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Added Measurement:
Dale Ballou
Vanderbilt University

Abstract

As currently practiced, value-added assessment relies on a strong assump-
tion about the scales used to measure student achievement, namely that
these are interval scales, with equal-sized gains at all points on the scale rep-
resenting the same increment of learning. Many of the metrics in which
test results are expressed do not have this property (e.g., percentile ranks,
normal curve equivalents). However, this property is claimed for the scales
obtained when tests are scored according to the Item Response eory.

is claim requires that examinees and test items constitute, in the ter-
minology of representational measurement theory, a conjoint additive
structure. Unfortunately, it is difficult to confirm that this condition
is met. In addition, the internal structure of a conjoint additive system
may not be the property we seek to represent in an achievement scale, as
suggested by the lack of surface plausibility of many scales resulting from
the application of IRT.

Methods of ordinal data analysis can be employed instead, on weaker
assumptions. Instead of comparing mean achievement of a teacher’s
students to the students of a (hypothetical) average instructor, ordinal
analysis asks what fraction of the former outperforms the latter. e
feasibility of such methods for value-added analysis is demonstrated.
It is seen that value-added estimates are sensitive to the choice of ordi-
nal methods over conventional techniques.

Clearly, if IRT scores are an interval-scaled variable, ordinal methods
throw away valuable information. Practitioners of value-added measure-
ment should ask themselves, however, whether they are so confident of
the metric properties of these scales that they are willing to attribute dif-
ferences between regression-based estimates of value added and estimates
based on ordinal analysis to the superiority of the former.
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I. Introduction 

Models currently used for value-added assessment of schools and teachers 

require that the scale on which achievement is measured be one of equal units:  the five-

point difference between scores of 15 and 20 must represent the same gain as the five-

point difference between 25 and 30.  If it does not, we will end up drawing meaningless 

conclusions about such matters as the average level of achievement, relative gains of 

different groups of students, etc., in that the truth of these conclusions will depend on 

arbitrary scaling decisions. 

A scale that possesses this property is known as an interval scale.  It is clear that a 

simple number-right score is not an interval scale of achievement when test questions are 

not of equal difficulty.  The same is true of several popular methods of standardizing raw 

test scores that also fail to account for the difficulty of test items, such as percentiles, 

normal curve equivalents, or grade-level equivalents normed to a nationally-

representative sample.1

The search for measures of achievement that are independent of the particular 

items included on a test led to the development in the 1950’s of Item Response Theory.

IRT is now used to score most of the best-known and most widely administered 

achievement tests today, such as the CBT/McGraw-Hill Terra Nova series, the SAT, the 

Stanford Achievement Test, and the National Assessment of Educational Progress. IRT

was regarded as a significant advance over earlier scaling methods for the following 

reasons:  (1)  The score of an examinee is not dependent on the difficulty of the items on 

the test, provided the test is not so easy that the examinee answers all items correctly or 

                                                
1 These last methods also have the disadvantage of being dependent on the distribution of ability in the 
tested population or must rely on arbitrary assumptions about this distribution.
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so hard that he misses them all; (2) An examinee’s score is not dependent on the 

characteristics of the other students taking the same test; (3) Finally, according to some 

psychometricians, an examinee’s score is an interval-scaled measure of ability2.  This last 

claim makes IRT scaling particularly appealing to those practicing value-added 

assessment. 

However, not all psychometricians share these views, and the literature contains 

many confusing and contradictory statements about the properties of IRT scales.

Because many social scientists using test scores to evaluate educational institutions and 

policies have little or no training in measurement theory, the first objective of this paper 

is to review the issues.  The next section describes IRT. It is followed by a summary of 

the controversy over scale type in Section III.  While in the right conditions, IRT yields 

interval-scaled measures of achievement, these conditions are difficult to verify.

Moreover, IRT scales are often at odds with common sense notions about the effects of 

schooling and the distribution of ability as students advance through school.  I argue in 

Section IV that we are rightly suspicious of IRT scales when we see such results.  Section 

V takes up the implications for value-added assessment, with particular attention to 

methods of ordinal data analysis.  Concluding remarks appear in Section VI. 

                                                
2 The psychometric literature uses the term ability.  Other social scientists might prefer achievement.  It 
represents the student’s mastery of the domain of the test and should not be confused with innate ability as 
opposed to knowledge and skills acquired through education.
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II.  Item Response Theory and Ability Scales

 In IRT, the probability that student i correctly answers test item j correctly is a 

function of an examinee trait (conventionally termed ability) and one or more item 

parameters.3  Thus 

(1) Pij =  Prob[h( i, j) > uij] =  F( i, j),

where i is ability of person i, j is a characteristic (possibly vector-valued) of item j, and 

uij is an idiosyncratic person-item interaction, as a result of which individuals of the same 

level of ability need not answer a given item alike.  The uij are taken to be independent 

and identically distributed random errors.  The function h expresses how ability and item 

parameters interact.  F is derived from h and assumptions about the distribution of uij.

Common assumptions are that the uij are normal or logistic.  i and j are estimated by 

maximum likelihood methods.  

When there is a single item parameter, the assumption that the uij are logistic 

gives rise to the one-parameter logistic model (also known as the Rasch model): 

(2a) Pij  = [1 + exp(-D( i- j))]-1,

in which D is an arbitrary scaling parameter, invariant over items, that can be chosen by 

the practitioner.  (If D = 1.7 it makes essentially no difference whether the model is 

estimated as a logistic or normal ogive model.  Alternatively, D is set to 1.)  The estimate 

of  is known as the scale score. The scale score is the principal measure of performance 

on the exam, although other measures derived from it, such as percentile ranks, may also 

be reported.4   The item parameter is conventionally termed difficulty.  The functional 

                                                
3 There are many lucid expositions of IRT, including Hambleton and Swaminathan (1985), and Hambleton, 
Swaminathan, and Rogers (1991). 
4 Another measure is the so-called “true score,” which is simply the expected number right = Pij( ) on a 



4

form of (2a) implies that it is measured on the same scale as ability.   

More elaborate models introduce additional item parameters, as in the two- and 

three-parameter logistic models: 

(2b) Pij  = [1 + exp(- j( i- j))]-1 

(2c) Pij  = cj + (1-cj)[1 + exp(- j( i- j))]-1 

(2b) contains a second item parameter, j, known as the item discrimination parameter 

because it enters the derivative of Pij with respect to i (thereby determining how well the 

item discriminates between examinees of different ability).  In both (2a) and (2b), the 

limit of Pij as i  -  is 0.  This is not appropriate for tests where a student who knows 

nothing at all can answer an item correctly by guessing.  Accordingly, cj allows for a non-

zero asymptote and is conventionally termed the guessing parameter.   

The plot of Pij against i is known as the item characteristic curve (ICC).  Three 

item characteristic curves using the 2-parameter logistic IRT model are depicted in Figure 

1.  Curve II differs from curve I by an increase in the difficulty parameter, holding 

constant item discrimination.  Curve III corresponds to an item with the same level of 

difficulty as II but a doubling of the discrimination parameter.  All three curves have a 

lower asymptote of 0.  Observe that all three curves are steepest where Pij = .5 and  = .5

At this point the slope equals j.

In the IRT models in (2a) – (2c),  and  are underidentified.  Modification of 

each by an additive constant obviously leaves Pij unchanged.  Multiplicative constants 

can be offset by changes to (or absorbed in) the discrimination parameter.  Because an 

                                                                                                                                                
test comprising the universe of items.  This suffers from the usual defect of a number-right score:  the 
metric depends on the composition of  the universe. 
5 Because these models are additive in  and , ability and difficulty are expressed on the same scale.  
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additive constant corresponds to a change in the origin of the scale, while a multiplicative 

constant represents a change in the scale’s units (e.g., from meters to yards), many 

psychometricians have concluded that  and  are measured on interval scales, which are 

characterized by the same conventional choice of origin and unit (see Section III).  

