Palm 

Beach Counties.  At the middle school level, the cross-year correlations in Duval and Palm 

Beach Counties were more than twice as high for the FCAT-SSS than for the FCAT-NRT.  In 

contrast, at the elementary school level the cross-year correlation based on the FCAT-SSS was 

much higher in Palm Beach County but was substantially lower than that derived from the 

FCAT-NRT scores in Duval County.  These results clearly suggest that using different tests can 

affect the stability of estimated teacher effects, but the cause of those differences is not clear.  

Additional data on how students are prepared for the exams in each district and year and how 

well the FCAT-NRT aligns with the curriculum in each year might provide insights into the 

difference we observe. 

V. Summary and Conclusions

While there is keen interest in making personnel decisions based on objective measures 

of teacher productivity, there is little existing evidence on the inter-temporal stability of 
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estimated teacher effects.  In this paper we use a simple model for annual teacher effects and 

explored the inter-temporal stability of the resulting estimates based on different specifications of 

the model, different sample restrictions, and different test scores.

In general, we find that raw cross-year correlations are low to moderate, typically in the 

range of 0.2 to 0.3.  The relatively low correlations appear to be driven in large measure by noise 

in teacher effect estimates.  Dis-attenuated correlations, which correct for individual student-

level errors in test performance, are much higher, typically in the range of 0.5-0.8.  Overall the 

variability of teacher effects tends to be smaller for middle school mathematics teachers than for 

elementary grade teachers.  The difference is not only a function of greater independent student-

level errors in the elementary grade teacher estimates but also in the variance after accounting for 

such errors.  In fact, in several instances the adjusted variance for middle school teachers is very 

small, about one sixth as large as the variance for elementary school teachers.  Moreover, in 

three of the four counties included in this study, the year-to-year variability among estimates 

within teachers account for a much smaller share of the variance for middle school teacher than 

elementary school teachers.   

The sources of the differences between elementary and middle school teachers are not 

clear.  One possible explanation for the smaller overall variability in the effects of middle school 

teachers is that achievement growth is slower among older students.  The marginal variance in 

achievement gains based on normed FCAT-NRT scores decreases with grade level and on 

average the variability in student gains in middle school grades is only about three quarters as 

large as it is for elementary school grades.  However, even accounting for these differences, 

elementary school teacher effects are still 2.5 to 4.8 times as variable as their middle school 
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counterparts. Moreover a slowdown in growth does not explain why there is a greater share of 

the variance within elementary school teachers than for middle school teachers. 

This difference across groups in the relative shares of different sources of variance  also 

is not accounted for by the student, teacher, and school variables available for our analyses.  

These variables actually account for a smaller portion variance of the estimated effects for the 

elementary school teachers than for middle school teachers.  It may be that classroom-level 

shocks are more common in elementary schools because teachers teach only one class or 

interactions between elementary school teachers and their students has greater effects on their 

annual performance.  For example, elementary school students spend most of their day together 

with their classroom teacher which provides more time for interactions and an emergent class 

effect than in middle schools where students typically spend just one or a few periods with a 

teacher and change class groupings throughout the day so that an emergent classroom effect 

might have less opportunity to develop and even if they do develop they might get average out 

across the multiple classes middle school teachers teach. Alternatively, there may be more 

variation in unmeasured class-level supports, such as teacher aides or parent volunteers or it may 

even be related to differences between the elementary and middle school tests.     

Regardless of the source, there are some important implications of the variance 

decomposition and the difference between elementary and middle school teachers.  Given the 

large errors due to noise in student test scores, single-year estimates of teacher performance are 

unlikely to be sufficiently precise or stable across time to support performance pay or retention 

decisions.  Given the decomposition results and the consistently low cross-year correlations from 

richer models, adjusting for observable variables does not appear likely to improve the estimates.   
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Averaging estimates across years is one potential means of reducing variation due to 

student-level independent errors.  However, averaging estimates across years can introduce bias 

if true teacher performance varies across years. This makes averaging across years particularly 

appealing for reducing the variability from individual-level student errors in estimated effects for 

middle school teachers.  For these teachers the independent student-level errors are relatively 

large and other sources of year-to-year variation are relatively small. Consequently, averaging is 

likely to yield substantial improvements to precision while introducing very little bias due to true 

variation in performance.   

