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a b s t r a c t

Peterson and Heil [Hear. Res., In Press] have argued that the statistics of spontaneous spiking in auditory
nerve fibers (ANFs) can be best explained by a model with a limited number of synaptic vesicle docking
(release) sites (� 4) and a relatively-long average redocking time (�16e17 ms) for each of the sites. In
this paper we demonstrate how their model can be: i) generalized to also describe sound-driven ANF
responses and ii) incorporated into a well-established and widely-used model of the entire auditory
periphery [Zilany et al., J. Acoust. Soc. Am. 135, 283e286, 2014]. The responses of the new model exhibit
substantial improvement in several measures of ANF spiking statistics, and predicted physiological
forward-masking and rate-level functions from the new model structure are shown to also better match
published physiological data.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

In the mammalian ear, excitation of auditory nerve fibers (ANFs)
is achieved via release of neurotransmitter contained in synaptic
vesicles at the basolateral wall of inner hair cells (IHCs), as illus-
trated in Fig. 1. While this synapse shares many characteristics with
other synapses in the mammalian nervous system, it also has some
specializations that enable high firing rates and temporal precision
in ANF spiking (see Safieddine et al., 2012, for a recent review). IHCs
have specialized presynaptic zones with a presynaptic ribbon that
helps traffic vesicles to the release sites. A number of proteins are
thought to form the docking sites that facilitate exocytosis of the
vesicles, although the exact location and form of the docking pro-
teins in IHCs is still somewhat uncertain. The influx of calcium
through voltage-dependent calcium channels provide the trigger
for neurotransmitter release. The dynamics of this synaptic release
process, along with the dynamics of the postsynaptic receptor
channels and the intrinsic dynamics of action potential generation
e), erfani.yousof@gmail.com
in ANFs, will contribute to the spiking statistics of ANFs that lay the
foundation for neural coding of sound.

Analyses of the statistics of action potentials from the first few
decades of recording in single ANFs led to the widespread approach
of modeling the spiking statistics as a renewal process, where the
spiking probability is dependent on the time of the previous spike
but not on the earlier history of spiking (e.g., Johnson and Swami,
1983). The renewal process that best described the data was a
Poisson process modified by a recovery process that takes into ac-
count the refractory properties of ANFs (e.g., Johnson and Swami,
1983; Li and Young, 1993). A Poisson process produces exponen-
tially distributed intervals between events, and refractoriness re-
duces the chances of obtaining short interspike intervals (ISIs). The
Poisson statistics (before refractoriness) could arise from a large
number of synaptic vesicle docking sites at the presynaptic mem-
brane, each with a small probability of release. The recovery pro-
cess is normally split into an absolute refractory period, where no
spikes can occur, and a relative refractory period, where the
discharge probability is reduced.

Some analyses have suggested two time scales for the relative
refractoriness of ANFs (Gaumond et al., 1982, 1983; Li and Young,
1993), leading Carney (1993) to include a double-exponential re-
fractory recovery (with time constants of 0.8 and 25ms) in her
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Fig. 1. Illustration of the inner hair cell (IHC) to auditory nerve fiber (ANF) synapse. Note that there may only be a limited number of vesicle docking sites formed by docking protein
complexes from which neurotransmitter can be released across the synaptic cleft. After exocytosis of a vesicle, it may take some time for a new vesicle to be transported from the
synaptic ribbon to the empty docking site. Similarly, after redocking it may take some time for another vesicle on the ribbon to be brought into proximity with the docking sites.
Note that the depiction of the docking sites is for illustration onlydthe exact location and form of the docking proteins in IHCs is still somewhat uncertain (e.g., see Safieddine et al.,
2012). Adapted with permission by R. Nouvian from http://www.inmfrance.com/inm/fr/audition/90-lar-determinants-of-hair-cell-exocytosis.
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influential model of the auditory periphery. These time constants
were changed to 1 and 12.5ms in the next version of the model
(Zhang et al., 2001) and retained in all the subsequentmodels in the
series (Heinz et al., 2001; Bruce et al., 2003; Tan and Carney, 2003;
Zilany and Bruce, 2006, 2007; Zilany et al., 2009, 2014).