However, this opinion is by no means universal, nor is it firmly held.  Many 

psychometricians, including some who state that these are interval scales, also regard the 

 scale as arbitrary.  Others caution that ability scales should be accorded no more than 

ordinal significance.  These conclusions appear to be derived from the following 

considerations:  (1)  Because ability is a latent trait, it is impossible to verify by physical 

means that all 1-unit increments in  represent the same increase in ability.  This (the 

argument goes) confers an inherent indeterminacy on the scaling of any latent trait.6  (2) 

Replacing  with a monotonic transformation g( ) while making offsetting changes to the 

function F yields a model that fits the data just as well.7  Thus the  scale rests on 

arbitrary assumptions regarding functional form.8  (3)  The notion that  measures the 

                                                
6 “When the characteristic to be measured cannot be directly observed, claims of equal-interval properties 
with respect to that characteristic are not testable and are therefore meaningless.”  (Zwick, 1992, p. 209) 
7 An example is Lord’s (1975) transformation of the  scale to eliminate correlation between item difficulty 
and item discrimination, in which i was replaced by the regression of j on j and higher powers of j

evaluated at j = i.  The result was a modification of the three-parameter logistic model:  
P*ij = F*ij( ) = cj + (1-cj)[1 + exp(- j( -1( ( i)))- j)]-1

where ( ) is proportional to -.27 + 1.1694  + .2252 2 + .0286 3.   As a nonlinear transformation of the 
original ability scale, the -scale differs from the -scale by more than a change of origin and unit.  Lord 
saw this as no drawback: “There seems to be no firm basis for preferring the  scale to the  scale for 
measuring ability.” (Lord, 1975, p. 205)   
8 “A long-standing source of dissatisfaction with number-right and percent-correct scores is that 
their distribution depends on item reliabilities and difficulties.  Radically different distributions of 
true scores (expected percents correct) can be obtained for the same sample of examinees when 
they take different tests.  The obvious restriction of such scores to their ordinal properties casts 
doubt upon their use for problems that require interval scale measurement, such as comparing 
individuals’ gains…Item response theory appeared to offer a general solution, since the same 
underlying  scale could explain the different true-score distributions corresponding to any subset 
of items from a domain.  But this line of reasoning runs from model to data, not from data to 
model as must be done in practice.  Suppose that a given dataset can be explained in terms of a 
unidimensional IRT model with response curves of the form Fj( ).  Corresponding to any 
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amount of something misconceives the entire enterprise.  There is no single trait (call it 

ability, achievement or what-have-you) to be quantified by this or any other means.9   As 

such, the question of scale type is essentially meaningless:  there are just various models 

for reducing the dimensionality of the data, some more convenient than others.10  I will 

refer to this view of IRT scales in the ensuing discussion as the operational perspective.

 To summarize, there are some psychometricians who consider  to be interval-

scaled, others who think it is ordinal, still others who regard the choice of scale as 

arbitrary, even if it is an interval scale, and finally some who are unsure what it is.

Clearly it is disconcerting to find this divergence of views on a question of fundamental 

importance to value-added assessment.  Is the IRT ability trait measured on an interval 

scale or not?  Indeed, how does one tell?   

III.  IRT Models and Scale Type

In the natural sciences, measurement is the assignment of numbers to phenomena 

in such a way that relations among the numbers represent empirically-given relations 

                                                                                                                                                
continuous, strictly increasing function h there is an alternative model with curves F*j( ) = 
Fj(h( )) that fits the data in precisely the same manner (Lord, 1975).  That a particular IRT model 
fits a dataset, therefore, is not sufficient grounds to claim scale properties stronger than ordinal.” 
(Mislevy, 1987, p. 248) 
9 The claim that a particular unidimensional scaling method is right must be based on the assumption that 
achievement is unidimensional, that it can be linearly ordered, and that students can be located in this linear 
ordering independently of performance on a particular achievement test.  However, no one has succeeded 
in identifying or defining a linearly ordered psychological trait in educational achievement, and no one has 
demonstrated that a particular measurement scale is linearly related to such a trait.  A serious obstacle to the 
establishment of truly (externally verifiable) equal-interval achievement scales is the fact that achievement 
is multidimensional and qualitatively changing.  The nature of what is being learned is constantly being 
modified.  Use of an objective-based approach to achievement highlights the difficulties in hypothesizing 
and verifying a continuous achievement trait.  The student is learning the names of letters of the alphabet 
one day, associating sounds to those letters another day, and attaching meaning to groups of letters a third 
day.  How can such qualitative changes be hypothesized to fall so many units apart on one particular trait?”  
(Yen, 1986, p. 311-12) 
10 “It is important for educators and test developers to acknowledge that until the achievement traits are 
much more adequately defined, it is not possible to develop measurement scales that are linearly related to 
such traits.  In fact, it appears impossible to provide such trait definition.  Test users are therefore left to use 
other criteria to choose the best scale for a particular application; choosing the right scale is not an option.” 
(Yen, 1989, p. 314) 
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among the phenomena.  Technically, there is a homomorphism between the empirical 

relations among objects in the world and numerical relations on the scale.  One such 

relation is order:  if objects can be ordered with respect to the amount of some attribute, 

that order needs to be reflected in increasing (or decreasing) scale values.  However, 

order is not the only attribute to matter.  If objects A and B can be combined (or 

concatenated) in such a way that in combination they possess the same amount of some 

attribute (length, mass) as object C, a scale for that attribute needs to reflect the results of 

that operation.  Thus, in an additive representation, the scaled value of the attribute in A 

plus the scaled value of the attribute in B equals the scaled value assigned to C. 

The importance of convention relative to empirical phenomena turns out to be the 

key to scale type.  At one end of the spectrum are scales in which there is no role for 

convention, at the other scales that are entirely conventional.  Scales of the first type are 

called absolute.  An example is counting:  one is not free to change units if the 

information to be conveyed by the scale is the number of discrete objects under 

observation.11  At the other end of the spectrum are nominal scales, where the number 

assigned to an object is no more than a label and the information conveyed could just as 

well be represented by a non-numerical symbol.  Scales for most physical quantities, such 

as length and mass, have a degree of freedom for the conventional choice of a unit.  Such 

scales are known as “ratio scales” because the ratio of two lengths or two weights is 

invariant to the choice of unit:  ratios are convention-free.  If there is no natural zero, so 

                                                
11 It should be clear that scale type is as much a matter of how numbers are interpreted as of formal 
relations among the items being scaled.  For example, considered purely from a technical standpoint, 
number right on a test can be regarded as an absolute scale.  Like any scale that counts items (e.g., the score 
of a football game), number right does not admit of a change of units without a loss of information.  
However, when test items are not of equal difficulty, number right cannot be regarded as a measure of 
achievement that generalizes beyond performance on the particular test in question, and as such is not an 



8

that the origin of a scale is also determined conventionally, ratios are no longer 

convention-free magnitudes.  However, ratios of intervals are invariant under change of 

unit and change of origin.  Such scales are therefore known as interval scales:  they are 

characterized by two degrees of freedom.  Between interval scales and nominal scales lie 

ordinal scales.  Any increasing function of an ordinal scale conveys the same 

information.12

 With respect to psychological variables, there is less agreement about the nature 

of measurement.  There appear to be three prevalent views (Hand, 1996).  On one view 

(sometimes called “classical measurement”), it is simply assumed that the psychological 

variable of interest exists and that there is a ratio (or at least interval) scale on which it is 

measurable.  The task of measurement is to discover those values.  This appears to be the 

view of some psychometricians with respect to IRT scales.  On a second view, a 

psychological variable exists only by virtue of its presence in some model.  The model 

effectively defines the variable and, when the model is fit to data, provides a means of 

determining the scaled value of the variable.  This has been called “operational 

measurement” and is compatible with the operational perspective on IRT scales described 

above, in which IRT models are devices for reducing the dimensionality of data.  Two 

different models may both contain the term “ability.”  There is no basis for deciding 

between them on grounds that one better represents “true ability”—each is just more or 

less useful for the purposes to which they are put.  Finally, there is a third view that holds 

                                                                                                                                                
absolute scale, a ratio scale, or an interval scale.  Except in special circumstances it is not even an ordinal 
scale.
12 Scale type is therefore closely related to the notion of an admissible scale transformation (Stevens, 
1946). An admissible transformation preserves the empirical information in the original scale by altering 
only those elements that are purely conventional.  For ratio scales, these are the similarity transformations, 
corresponding to a choice of unit (for example, substituting centimeters for meters).  In the case of interval 
scales, the admissible transformations consist of affine transformations, g= f(a) + .
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that measurement of psychological variables is essentially the same as measurement in 

the physical sciences—the view sketched at the start of this section, known as 

representational measurement.  Psychological attributes are postulated to explain 

empirically-given relationships (such as the pattern of examinees’ responses to the items 

on a test).  It is the structure of those relationships that determines the properties of scales 

that measure these attributes.  Some relationships are so lacking in structure that the 

attributes may not be scalable at all—the most we can do is to name them.  In other cases 

it may be possible to say that there is a larger quantity of some attribute in one person 

than another, supporting ordinal scaling.  In still other cases there may be sufficient 

structure to permit interval-scaled comparisons:  the difference in the amount of the 

attribute between A and B equals the difference between C and D.    

 We can aspire to resolve disputes about scale type only if the third of these views 

is correct.  Classical measurement simply assumes an answer, whereas the question of 

scale type is either meaningless or of no importance in operational measurement.  