On the other hand, averaging estimated effects across years is somewhat less appealing 

for elementary school teachers.  Averaging will still improve the precision of the estimates but 

the relatively larger inter-year variability among estimated effects for the same teacher means 

that the bias due to combining truly different levels of performance is not guaranteed to be trivial 

as it appeared to be for middle school teachers.  The mean squared error (MSE), expected value 

of the square of the difference between estimated and true performance, is still likely to improve 

by averaging estimates across years, but bias will offset some of the gains from improved 

precision and the consequences of biasing the estimates must be considered. 

Empirical Bayes shrinkage is another potential approach to reducing the variation due to 

independent student-level errors.  EB shrinkage shrinks the estimates toward zero in proportion 

to a factor that depends on the ratio of variation in effects among teachers and the standard error 

of each individual teacher’s estimated effect. EB shrinkage increases the precision of estimates, 

but again introduces bias into the estimated effects although MSE is still lower for the EB 

estimates than the raw estimates.  As we discussed above, proper parameterization of the teacher 

effects to account for the various restrictions required for identification is essential for EB 
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estimation to produce interpretable results, e.g., estimate that do not shrink all teachers’ estimate 

to an arbitrary holdout teacher. We applied EB shrinkage to our estimates and found that it had 

little effect on cross-year correlation for elementary school teachers but consistently resulted in 

increased correlations for middle school teachers.  The differences were due in part to the fact 

that we estimated more variability among the true effects for elementary teachers than for middle 

school teachers resulting in more substantial shrinkage for middle school teachers. 

EB shrinkage will limit the annual fluctuations of any given teacher’s estimates and for 

teacher with small classes this reduction could be appreciable.  However, as we found, it can 

have a limited effect on cross-year correlations.  This occurs because the shrinkage factor applies 

to the noise or independent student-level errors and the true effects. Consequently, it can have 

less of an effect on the stability of a teacher’s relative place in the distribution than on 

fluctuations in his or her yearly estimated effects.  Averaging across years does not distort the 

stable teacher components and can improve the stability of a teachers relative position and the 

yearly estimates; however, it can come of the cost of smoothing away true annual fluctuations in 

performance.       

An important finding from our study is the relatively limited impact of stratification on 

estimation and the inter-temporal stability of estimated effects.  We are unaware of any previous 

research that explored the structure of the strata in student test score data and we consistently 

found that one large stratum containing 90 to 95 percent of teachers and students multiple small 

strata with only a handful of students and teachers (often just one) in each.  These findings 

replicated across the counties used in this study as well as several other counties in Florida and 

other school districts.  It is not clear how these results apply to data that includes students from 

multiple districts or greater geographic dispersion such a state.  More work on the effects of 
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stratification remains. In particular, some teachers might be connected to the large stratum 

through very precarious links based on few students linked to few other students in the sample.  

Currently we know very little about how this might affect the precision of estimates or how to 

calibrate the strength of a teacher’s connection to the large stratum. 

However, even though stratification appears to be a relatively limited problem, careful 

parameterization of teacher effects is still useful for avoiding indeterminacy and instability of 

estimates due to arbitrary selection of holdout teachers.  Our parameterization is not currently 

implemented in any readily available software including packages designed to model large-scale 

fixed effects problems such as the felsdvreg package for Stata (Cornelißen (2006)).  We coded 

our models using SAS PROC GLM.  This solution works well for small problems but becomes 

extremely memory intensive as the number of teachers gets large.  For example, we were unable 

to apply our methods to data from Dade County because our 32 gigabytes of available RAM was 

insufficient.  Iterative procedures could be adapted to use our parameterization but they do not 

currently provide standard errors.  Similarly, the algorithm of Cornelißen (2006) could also be 

adapted to our parameterization and this is an important area for future research. 
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Table 1.  Inter-temporal Correlations in Estimated Teacher-by-Year Average Effects (No 
Controls Other Than Student Fixed Effects) 

 Varying Teachers Across 2-Year Periods 
Correlation Between 

County
Correlation

Type
2000/01 and 

2001/02
2001/02 and 

2002/03
2002/03 and 

2003/04
2003/04 and 

2004/05

 Elementary 

Raw 0.22 0.24 0.23 
Dis-attenuated 0.45 0.49 0.48 Duval
Emp. Bayes 0.22 0.27 0.23 
Raw 0.27 0.27 0.21 
Dis-attenuated 0.59 0.55 0.44 Hillsborough
Emp. Bayes 0.27 0.25 0.20 
Raw 0.29 0.34 0.17 
Dis-attenuated 0.79 0.74 0.77 Orange
Emp. Bayes 0.32 0.37 0.28 
Raw 0.21 0.09 0.22 
Dis-attenuated 0.33 0.17 0.81 Palm Beach 
Emp. Bayes 0.17 0.10 0.28 