However, analyses of the refractory properties of ANFs electri-
cally stimulated from a cochlear implant, and thus bypassing the
inner hair cell (IHC) synapse onto the ANF, have not shown evi-
dence of any refractory component with a time constant on the
order of 12.5e25 ms (Cartee et al., 2000, 2006; Miller et al., 2001).
Furthermore, a number of studies have now demonstrated that
ANFs have fractal rather than renewal properties, where the spiking
probability fluctuates over time and depends on the long-term
history of spike times (Teich and Khanna, 1985; Teich, 1989; Teich
et al., 1990; Lowen and Teich, 1992; Peterson et al., 2014). The
fluctuation over time was incorporated into the Zilany et al. (2009,
2014) auditory periphery models as a fractional Gaussian noise
(fGn; Jackson and Carney, 2005) in the presynaptic adaptation
section of the model, which could be caused by channel noise in
voltage-gated ion channels of the IHC (Moezzi et al., 2014, 2016).
However, the spike generation section of Zilany et al. (2009, 2014) is
a renewal process with double-exponential relative refractory re-
covery, as stated above.

Peterson et al. (2014) have argued that the longer component of
the recovery process could actually be due to a smaller number of
synaptic vesicle docking sites and depression of the release prob-
ability due to depletion of docked vesicle. Moezzi et al. (2014), also
investigated the action of presynaptic depression in their version of
the Meddis (2006) model but had a shorter depression time and a
larger number of release sites than did Peterson et al. (2014), and
Moezzi et al. (2014) did not differentiate between long and short
components of the recovery process. Peterson and Heil (In Press)
reformulated their deterministic model of Peterson et al. (2014)
into a probabilistic model, making it suitable for incorporation
into the phenomenological auditory peripherymodel of Zilany et al.
(2009, 2014). However, the model of Peterson and Heil (In Press)
focussed on the spontaneous activity of ANFs and thus did not
incorporate the adaptation properties required to describe sound-
evoked ANF responses.

In this paper we: i) describe how the model of Peterson and Heil
(In Press) can be generalized to sound-driven activity including
adaptation effects, ii) derive analytical estimates of the mean and
variance in firing rate for this synapse-ANF model, and iii)
demonstrate how the modified synapse model produces improved
predictions of a number of sets of published ANF data.

2. Model structure and computational implementation

Fig. 2A shows a schematic of the phenomenological model of the
auditory periphery. The input is a sound-pressure wave at the
eardrum and the output is simulated spike times from an ANF with
a given characteristic frequency (CF). The old and new synapse and
spike generator model structures are compared in panels B and C,
respectively, of Fig. 2. The modified model structure and parameter
values were adjusted based on model predictions of the published
physiological data given in the Results section and the Supple-
mentary Material. In addition, we ran further simulations (not
shown) to confirm that other response properties that were opti-
mized in previous versions of the model were not compromised by
the modifications.

The new model considers the case of 4 synaptic vesicle docking
sites for exocytosis (see Fig. 1), as was found by Peterson et al.
(2014) and Peterson and Heil (In Press) to best explain the statis-
tics for spontaneous activity in ANFs. Peterson et al. (2014) and
Peterson and Heil (In Press) proposed a fixed mean time for an
empty docking site to be replenished with a new vesicle (which we
will refer to as “redocking” in this article) in the range 13.5e17 ms.
This fixed mean redocking time can produce the rapid (� 2 ms)
exponential adaptation implemented previously in the auditory-
periphery model by the Westerman and Smith (1988)
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exponential adaptation model (see Fig. 2B) but not the short-term
(~60 ms) adaptation component.

Thus, in the new model, an adaptive redocking mechanism is
implemented, which allows for the removal of the Westerman and
Smith (1988) model from its previous location before the power-
law adaptation (PLA) model, replaced with a gently-saturating
nonlinearity (compare panels B and C of Fig. 2). In order to give a
physiologically-realistic dependence of ANF threshold on CF and
spontaneous rate (SR), the saturating nonlinearity is dependent on
both of these model parameters and is given by:

PLAin ¼ signðVihcÞ � 10ð0:9�log10ðjVihc�CFfactorjÞþMULTfactorÞ þ 3� SR ;