Virtually all discussions of scale type nod in the direction of representational 

measurement by invoking Stevens’ classification of admissible transformations.  To the 

extent that a case can be made that IRT scales are interval scales, it has to be made in 

terms of representational measurement theory.   

The argument that  and  are interval-scaled is found in the analysis of conjoint 

additive structures.   We begin by assuming that the Pij are given—or, more precisely, 

that we are given the equivalence classes comprising examinees and items with the same 

Pij.   Let A1={a, b,…} denote the set of examinees and A2 = {p, q, …} the set of test 

items, and let  represent the order induced on A1xA2 by Pij.  That is, (a,p)  (b,q) if Pap
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  Pbq.  The sets A1, A2, and the relation are known as an empirical relational system.

If several exacting conditions are met, requiring that the relations between A1 and A2

exhibit still more structure than the ordering of equivalence classes, the resulting 

empirical relational system is called a “conjoint additive structure” and the following can 

be proved:  (1) there are functions 1 and 2 mapping the elements of these sets into the 

real numbers (i.e., examinees and items can be scaled); (2) the relation ordering 

examinee-item pairs can be represented by an additive function of their scaled values; 

that is, (a,p)  (b,q) 1(a) + 2(p) 1(b) + 2(q); (3) only affine transformations of 

1 and 2 preserve this representation.  These transformations correspond to a change of 

origin and a change of units; hence, 1 and 2 are interval scales (Krantz et al., 1971).  

 There are two critical steps in the proof.  First, from the relation ordering 

examinee-item pairs we must be able to derive relations ordering the elements of each set 

separately.  For this we require a monotonicity condition (also known as independence):

if Paq > Pbq for some item q, then Par > Pbr for all r.  An analogous condition holds for 

items:  if item q is harder for one examinee to answer, it is harder for all examinees.  

Monotonicity establishes orderings of A1 and A2 separately.  Without it, not even ordinal 

scales could be established for examinees and items.  

 To obtain interval scales we need further conditions, as illustrated in Figure 2, 

which depicts three “indifference curves” (literally: isoprobability curves) over 

examinees and items: i.e., three equivalence classes determined by the Pij.  Examinees 

and items are arrayed along their respective axes according to the induced order on each 

set, but no significance should be attached to the distance between a pair of examinees or 

a pair of items:  the axes are unscaled apart from the ordering of examinees and items.  
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However, note that there is an additional structure to the equivalence classes in Figure 2.  

They exhibit a property known as equal spacing:  as we move over one examinee and 

down one item, we remain on the same indifference curve.  Equal spacing is probably the 

simplest of all conjoint additive structures, but it is not a necessary condition for conjoint 

additivity. 

 To derive an equal-interval metric, we establish that the distance between one pair 

of examinees is equal to the distance between another pair by relating both to a common 

interval on the item axis.  As shown in Figure 3, the interval between examinees a and b 

can be said to equal the interval between examinees b and c in that it takes the same 

increase on the item scale (from q to r) to offset both.  Thus the item interval qr functions 

as a common benchmark for defining a sequence of equal-unit intervals on the examinee 

axis.  The scaled value of any individual i is then obtained by counting the number of 

such intervals in a sequence from some arbitrarily chosen origin to person i: ab, bc, cd ...   

This scaling of the heretofore unscaled axes renders the equiprobability contours linear 

(and, of course, parallel).

 In order that the conclusion ab = bc = cd = … not be contradicted by other 

relations in the data, it must be the case that the same conclusion follows no matter which 

interval on the item axis is selected as the benchmark.  A like condition must hold for 

intervals on the examinee axis to serve as a metric for items.  In addition to these 

consistency conditions, other technical conditions must be met when equal spacing does 

not obtain.

 To summarize, conjoint measurement scales a sequence of intervals in one factor 

by using differences of the complementary factor as a metric.  By moving across 
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indifference curves, these sequences can be concatenated to measure the difference 

between any two examinees (or items) with respect to the latent factor they embody.  

Because the measurement of intervals reduces to counting steps in a sequence, there is an 

essential additivity to this empirical structure, on the basis of which we obtain additive 

representations of examinee and item traits.   

Conjoint additivity uses only the Pij equivalence classes and not the values of Pij to

determine the 1 and 2 scales.  The final step from conjoint additivity to IRT requires a 

positive increasing transformation F from the positive reals to the interval [0,1], such that 

F( 1(a) + 2(p)) = Pap.  Because any increasing transformation of 1(a) + 2(p) preserves 

the representation of A1xA2 by 1 and 2, it is clear that a function F satisfying this 

condition can be found.

Of the three IRT models, only the one-parameter model is consistent with this 

simple conjoint additive structure.  The two- and three-parameter IRT models, in which 

item discrimination varies, violate the monotonicity assumption.  This is easily seen with 

the aid of Figure 1.  The ICC labeled II represents an item with discrimination parameter 

= 1, while the curve labeled III has a discrimination of 2.  The ICC cross where  equals 

the common value of the difficulty parameter.  An individual whose  lies to the left of 

this intersection finds item II more difficult than item III; an individual whose  is to the 

right of the intersection ranks the items the other way around.  Because different 

individuals produce inconsistent rankings of items, the ranking of examinee-item pairs on 

the basis of Pij does not yield orderings of examinees and items and the derivation of the 

 scales breaks down.  Indeed, it is alleged that because only the one-parameter IRT 

model produces a consistent ordering of items for all examinees (ICCs in the Rasch 
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model never cross), only the  in a one-parameter model can be considered an interval-

scaled measure of ability (Wright, 1999). 

This goes too far.  A straightforward modification of conjoint additivity 

accommodates structures with a third factor that enters multiplicatively, such as the IRT 

discrimination parameter.  The relevant theorem appears in Krantz et al. (1971, p. 348).  

The empirical relations between examinees and items are termed a polynomial conjoint 

structure.  The extra conditions on examinees and items ensure that we can obtain 

separate representations by discrimination classes in the manner just described.  When 

these conditions are met, we find that there are functions 1, 2, and 3 such that (a,p) 

(b,q) 3(p)[ 1(a) + 2(p)] 3(q)[ 1(b) + 2(q)]. 1 and 2 are unique to linear 

transformations and 3 is unique to a similarity transformation.  Obviously this 

representation has the structure of the two-parameter IRT model.13

To summarize:  if the empirical relational system is one of conjoint additivity and 

the function F correctly specifies the relationship between i- i and the Pij, the IRT 

measure of latent ability, , and the IRT difficulty parameter, , are interval-scaled 

                                                
13 This representation does not include anything that corresponds to the guessing parameter in the three-
parameter IRT.  While I have not seen an analysis of such a conjoint measurement structure, extending 
polynomial conjoint measurement to include the three-parameter IRT model would proceed similarly to the 
extension of conjoint additivity to cover the two-parameter IRT model.  For sets of items with the same 
discrimination parameter, the two-parameter IRT model reduces to the one-parameter model.  Proof of 
scale properties for the two-parameter model involves selecting one such set of items and scaling 
examinees with respect to it.  Because the choice of items is arbitrary, the resulting scale is unique only up 
to the change of units that would result from the selection of an alternative set with a different value of the 
discrimination parameter.  (For details, see Krantz et al., 1971, Chapter 7.)  Incorporating a guessing 
parameter in the structure would involve following the same logic.  Examinees would be scaled using a 
subset of the data (i.e., for a particular choice of discrimination and guessing parameters.)  As with the 
polynomial conjoint structure, the fact that another choice could have been made introduces a degree of 
freedom into the representation, though in the case of the guessing parameter, this degree of freedom 
affects only the function mapping ( 3(q)[ 1(b) + 2(q)]) to Pij and not the relations among 1, 2, and 3. The
properties of the 1 and 2 would therefore be precisely those established for the polynomial conjoint 
structure,  inasmuch as these properties depend on relations between examinees and items and not on the 
function mapping equivalence classes to numerical values of Pij.   
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variables.  If the empirical relational system is a polynomial conjoint structure and F is 

again correct (e.g., the two-parameter logistic IRT model, or possibly the three-parameter 

model, if extra conditions entailing a lower asymptote on Pij are met),  and  are again 

interval-scaled.  

Notwithstanding the fact that these propositions were proved in the 1960’s, one 

continues to find a wide range of opinions about the properties of IRT scales in the 

psychometric community (as we have seen).  At least some of that diversity of opinion is 

due to the following three misconceptions about scales.  (1)  Because arbitrary monotonic 

transformations of  and  can be shown to fit the data equally well,  and  cannot be 

interval-scaled.  At best, they are ordinal variables.  (2)  Because  is interval-scaled, no 

scale of achievement related to  by anything other than an affine transformation can be 

an interval scale.  In particular, if = g( ), where g is monotonic but not affine, the 

scale is ordinal.  (3)  Using an IRT model (or specifically the Rasch model) to scale a test 

produces an interval scale of ability.  Each of these beliefs is wrong.  Before quitting this 

discussion of representational measurement theory, we need to understand why.   