 Middle 

Raw 0.22 0.09 0.05 0.18 
Dis-attenuated 0.67 0.76 0.76 0.62 Duval
Emp. Bayes 0.28 0.37 0.27 0.25 
Raw 0.19 0.26 0.27 0.29 
Disattenuated 0.80 0.76 0.79 1.00 Hillsborough
Emp. Bayes 0.37 0.31 0.34 0.24 
Raw 0.35 0.27 0.26 0.11 
Disattenuated 0.91 0.92 1.00 0.64 Orange
Emp. Bayes 0.27 0.27 0.29 0.18 
Raw 0.30 0.19 0.14 0.08 
Disattenuated  0.99 1.00 0.80 0.52 Palm Beach 
Emp. Bayes 0.26 0.32 0.35 0.16 
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Table 2.  Quintile Ranking of Estimated Teacher-by-Year Average Effect in 2001/02 by 
Quintile Ranking in 2000/01, Hillsborough County (No Controls Other Than Student Fixed 
Effects)

Elementary (Cross-Year Correlation = 0.27) 

Quintile in 2001/02 Quintile in 
2000/01 1 2 3 4 5 Total 

1 34 27 21 23 17 122  
[27.9] [22.1] [17.2] [18.9] [14.0] [100.0]  

2 26 32 26 19 13 116  
[22.4] [27.6] [22.4] [16.4] [11.2] [100.0] 

3 29 30 23 26 24 132  
[22.0] [22.7] [17.4] [19.7] [18.2] [100.0]  

4 25 26 29 24 38 142  
[17.6] [18.3] [20.4] [16.9] [26.8] [100.0]  

5 11 21 31 35 39 137  
[8.0] [15.3] [22.6] [25.6] [28.5] [100.0]  

Total 125 136 130 127 131 649  
 [19.3] [21.0] [20.0] [19.6] [20.2] [100.0] 

Middle (Cross-Year Correlation = 0.19) 

Quintile in 2001/02 Quintile in 
2000/01 1 2 3 4 5 Total 

1 13 16 16 7 9 61  
[21.3] [26.2] [26.2] [11.5] [14.8] [100.0]  

2 10 13 16 15 6 60  
[16.7] [21.7] [26.7] [25.0] [10.0] [100.0]  

3 7 11 16 18 10 62  
[11.3] [17.7] [25.8] [29.0] [16.1] [100.0]  

4 4 8 13 20 14 59  
[6.8] [13.6] [22.0] [33.9] [23.7] [100.0]  

5 7 6 9 21 21 64  
[10.9] [9.4] [14.1] [32.8] [32.8] [100.0]  

Total 41 54 70 81 60 306  
 [13.4] [17.7] [22.9] [26.5] [19.6] [100.0]

Note:  row percentages in brackets. 
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Table 3.  Percentage of Teachers Who Remain in Top Quintile from One Year to the Next 
Based on Teacher-by-Year Average Effects (No Controls Other Than Student 
Fixed Effects) 

Elementary 

County
2000/01 and 

2001/02
2001/02 and 

2002/03
2002/03 and 

2003/04
2003/04 and 

2004/05

Duval 26.6 30.9 34.8 

Hillsborough 28.5 25.7 24.5 

Orange 29.2 35.5 32.8 

Palm Beach 33.9 22.0 34.1 

Middle

County
2000/01 and 

2001/02
2001/02 and 

2002/03
2002/03 and 

2003/04
2003/04 and 

2004/05

Duval 37.0 25.0 34.8 28.0 

Hillsborough 32.8 28.4 30.6 34.1 

Orange 22.9 29.0 36.1 26.3 

Palm Beach 47.4 31.3 29.6 31.4 
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 Table 4.  Variance Decomposition of Estimated Teacher-by-Year Average Effects 