The first of these views derives from Stevens’ stress on the role of admissible 

transformations in determining scale type.  The problem is that Stevens’ formulation of 

the matter fails to make clear just what makes a transformation “admissible.”  There is a 

sense that information must not be lost when a scale is transformed—but precisely what 

information?  All transformations rest on the implicit assumption that there is something 

that we can alter freely—something, in other words, that is not “information,” at least not 

information we care about.  Stevens’ criterion for determining scale type remains empty 

until this something is specified.   
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 Misconception (1) rests on the following argument:  we can replace  with g( )

for arbitrary monotonic function g and still fit the data (the Pij) equally well, provided we 

make an offsetting change to the function F relating  and  to P.  An example appeared 

in footnote 7 above, in Lord’s modification of the three-parameter logistic model:

P*ij = F*ij( ) = cj + (1-cj)[1 + exp(- j( -1( ( i)))- j)]-1 

Because this model fits the data as well as the original three-parameter logistic model (as 

it must, being mathematically equivalent), it is argued that  and ( ) contain the same 

information about ability.  Because the  function is not affine but an arbitrary 

monotonic function, the conclusion is drawn that  and  must both be ordinal scales.

The flaw in this argument is the supposition that the only information that matters 

is the order over equivalence classes of examinees and items induced by the Pij.  But the 

proof from conjoint additivity does not conclude that  and  are interval scales merely 

because these mappings from examinees and items to real numbers preserves order 

among the Pij.  The empirical relational system between classes of examinees and items 

contains more structure than the ordering of equivalence classes.  It is this additional 

structure, as illustrated by the example of the equally spaced conjoint structure above, 

that underlies the claim that certain mappings from examinees and items are interval 

scales.  An arbitrary monotonic transformation of these scales no longer reflects the 

relations holding among the scaled items and examinees shown in Figure 3.  Such a 

transformation loses the information that the distance between examinees a and b equals 

the distance between b and c in the sense that both offset the same substitution of one pair 

of test items for another.  Preserving that information restricts the class of admissible 

transformations to affine functions.   
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The preceding comment notwithstanding, it does not follow that there cannot be 

another way of assigning numbers to examinees, on the basis of some other property, 

producing a new scale  = h( ) for a non-affine function h that can also be regarded as an 

interval-scaled measure of ability.  Clearly  and  cannot be interval scales of the same 

property of examinees.  (In the language of representational measurement theory, they 

cannot represent the same empirical relational system.)  That we might have reason to 

regard both as measures of achievement is due to the vagueness and imprecision with 

which the term achievement is used, not just in ordinary discourse, but in social science 

research. 

I illustrate with an example from economics.  Consider a firm that employs thirty 

workers on thirty machines.  Workers are rotated among machines on a daily basis.  The 

only information the firm has on the productivity of either factor of production is the 

daily output of each worker-machine combination.  Suppose, for purposes of rewarding 

employees or scheduling machines for replacement, the firm decides it needs measures of 

the productivity of individual workers and machines.  In other words, it wants to scale 

these heretofore unscaled entities.  (The parallel with testing should be obvious.)  A 

measurement theorist is called in who observes that the data satisfy the conditions of a 

conjoint additive structure, inasmuch as workers and machines can be scaled such that the 

resulting isoquants in worker/machine space are linear and parallel.  The measurement 

theorist confidently announces that these scaled values represent worker and machine 

productivity, up to an arbitrary choice of unit of measurement and origin.   

Some time later the firm calls in a production engineer, who prowls around the 

shop floor with a stopwatch for a week, and then reports the following discovery: the 
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output of a worker/machine pair is a simple function of the downtime of the machine 

(beyond a worker’s control) and the amount of time the worker is goofing off.  That is, 

output Qwm = w m, where w is the proportion of time worker w is attending to his work, 

and m,is the proportion of time machine m is running properly.  There is no difference 

between workers otherwise: during their time on task with a functioning machine, all are 

equally productive.  The engineer therefore proposes w as the natural (and ratio-scaled) 

measure of employee productivity. 

It is then noted that the engineer’s productivity measure is not a linear 

transformation of the measurement theorist’s measure, in that the two variables differ by 

more than a choice of origin and unit.  (Indeed, the measurement theorist’s w = ln w.)

Yet each expert swears his measure has at least interval-scale properties, and each is 

right.  The two measures capture different properties of the relations between workers 

and machines.  The engineer doesn’t care that his metric ignores the information in the 

conjoint additive structure, because he relies on an alternative empirical relational system 

(one that includes the position of hands on a stopwatch) to scale the entities on the shop 

floor.  Both experts have produced interval scales, and it is up to the firm to decide which 

scale captures properties of the relations between workers and machines that most matter 

to it.

This example shows why the second of the three misconceptions cited above is 

false.  The parallel with testing is maintained if there is some other empirical relational 

system into which examinees and test items fit, affording an alternative metric.  

Suggestive examples are found in the education production function literature, in the 

form of back-of-the-envelope calculations of the benefits of various educational 
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interventions (e.g., the dollar value of higher achievement associated with smaller class 

sizes).  Whether this can be done with sufficient rigor to provide an interval scale for 

measuring student achievement (and whether it is desirable to construct one along these 

lines, if feasible) is a question to which I return below in Section V. 

Finally, the notion that the use of an IRT model (or a particular IRT model, such 

as the Rasch model) confers interval-scale status on the resulting  places the cart before 

the horse: it overlooks the requirement that the empirical relational system be a conjoint 

additive or polynomial conjoint structure.  Applying an IRT model willy-nilly to 

achievement test data does not of itself confer any particular properties on the scale score 

metric.14

IV.  Achievement Scales in Practice 

To summarize the argument of the preceding section, under stringent conditions, 

an IRT measure of ability can be shown to be an interval-scaled variable.  But there are 

two important caveats.  First, do the data meet these stringent conditions?  Second, might 

there be some other set of relations holding between examinees and test items that 

provides an alternative, and perhaps more satisfactory, basis for constructing an 

achievement measure with interval (or even ratio) scale properties?  I take up these 

questions in turn. 

It is highly unlikely that real test data meet the exacting definition of a conjoint 

structure.  At best, they come close, though it is not easy to say how close.  The theory 

                                                
14 Though an obvious point, this is not always appreciated by researchers.  Consider the following 
statement in a report of the Consortium on Chicago School Research.  Having rescaled the Iowa Test of 
Basic Skills using a Rasch IRT model, the authors claim to have produced a metric with interval scale 
properties:  “A third major advantage of the Rasch equating is that, in theory, it produces a ‘linear test score 
metric.’  This is an important prerequisite in studies of quantitative change.  This allows us to compare 
directly the gains of individual students or schools that start at different places on the test score metric.” 
(Bryk et al., 1998). 
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places restrictions on the equivalence classes of A1 x A2 (examinees crossed with items), 

but these classes are not given to us.  Instead, the data consist of answers to test items, 

often binary indicators of whether the answer was correct or not.  From these data the 

membership of the equivalence classes must be inferred before one can ascertain whether 

these classes can be represented by a set of linear, parallel isoprobability curves.  Because 

the theory stipulates restrictions that hold for every examinee, while the amount of data 

per examinee is small, there is little power to reject these hypotheses despite anomalies in 

the data.  Many restrictions might be accepted that would be deemed invalid if the actual 

Pij were revealed.

 IRT assumes that conditional on  and , the Pij are independent across items and 

examinees.  Although correlated response probabilities attest to the existence of 

additional latent traits that affect performance, unidimensional models are fit to the data 

anyway.  Sometimes it is clear even without statistical tests that the model does not fit the 

data.  Consider multiple choice exams, where the lower asymptote on the probability of a 

correct response is not zero.  The lower asymptote is more important for low ability than 

high ability examinees.  A conjoint structure for these data must take into account the 

lower asymptote as another factor determining Pij or the scaled values of examinee ability 

will be wrong.  Indeed, if responses to a multiple-choice exam are tested to see whether 

the definition of conjoint additivity is met, data that appear to meet this definition will no 

longer do so once guessing is factored in unless all items are equally “guessable.” 

Even when the data do fit the model, the extent to which they have been selected 

for just this reason should be kept in mind.  Indeed, it is not clear that the word data is the 

right one in this context, as the tests are designed by test makers who decide first on a 
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scaling model and then strive to ensure that their test items meet the assumptions of that 

model.15  Even if they are wholly successful in this endeavor, the “data” represent a 

selected, even massaged, slice of reality and not a world of brute facts.

Thus, notwithstanding the support given by representational measurement theory to IRT 

methods, IRT can fail to produce satisfactory interval scales. Verifying that the 

conditions of the theory are met is difficult even for test makers, let alone statisticians and 

behavioral scientists who use test scores for value added assessments.   

As the worker-machine example shows, even if test data satisfy the conditions of 

a conjoint structure, there might be some other scale with a claim to measure what we 

mean by achievement.  IRT scales have the peculiarity that the increase in ability 

required to raise the probability of a correct response by any fixed amount is independent 

of the difficulty of the question.  That is, raising the probability of answering a very 

difficult question from .1 to .9 takes the same additional knowledge as it does to raise the 

probability of answering a very simple item from .1 to .9.  (Observe that in this argument, 

.1 and .9 can be replaced by any other numbers one likes, for example .0001 and .9999.)  

That it takes the same increase in ability to master a hard task as an easy one follows 

directly from conjoint additivity (specifically, the parallel equiprobability contours that 

result when items and examinees are scaled to represent conjointness), but it may be 

difficult for many readers to square this notion with other ideas they entertain about 

achievement, based on the use of the term in other contexts:  how long it takes to 

                                                
15 For example, in the Rasch model items have a common discrimination parameter (their item 
characteristic curves do not cross).  Test makers using the Rasch model plot ICC’s and discard items that 
violate this assumption.  IRT also assumes that conditional on , probabilities of a correct response are 
independent over examinees.  Violations of this assumption lead items to be discarded on grounds of 
potential bias.  This is probably a good idea, but it further weakens the sense in which we are dealing here 
with the fit between a model and “data.” 
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accomplish these two tasks, how hard instructors must work, the extent to which a 

student who has mastered the more difficult item is in a position to tackle a variety of 

other tasks and problems, compared to the student who has mastered the easier item, and 

so forth.  In short, we may find ourselves in the position of the production engineer in the 

worker-machine example:  taking into account the other information we possess, we 

might find the scale derived from conjoint additivity lacking, notwithstanding its 

impeccable pedigree on purely formal grounds as an interval scale.

At this point it may be useful to examine some of the scales that have been 

produced using IRT methods.  If larger increments of ability (as measured by an 

alternative metric grounded in some of the aforementioned phenomena) are in fact 

required to produce the same change in Pij as questions become more difficult, IRT 

scaling will compress the high end of the scale, diminishing mean gains between the 

upper grades and reducing the variance in achievement.  Evidence that something of this 

kind occurs is found in developmental scales used to measure student growth across 

grades.  Students at different grade levels are typically given different exams, but by 

including a sufficient number of overlapping items on forms at adjacent grade levels, 

performance on one test can be linked to performance on another test, facilitating the 

creation of a single scale of ability spanning multiple grade levels.   

 Table 1 below, reproduced from Yen (1986), displays scores for the norming 

sample for the Comprehensive Test of Basic Skills (CTBS), Form Q, developed by 

CTB/McGraw-Hill and scaled using IRT methods for the first time in 1981.16   In both 

                                                
16 Prior to 1981 the CTBS was scaled using an older method known as Thurstone scaling.  Although it has 
been claimed that Thurstone scaling produces scores on an interval scale, there is no basis for this claim 
comparable to the proofs provided for conjoint measurement structures in representational measurement 
theory:  scale properties are not based on the structure of empirical relations holding among test items and 
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subjects, mean growth between grades drops dramatically, and almost monotonically, 

between the lowest elementary grades and secondary grades.   In addition, the standard 

deviation of scale scores declines as the mean score rises.    

 CTB/McGraw-Hill has since superseded the CTBS with the Terra Nova series.  

The decline in between-grade gains seen in the CTBS norming sample is still evident, 

though less pronounced, in Terra Nova results for Mississippi and New Mexico, as 

shown in Table 2.17  Mean gains in all subjects tend to decrease with grade level, though 

there is a break in the pattern between grades 7 and 8.

Between-grade gains can be affected by the differences in the content of tests and 

by linking error.  It is particularly instructive, therefore, to see the patterns that emerge 

when there are no test forms specific to a grade level and no linking error.  Northwest 

Evaluation Association uses computer-adaptive testing in which items are drawn from a 

single, large item bank.   Results for all examinees in mathematics in the fall of 2005 are 

presented in Table 3.   As in the previous tables, we again find that between-grade 

differences decline with grade level.  Within-grade variance in scores is stable (reading) 

or increases moderately (mathematics).   

 Because this is at base a dispute about how to use words, we need to be careful in 

discussing these phenomena.  If the test data in fact exhibit a conjoint structure (let us 

concede the point for now), the IRT  is an interval-scaled variable.  Yet this scale 

commits us to the conclusion that the variance of reading ability is no greater among high 

school students than second-graders.   Most of us, I suspect, would respond that this scale 

                                                                                                                                                
examinees, but on ad hoc assumptions about the distribution of ability in the population tested. 
17 Data are from www.SchoolData.org maintained by the American Institutes of Research.  New Mexico 
and Mississippi were two of a handful of states in these data that reported mean scale scores for vertically-
linked tests produced by test-makers known to employ IRT scaling methods.   
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fails to capture something about the word ability (or achievement) that causes us to recoil 

from such a conclusion.    

Readers wondering whether their own pretheoretical notions of these terms accord 

with the usage implied by IRT are invited to consider the sample of mathematics test 

items displayed in Figure 4, taken from the Northwest Evaluation Association web site.

The items are drawn from a larger chart providing examples of test questions at eleven 

different levels of difficulty.  The two selections represent items scored at the 171-180 

level and the 241-250 level, respectively.18  Consider the following question:  if student 

A is given the items in the first set, and student B the items in the second set, and if 

initially each student is able to answer only 2 of 7 items correctly, which student will 

have to learn more mathematics in order to answer all 7 items correctly?  Student A has 

basics of addition and subtraction to learn, as well (perhaps) as how to read simple ch

and diagrams.  None of the required calculations are taxing:  all could be done by 

counting on one’s fingers.  By contrast, student B must make up deficits in several of th

following areas:  decimal notation, fractions, factoring of polynomials, solving algebraic 

equations in one unknown, solid geometry, reading box plots, calculating percenta

The calculations required are more demanding.  However, the correct answer, according

to IRT, is that both require the same increase in mathematics ability.

arts

e

ges.
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19,

18 According to the data in Table 3, the average second grader tested in 2005 would have answered slightly 
more than half the questions in the first set correctly, while the average ninth grader would have responded 
correctly to slightly less than half the questions in the second set. 
19 Strictly speaking, this is the correct answer only if items have equal discrimination parameters, that is, 
the one-parameter IRT model fits the data.  In fact, NWEA does use the one-parameter model, and has 
gone to considerable lengths to verify that the items meet the assumptions of that model. 
12 When I put this question to faculty and graduate students of my department in the School of Education at 
Vanderbilt, 13 of the 108 respondents chose A, 47 chose B, 15 said the amounts were equal, and 33 said the 
answer was indeterminate.  Obviously this was not a scientifically-conducted survey, nor is it clear just 
what respondents meant by their answers.  Conversations with some revealed that they converted the 
phrase “more mathematics” into something more readily quantified, such as the amount of time a student 
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One might conclude from this evidence that psychometricians should not attempt 

to construct over-arching developmental scales for mathematics and reading ability that 

span so many age levels.  But other concerns are also raised.  Between-grade gains begin 

to decline at the lowest grade levels in Tables 1-3:  gains between third and fourth grades 

are markedly lower than gains between second and third.   Between-grade comparisons 

may matter little for value-added assessment, if most instructors, particularly in the 

elementary grades, teach only one grade level.  However, there are also implications for 

within-grade assessments.  If third graders are not in fact learning less than second 

graders—if instead IRT methods have compressed the true scale—then the true gains of 

higher-achieving students within these grades are understated.21

V.  Options for Value-Added Assessment

What options are available to the practitioner who wants to conduct value-added 

assessment but is unwilling to accept at face value claims that the IRT ability trait is 

measured on an interval scale?  Broadly speaking, there are three available courses of 

action. 

a.  Use the  scale anyway. 

                                                                                                                                                
would need to acquire these skills.  Persons who said the answer was indeterminate may have meant it was 
indeterminate in principle (“more mathematics” is meaningless) or simply that that answer couldn’t be 
determined from the information given.  Nonetheless, it is striking how few gave the psychometrically 
correct response.     