County

Total
Variance in 

Teacher-
by-Year
Effect

Percent of 
Variance
Between 
Teachers

Percent of 
Variance
Within

Teachers

Percent of 
Within-
Teacher
Variance

Due to 
Variation

in Student/ 
Peer

Charact-
eristics

Percent of 
Within-
Teacher
Variance

Due to 
Variation
in Teacher 
Charact-
eristics

Percent of 
Within-
Teacher
Variance

Due to 
Variation
in School 
Charact-
eristics

 Elementary 

Duval 0.0610 30.0 70.0 1.7 1.5 0.4 

Hillsborough 0.0358 48.0 52.0 2.8 3.4 0.5 

Orange 0.0459 76.5 23.5 17.5 11.2 6.1 

Palm Beach 0.0482 39.4 60.6 2.0 3.0 0.1 

 Middle 

Duval 0.0127 65.9 34.1 17.6 5.8 1.6 

Hillsborough 0.0116 69.8 30.2 5.1 8.5 0.9 

Orange 0.0075 77.8 22.2 2.8 16.5 24.9 

Palm Beach 0.0088 64.5 35.5 17.0 13.6 6.0 
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 Table 5.  Inter-temporal Correlation of Estimated Teacher-by-Year Average Effects in 
2000/01 and 2001/02 with Alternative Student, Peer and School Controls (No 
Minimum Students-Per-Teacher-Year Restriction) 

Counties 

Outcome 

Student 
Time-

Invariant 
Controls 

Student 
Time-

Varying 
Controls 

Peer
Time-

Varying
Controls

School 
Time-

Varying
Controls Duval 

Hills-
borough Orange 

Palm 
Beach

Elementary 
Gain on 
Normed 
FCAT-NRT  

Student 
Fixed

Effects
No No No 0.22 0.27 0.29 0.21 

Gain on 
Normed 
FCAT-NRT  

Student 
Fixed

Effects
Yes No No 0.22 0.27 0.30 0.21 

Gain on 
Normed 
FCAT-NRT  

Student 
Fixed

Effects
Yes Yes No 0.22 0.25 0.27 0.19 

Gain on 
Normed 
FCAT-NRT  

Student 
Fixed

Effects
Yes Yes Yes 0.23 0.27 0.29 0.19 

Gain on 
Normed 
FCAT-NRT  

None No No No 0.22 0.26 0.26 0.28 

Gain on 
Normed 
FCAT-NRT  

Student 
Covariates No No No 0.22 0.26 0.28 0.27 

Gain on 
Normed 
FCAT-NRT  

Student 
Covariates Yes Yes Yes 0.23 0.27 0.28 0.29 

Middle 
Gain on 
Normed 
FCAT-NRT  

Student 
Fixed

Effects
No No No 0.22 0.19 0.35 0.30 

Gain on 
Normed 
FCAT-NRT  

Student 
Fixed

Effects
Yes No No 0.22 0.19 0.35 0.31 

Gain on 
Normed 
FCAT-NRT  

Student 
Fixed

Effects
Yes Yes No 0.24 0.17 0.36 0.32 

Gain on 
Normed 
FCAT-NRT  

Student 
Fixed

Effects
Yes Yes Yes 0.25 0.18 0.35 0.32 

Gain on 
Normed 
FCAT-NRT  

None No No No 0.44 0.07 0.10 0.28 

Gain on 
Normed 
FCAT-NRT  

Student 
Covariates No No No 0.42 0.07 0.10 0.26 

Gain on 
Normed 
FCAT-NRT  

Student 
Covariates Yes Yes Yes 0.34 0.08 0.09 0.25 



43

Table 6.  Inter-temporal Correlation of Estimated Teacher-by-Year Effects in 2001/02 and 
2002/03 Using Alternative Test Scores (No Minimum Students-Per-Teacher-Year 
Restriction)

Counties 

Outcome 

Student 
Time-

Invariant 
Controls 

Student 
Time-

Varying 
Controls 

Peer
Time-

Varying
Controls

School 
Time-

Varying
Controls Duval 

Hills-
borough Orange 

Palm 
Beach

Elementary 
Gain on 
Normed 
FCAT-NRT  

Student 
Fixed

Effects
Yes Yes Yes 0.26 0.29 0.28 0.07 

Gain on 
Normed 
FCAT-SSS

Student 
Fixed

Effects
Yes Yes Yes 0.11 0.35 0.23 0.42 

Gain on 
FCAT-NRT 
Scale Score 

Student 
Fixed

Effects
Yes Yes Yes 0.21 0.29 0.29 0.09 

Middle 
Gain on 
Normed 
FCAT-NRT  

Student 
Fixed

Effects
Yes Yes Yes 0.23 0.22 0.38 0.30 

Gain on 
Normed 
FCAT-SSS

Student 
Fixed

Effects
Yes Yes Yes 0.56 0.27 0.26 0.61 

Gain on 
FCAT-NRT 
Scale Score 

Student 
Fixed

Effects
Yes Yes Yes 0.31 0.24 0.33 0.30 

Note: the sample used in estimating effects included only observations with both non-missing FCAT-SSS and  
FCAT-NRT scores.
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