21 The phenomena of decreasing gains and diminishing or constant variance with advancing grade level has 
been treated in the psychometric literature under the heading scale shrinkage.  While a number of 
explanations have been advanced, these explanations typically assume there is a true IRT model that fits the 
data (with ability, perhaps, multidimensional rather than unidimensional), and that various problems (e.g. a 
failure to specify the true model, the small number of items on the test, changing test reliability within or 
across grades, ceiling and floor effects) prevent practitioners from recovering the true values of .
Psychometricians have disagreed about the extent to which these explanations account for the phenomena 
in question.  (For notable contributions to this literature, see Yen, 1985; Camilli, 1988; Camilli, Yamamoto, 
and Wang, 1993; Yen and Burket, 1997.)   By contrast, the point I am making here is that even in the 
absence of these problems, IRT scales are likely to exhibit compression at the high end when compared 
with pretheoretical notions of achievement grounded in a wider set of empirical relations.        
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b.  Choose another measure of achievement with an interval-scaled metric. 

c.   Adopt analytical methods suited to ordinal data. 

In this section I argue that neither a. nor b. is an attractive option.  I then go on to 

demonstrate the feasibility of c. 

a.  Using the  scale. 

Even if the IRT ability scale possesses at best ordinal significance, one might 

continue to use it if reasonable transformations of  all yield essentially the same 

estimates of value added.  (Compare the claim that statistics calculated from ordinal 

variables are generally robust to all but the most grotesque transformations of the original 

scale.22)   The practice of many social scientists who are aware that achievement scales 

may not be of the interval type but proceed with value-added assessment anyway 

suggests that this view may be widespread. 

Unfortunately, to test whether reasonable transformations of  yield essentially 

the same measures of value added requires some sense of what is reasonable.  Absent 

that, there may be a tendency for researchers conducting sensitivity analyses to decide 

that the alternatives that are reasonable are those that leave their original estimates largely 

intact.  The compression of scales displayed in Tables 1-3 suggests one possibility: 

assume an achievement scale in which average gains are equal across grades.  I have 

examined the consequences of adopting this alternative scaling for data from a sample of 

districts in a Southern state.23  Data are from mathematics tests administered in grades 2-

8 during the 2005-06 school year.  The tests were scaled using the one-parameter IRT 

                                                
22 Cliff (1996) attributes this remark to Abelson and Tukey (1959), but it does not appear in that paper.
23 Anonymity has been promised to both the state and test maker.  Data are available for only a portion of 
the state.  In addition, because between-grade growth is central to the analysis, only those districts that 
tested at least 90 percent of students in each grade are included.  The final sample comprised 98,760 
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model.  Results were similar to those we have seen in Tables 2-4, with near-monotonic 

declines in between-grade gains.  A transformation  = g( ) was sought that would 

equalize between-grade gains for the median student.24  It turned out that this could be 

closely approximated by a quadratic function increasing over the range of observed 

scores.  Figure 5 depicts the relationship between the transformed and original scaled 

values for the median examinee.  While one might object to the  scale on the grounds 

that median student gains are not equal across grades, tapering off as students approach 

adolescence, Figure 5 shows that the transformation from  to  is not driven by the 

upper grades—essentially the same curve would be found if data points for grades 7 and 

8 were dropped.  Moreover, g( ) exhibits only a modest departure from linearity.  It 

seems unlikely that many researchers would regard it as a grotesque transformation of the 

data.

Nonetheless, the consequences of this transformation for the distribution of 

growth are pronounced (Table 4).  At each grade level, I have calculated the change in 

(alternatively, ) required to remain at the 10th, 25th, 50th, 75th, and 90th percentiles of the 

achievement distribution when advancing to the next grade.  The absolute changes in 

and  that meet this criterion are affected by the magnitude of the median student growth 

(and are therefore scale dependent, i.e., they depend on choice of units).  However, 

relative changes are invariant to the choice of units.   Accordingly, column 1, top panel, 

presents the ratio of 25 to 10 (the change required to remain at the 25th percentile over 

                                                                                                                                                
students in grades 2 through 8 during the 2005-06 school year. 
24 To accomplish this, the original median scores were replaced with a new series in which the between-
grade gain was set to the overall sample median gain across all grades.  This left unchanged the second 
grade values but altered the values in subsequent grades, as shown in Figure 5.  A quadratic function of 
was then fit to the new series.  The fit, as shown, was exceedingly close, though on the resulting scale, 
median gains can vary by ±.5 points. 
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the change required to stay at the 10th percentile).  Comparable ratios for the 50th, 75th,

and 95th percentiles appear in the other columns.  The lower panel contains the same 

ratios for the  scale.

In the original scale, differences in growth at various points of the distribution are 

not pronounced.  The ratios are greatest in the fifth and sixth grades, but even here, there 

is not much difference between a student at the median and one at the 90th percentile.  By 

contrast, the ratios are much greater using the transformed scale and increase 

monotonically as we move to the right, from 25/ 10 to 90/ 10.  While the 

direction of the change is what we would expect on the basis of the preceding 

discussion—less compression at the high end of the -scale compared to the -scale—the 

magnitude of the difference is surprising.  The impact on value-added assessment 

depends on how students are distributed over schools and teachers.  Clearly, changes of 

the magnitude shown in Table 4 can make a great difference to teacher value added when 

that distribution is not uniform.  

b.  Changing the scale. 

Clearly nothing is gained by substituting percentiles, normal curve equivalents, or 

standardized scores for .  While all are used in the research literature, no one claims that 

they are interval-scaled.  However, two approaches merit discussion, not because they 

work any better, but because the view seems to be gaining currency that they do, or 

could.

The first, which I will refer to as binning, assigns every examinee to a group 

defined by prior achievement (e.g., deciles of the distribution of prior scores).  Gain 

scores are normalized by mean gains within bins, either through dividing by the mean 
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gain or standardizing with respect to the mean and standard deviation within each bin.  

The normalized gain scores are then used as raw data for further analysis, which could 

include value-added assessment of schools and teachers.  Examples of this approach are 

Springer (2008) and Hanushek et al. ( 2005).  In the latter study, binning is explicitly 

motivated by concern that the metric in which test results are reported does not represent 

true gains uniformly at all points of the achievement distribution.25

Binning does not solve the problem of scale dependence.  Binning merely 

declares that a normalized gain in one bin is to count the same as one that takes the same 

normalized value in another bin.  The declaration does not ensure that these two gains are 

equal when measured on the true scale (if such a thing exists).  Rather than solving the 

problem, binning is simply the substitution of a particular transformation for the  scale.   

The notion that binning represents a solution may derive from the fact that  

normalizing within bins removes much of the effect of any prior transformation of scale 

(for example, the substitution of the  scale for the  scale).  Differences between bins 

have no effect on value-added measures.  Only differences within bins matter (though 

these are still affected by the transformation whenever the slope of g( ) =  at a bin mean 

differs from 1).   Hence, the results of the binned analysis are less sensitive to prior 

transformations of the original scale.  This may have led some to believe that scale no 

longer matters as much.  This is not so, given that the normalized-within-bin scores are 

themselves just another transformation of .  Moreover, if invariance of this kind were 

                                                
25 A practice similar to binning has been used in the Educational Value-Added Assessment System 
(EVAAS) of the SAS Institute, wherein gain scores are divided by the gain required to keep an examinee at 
the same percentile of the post-test distribution that he occupied in the pre-test distribution (Ballou, 2005).  
Thus, for exams like the Iowa Test of Basic Skills that exhibit increasing variance at higher grade levels, 
the transformation pulls up gains of examinees whose pretest scores were below the mean and reduces 
gains of examinees whose pretest scores were above the mean.  There is no reason why this should be 
regarded as superior to using the original scale.    
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the sole desideratum, percentiles could be used in place of .  Percentiles are invariant to 

any increasing transformation of , but that does not make percentiles an interval scale of 

achievement.   

Suppose we decide that the problem of finding interval scales for academic 

achievement is intractable.  We still might be able to conduct value-added assessment if 

achievement—by whatever metric—could be mapped into other variables whose 

measurement poses no such difficulties.  This mapping could go backward to inputs or 

forward to outcomes.   In the former, academic achievement would be related to 

measurable inputs required to produce that achievement.  Thus, instead of worrying 

whether one student’s 5 point gain was really the equal of another student’s 5 point gain, 

we would concern ourselves with measuring the educational inputs required to produce 

either of these gains.  If those inputs (e.g., teacher time) turn out to be equal, then for all 

purposes that matter, the two gains are equivalent.  If those inputs turn out not to be 

equal, the teacher or school that has produced the gain requiring the greater inputs has 

contributed more and should be so recognized by value-added analysis. 

Forward mapping treats test scores as an intermediate output.  Value-added 

assessment would proceed by tying scores to long-term consequences. 

 “An important methodological issue…is the problem of choosing the correct metric with 
which to measure academic growth.  Because the metric issue is so perplexing, almost all 
researchers simply use the particular test at their disposal, without questioning how the 
test’s metric affects the results…The only solution I see to the problem of determining 
whether gains from different points on a scale are equivalent is to associate a particular 
test with an outcome we want to predict (say, educational attainment or earnings), 
estimate the functional form of this relationship, and then use this functional form to 
assess the magnitude of gains.  For example, if test scores are linearly related to years of 
schooling, then gains of 50 points can be considered equal, regardless of the starting 
point.  If the log of scores is linearly related to years of schooling, however, then a gain 
of 50 points from a lower initial score is worth more than a gain of 50 points from a 
higher initial score.  This ‘solution’ is, of course, very unsatisfactory, because the 
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functional form of the relationship between test scores and outcomes undoubtedly varies 
across outcomes.” (Phillips, 2000, p. 127) 

 As the final sentence of this passage suggests, we are very far from being able to 

carry out either of these programs.  Only some educational inputs are easily quantified.

For such inputs as the clarity of a teacher’s explanations or the capacity to inspire 

students, the challenges to quantification are at least as great as for academic 

achievement.  Indeed, the low predictive power of those inputs that are easily quantified 

is largely responsible for the current interest in value-added assessment.   

 The practical difficulty mentioned in the last sentence of the quoted passage is not 

the only problem facing the forward mapping of test scores to long-term educational 

outcomes.  Given the variation in test results in Tables 1-3, it would almost certainly be 

the case that the functional form of the relationship between test scores and outcomes 

would vary across tests as well as outcomes.  The introduction of each new test would 

require additional analysis to determine how scores on its metric were related to long-

term objectives like educational attainment and earnings.  In many cases, the data for 

such analysis would not be available for years to come, if ever.  In the interim we would 

have to make do with very imperfect efforts to equate the new tests with tests already in 

use (for which we would hope this mapping had already been done). 

 These are the technical issues.  There is in addition the difficult normative 

question of how to value various outcomes for different students in order to assign a 

unique social value to each i.  It is not obvious how we would come by these weights.  

Even if future earnings were the only outcome that mattered, we would require the 

relative values of a marginal dollar of future income for all examinees (whose future 

incomes are, of course, unknown at the time the assessment is done).  Attaching a price to 
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the non-pecuniary benefits of an education is still more difficult.  Education is a 

transformative enterprise.  The ex ante value placed on acquiring an appreciation of great 

literature is doubtless very different from the ex post value.  In these circumstances there 

is likely to be a great discrepancy between the compensating and equivalent variations 

associated with a given educational investment.  Accordingly, the weights in our index 

would have to reflect the values of “society” rather than the still-unformed persons to be 

educated.

 It is not clear that we should subject decisions about education to this kind of 

utilitarian calculus, as it fails to respect the autonomy of individuals.  There is a strong 

tradition in our polity of regarding educational opportunity as a right.  Individuals have a 

claim on educational resources not because distributing resources in this manner 

maximizes a social welfare function, but because they are entitled to the chance to realize 

their potential as individuals.  If we take this seriously, then the notion that teachers and 

schools are to be evaluated by converting test scores into the outputs that matter and 

weighting these outputs according to their social value is wrong-headed.  The point of 

education is to provide students with skills and knowledge that as autonomous persons 

they can make of what they will.  Teachers should therefore be judged on how 

successfully they equip their students with these tools—regardless of anyone’s views of 

the merits of the final purposes, within wide limits, for which students use them.   

c.  Analyzing test scores as ordinal data 

 The final option for researchers uncertain of the metric properties of ability scales 

is to treat such scales as ordinal, thus foregoing any analysis based on the distance 

between two scores.  On the assumption that  scales contain valid ordinal information 
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about examinees, statistics based on the direction of this distance remain meaningful.  

There are a variety of closely-related statistics of this kind (known generally as measures 

of concordance/discordance) employed in the analysis of ordinal data.  In this discussion 

I will not attempt to identify a particular approach as best.  Rather, my objective is to 

demonstrate the feasibility of such methods for value-added assessment. 

 Suppose we want to compare the achievement of teacher A’s class to the 

achievement of other students at the same grade level in the school system.  If A has n 

students, and teachers elsewhere in the system have m students, there are nm possible 

pairwise comparisons of achievement.  As only ordinal statements are meaningful, each 

pair is examined to determine which student has the higher score.  If it is A’s student, we 

count this as one in A’s favor (+1); if it is the student from elsewhere in the system, we 

count this as one against A (-1).  Ties count as zeros.  The sum of these counts, divided 

by the number of pairs, is known as Somers’ d statistic.  Somers’ d can be considered an 

estimate of the difference in two probabilities:  the probability that a randomly selected 

student from A’s class outperforms a randomly selected student from elsewhere in the 

system, less the probability that A’s student scores below the outsider.

 This procedure suffers from the obvious defect that no adjustment has been made 

for other influences on achievement.  In conventional value-added analyses, this might be 

accomplished through the introduction of prior test scores as covariates in a regression 

model or by conditioning on prior scores in some other manner.  An analogous procedure 

in the ordinal framework would be to divide students into groups on the basis of one or 

more prior test scores, compute separate values of Somers’ d by group, and aggregate the 

resulting statistics using the share of students in each group as weights.  In principle there 
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is no reason to restrict the information used to define groups to test scores.  Any student 

characteristic could be used to define a group.  Only data limitations prevent the 

construction of ever-finer groups.

 Results from an application of this approach are presented Table 5.  Because the 

data used in the previous example do not contain teacher identifiers, for this application I 

have used a different data set provided by a single, large district that contains student-

teacher links.  Two sets of value-added estimates are presented for teachers of fifth grade 

mathematics.  The first is the weighted Somers’ d statistic, based on pairwise 

comparisons of each teacher’s students to other fifth graders in the district.  To control for 

prior achievement, students were grouped by decile of the fourth grade mathematics 

score.  Students without fourth grade scores were dropped from the analysis.  The second 

value-added measure is obtained from a regression model in which fifth grade scores 

were regressed on fourth grade scores and a dummy variable for the teacher in question.  

Separate regressions were run for each teacher so that each teacher was compared to a 

hypothetical counterpart representing the average of the rest of the district, preserving the 

parallel with the Somers’ d statistic.  The coefficients on the dummy variables represent 

teachers’ value added.  Statistical significance was assessed using the conventional t 

statistics in the case of the regression analysis and jackknifed standard errors in the case 

of the ordinal analysis.

 How much difference does it make to teacher to be evaluated by the one method 

rather than the other?  The hypothesis that teachers are ranked the same by both methods 

is rejected by the Wilcoxon signed rank test (p = .0078).   The proportion of statistically 

significant estimates is higher using the ordinal measure (which is less sensitive to 
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noisiness in test scores):  86 of the 237 teachers are significant by this measure, compared 

to 64 by the other.  The maximum discrepancy in ranks is 229 positions (out of 237 

teachers in all).  In ten percent of cases, the discrepancy in ranks is 45 positions or more.   

 Depending on the uses to which value-added assessment is put, the question of 

greatest importance to teachers may be whether they fall at one end of the distribution or 

the other.  There are 59 teachers in each quartile of the distribution.  The two measures 

agree in 47 cases on the teachers in the top quartile, and in 48 cases on teachers in the 

bottom quartile.  Thus, if falling in the top quartile qualifies a teacher for a reward, 24 

teachers (more than a third of the number of awardees) will qualify or not depending on 

which measure is used.  A comparable figure applies to teachers placing in the bottom 

quartile, if that event is used to determine sanctions.   In a small number of cases (3), the 

effect of using one measure rather than the other is great enough to move a teacher from 

the top quartile to the bottom quartile. 

 In principle it is possible to condition on multiple variables (additional prior test 

scores, student demographic characteristics or SES) by defining groups as functions of 

several covariates.  In practice this is apt to exceed the capacity of the data.  Consider, for 

example, a data set containing prior test scores in two subjects, plus indicators of race and 

participation in the free and reduced-price lunch program.  If groups are defined by 

deciles of the two test scores plus two binary indicators, the total number of groups is 400 

(10x10x2x2).  In a district of moderate size, there could be many cells with only one 

observation and therefore no matching pair. 

 A two-stage method circumvents this difficulty.  In the first stage, multiple 

covariates are used to predict Prob(Yi>Yj) – Prob(Yj<Yi) for all pairs of students i and j, 
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where Y is the dependent variable of ultimate interest (e.g., end-of-year test scores in the 

current year).  The prediction is of the form iˆ = wk(Xki-Xkj) or wk sgn(Xki-Xkj),

depending on whether the Xk are themselves interval-scaled or ordinal.  The wk are 

weights that reflect how informative the different covariates are about sgn(Yi-Yj).  (For 

details, see Cliff, 1996.)

 In the second stage, the n students of one teacher are compared to the m students 

elsewhere in the same system, using iˆ  (or grouped values of iˆ ) as the covariate.  iˆ  is 

therefore analogous to a propensity score: it is a summary measure of the effects of the 

stage-one covariates on the probability that a student outranks other students, before

controlling for teachers.  The resulting measure of a teacher’s value added is based on 

her students’ performance relative to this prediction (in the ordinal sense, of course).

 Given that many achievement tests are now administered to thousands of students 

throughout a state, it is worth noting that all the data can be used in the first stage to form 

an ordinal prediction based on prior achievement, demographics, and SES, while 

continuing to rely on within-district comparisons in the second stage for the final 

measures of value added.26

VI.  Conclusion

Are IRT ability traits measured on an interval scale?  It seems hazardous to 

assume so.  Whether examinees and test items constitute a conjoint structure depends on 

the make-up of equivalence classes defined by the Pij, but those are not given.  Statistical 

testing can reveal whether the data are strongly inconsistent with this hypothesis, but 

moderate departures from the conjoint structure almost certainly go undetected.

                                                
26 Within district comparisons are preferred, given the impact of curriculum and other district policies on 
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Moreover, even if these conditions hold in the norming samples used by test-makers to 

calibrate item difficulties, this provides no assurance they will hold in the population of 

students to whom the test is finally administered.   

End users of the data, such as practitioners of value-added assessment, typically 

have no access to item-level data to test these assumptions themselves.  Moreover, even if 

the assumptions are met, conjoint additivity may not capture everything we want in a 

scale of achievement.  It would seem wise, then, to check the plausibility of the resulting 

scales.  On this count IRT ability scales often do poorly.  Gain scores frequently fall from 

one grade to the next.  While some of this may reflect adolescents’ declining interest in 

academic achievement, the patterns set in as early as third grade and the drop between 

second and third grade is often the largest.  In addition, IRT ability often shows a 

diminishing or constant variance from lower to higher grades.

What, then, is the practitioner of value-added assessment to do?  It is no good 

hoping that the choice of scale makes little difference to estimates of value added.  We 

have seen that reasonable transformations of the  scale can have a substantial effect on 

relative gains across the distribution of achievement.  No other scales with superior 

metric properties are at hand.  We can, however, use methods of ordinal data analysis on 

the assumption that IRT scales (or any of their monotonic transformations) at least permit 

us to rank students. 

Ordinal analysis changes the question we ask in value-added assessment.  Instead 

of measuring mean achievement of a teacher’s students vis-à-vis the students of a 

(hypothetical) average instructor, we ask what fraction of the former outperform the 

latter.  In ordinal analysis, as in regression-based methods, it is possible to control for 

                                                                                                                                                
achievement.     
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other influences in order to isolate the teacher or school’s contribution.  Clearly, if  is an 

interval-scaled variable, ordinal methods throw away valuable information.  Practitioners 

should ask themselves, however, whether they are so confident of the metric properties of 

 scales that they are willing to attribute differences between conventional estimates of 

value added and estimates based on ordinal analysis to the superiority of the former. 

Ordinal methods have other advantages.  They are likely to be more robust to 

measurement error in test scores and to various model misspecifications (though the 

question of robustness is a complicated one; see Cliff, 1996).  The question they answer 

may be a more sensible way to evaluate educators, given that it attaches more value to 

spreading gains over a wider number of students, compared to larger but more 

concentrated gains.  However, this paper has considered ordinal methods from one 

standpoint only—that of finding appropriate value-added models when test scores are not 

expressed on an interval scale.  Numerous questions have been raised about the 

assumptions and methods of more conventional regression-based analyses.  Some of 

these concerns can be addressed through modifications of those models.  It remains to be 

seen whether the same concerns arise with respect to ordinal methods and, if so, how 

readily they can be accommodated within the ordinal framework.   
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Table 1:  Scale Scores for Comprehensive Test of Basic Skills, 1981 Norming Sample 

Reading/Vocabulary
Mathematics 
Computation 

Grades 
Mean
Score

Std.
Dev.

Mean
Between-
Grade Change Mean Score Std. Dev. 

Mean
Between-
Grade
Change

1 488 85           ---- 390 158        --- 
2 579 78 91 576 77 186
3 622 65 43 643 44 67
4 652 60 30 676 35 33
5 678 59 26 699 24 23
6 697 59 19 713 20 14
7 711 57 14 721 23 6
8 724 54 13 728 23 7
9 741 52 17 736 17 8

10 758 52 17 739 16 3
11 768 53 10 741 18 2
12 773 55 5 741 20 0

Source: Yen (1986).
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Table 2:   Mean Between-Grade Differences, Terra Nova

Subject_Year 2nd to 3rd 3rd to 4th 4th to 5th 5th to 6th 6th to 7th 7th to 8th 8th to 9th

Mississippi, 2001 
Language Arts 30.2 20.4 17.8 6.9 9.9 10.9    ---- 
Reading 23.8 21.5 15.5 10.5 9.2 12.4    ---- 
Math 47.3 24.7 19.0 21.7 10.7 17.0    ---- 

New Mexico, 2003 
Language
_Arts_2003       ---- 14.8 12.6 5.1 3.7 4.5 8.3
Reading_2003       ---- 14.4 13.8 5.0 4.7 11.4 4.9
Math_2003       ---- 21.1 14.6 19.0 5.5 16.5 5.4
Science_2003       ---- 20.2 13.9 9.0 11.6 11.9 7.1
History/SS_2003       ---- 13.3 6.2 11.2 11.5 3.6 3.6

Source:  Author’s calculations from school-level data posted on www.SchoolData.org, maintained  
by American Institute of Research.   Data for each school are weighted by enrollment and 
aggregated to the state level. 



42

Table 3:  Scale Scores, Northwest Evaluation Association, Fall, 
2005

Reading Mathematics 
Grade Mean Std Change Mean Std Change

2 175.57 16.22       ---- 179.02 11.81        ---- 
3 190.31 15.56 14.74 192.96 12.06 13.95
4 199.79 14.95 9.48 203.81 12.80 10.85
5 206.65 14.60 6.86 212.35 13.92 8.53
6 211.49 14.76 4.84 218.79 15.00 6.44
7 215.44 14.82 3.96 224.59 15.99 5.80
8 219.01 14.76 3.56 229.38 16.79 4.79
9 220.93 15.28 1.92 231.76 17.42 2.38

Source:  Author’s calculations from data provided by NWEA. 
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Table 4:  Effect of Scale Transformations on Between-Grade Growth 

Relative to students at the 10th percentile, growth by students at the: 

25th percentile Median 75th percentile 90th percentile 

Original Scale
2nd to 3rd 0.97 1.06 1.03 0.95
3rd to 4th 1.10 1.03 1.16 1.34
4th to 5th 0.96 1.15 1.35 1.23
5th to 6th 1.61 2.12 2.17 2.24
6th to 7th 1.21 1.39 1.43 1.62
7th to 8th 1.16 1.17 1.16 1.13

Transformed Scale 
2nd to 3rd 2.63 5.06 6.83 7.90
3rd to 4th 1.69 2.10 2.93 3.95
4th to 5th 1.30 1.94 2.74 2.87
5th to 6th 2.12 3.48 4.25 4.91
6th to 7th 1.60 2.29 2.79 3.50
7th to 8th 1.51 1.89 2.17 2.35

Data:  Mathematics test results furnished to author from a Southern state, 2005-06.
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               Table 5:  Comparison of Conventional and Ordinal Measures
                                      of Teacher Value Added 

Total number of teachers 237
Wilcoxon signed ranks test, p-value 0.0078
Maximum discrepancy in ranks 229
Absolute discrepancy in ranks, 90th percentile 45
Number of statistically significant teacher effects, fixed effect estimate 64
Number of statistically significant teacher effects,ordinal estimate 86
Number of significant effects by both estimates 55
Number ranked in the top quartile 59

Number ranked in the top quartile by both estimates 47

Number ranked in the bottom quartile by both estimates 48
Number ranked above the median by one estimate, below the median 
by the other 14

Number ranked in the bottom quartile by one, top quartile by the other 3

Data: 5th grade mathematics teachers, large Southern district, 2005-06, 
author’s calculations. 
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Figure 1:  Item Characteristic Curves
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Figure 2:  A  Conjoint Additive Structure, Prior to Scaling

Examinees

Te
st

 It
em

s



47



48

 Figure 4: Math Items, Two Hypothetical Students 
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Source:  Northwest Evaluation Association RIT Charts, Sample Mathematics Items, 
2008.
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