(1)

where PLAin represents the input to the power-law adaptation
function and has units of /s, Vihc denotes the IHC's relative trans-
membrane potential in units of V, CF has units of Hz, and SR has
units of /s. In order to provide the correct ANF spontaneous firing
rate, the constant term of 3� SR is included in the mapping func-
tion, the output of which is subjected to power-law adaptation. It
was found that, for the current set of power-law parameters, this
constant term produced the correct spontaneous rate (zSR) at the
ANF spike output. Also, incorporating this constant term before the
PLA provides the desired adaptation response at the offset of a
stimulus, which is characterized by a pause followed by the slow
recovery to the spontaneous rate. Note that the fGn in the slow PLA
path prevents the spontaneous rate from continuously adapting
down to a value of zero. The two factors, CFfactor and MULTfactor, are
determined according to:

CFslope ¼ SR0:19 � 10�0:87; (2)

CFconst ¼ 0:1� ðlog10ðSRÞÞ2 þ 0:56� log10ðSRÞ � 0:84; (3)



Table 1
Distributions of the parameter SR for the three spont-rate classes.

SR class mean (/s) std. (/s) limits (/s)

Low 0.1 0.1 [1� 10�3,0.2]
medium 4 4 [0.2,18]
High 70 30 [18,180]
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CFsat ¼ 10ð8:9655�CFslopeþCFconstÞ; (4)

CFfactor ¼ 2�min
�
CFsat;10

�
CFslope� CF

1000þCFconst

�
�
; (5)

MULTfactor ¼ max
�
4:3� CF

5000
;2:95�max

�
1;1:5� SR

100

��
:

(6)

Power-law adaptation describes an adaptation process that is
scale invariant, i.e., it continues to adapt no matter the length of the
stimulus rather than having fixed time constants (Drew and Abbott,
2006). Zilany et al. (2009) introduced PLA into their synapse model
in order to obtain much improved predictions of ANF responses to
on-going stimulation. In this paper, the amount of PLA has been
adjusted by changing the parameter a (from 2:5� 10�6 to
1:5� 10�6) in the slow power-law path to replicate the AN re-
sponses more accurately to forward-masking paradigms (Harris
and Dallos, 1979).

To produce short-term adaptation (with a time constant of � 60
ms) in the new synapse model, an adaptive mean redocking time is
implemented according to the dynamics:

trd
�
nþ 1

� ¼
8><
>:

trd½n� þ 0:4� 10�3$Nrd½n�; if  Nrd½n�>0;

trd½n� þ
14� 10�3 � trd½n�

60� 10�3 Dt; if  Nrd½n� ¼ 0;

(7)

where trd½n� has units of seconds, Nrd½n� is the number of synaptic
redocking events that have occurred during time step n, which has
a duration of Dt seconds, and trd is initialized to a value of trd½0� ¼
13:6� 10�3 þ 0:02� 10�3,SR seconds. The adaptation in themean
redocking time can be explained in terms of an increase in the
mean redocking time occurring after a synaptic redocking event
because the vesicle that has docked will need to be replaced at its
previous position on the synaptic ribbon by a more distant vesicles
(see Fig.1), and a decay in themean redocking time back toward the
resting value if no redocking events occur.

The computational implementation of the synaptic release and
redocking is as follows. For the j th of N synaptic release sites, the
time interval Trd;i;j from the i th synaptic release to a vesicle
redocking is modeled as an exponentially-distributed random
number with mean trd½n� where n corresponds to the time step of
the i th release. Synaptic release is driven by the output of the
power-law adaptation stage, the variable SoutðtÞ, which determines
the average synaptic release rate across all docking sites if they have
docked vesicles at that time. Thus, the average rate of release at one
site if it has a docked vesicle is SoutðtÞ=N. Therefore, the time from
the last redocking to the next synaptic release at the j th site is
computed via numerical integration according to:

Ztiþ1;j

ti;jþTrd;i;j

SoutðtÞ
N

dt � ei;j; (8)

where ti;j is the time of the i th synaptic release for the j th site, tiþ1;j
is the time of the next synaptic release on that site, and ei;j is an
exponentially-distributed random number with a mean of 1.

Following Peterson et al. (2014) and Peterson and Heil (In Press),
synaptic release from any of the N sites in time step n can generate
an action potential in the model ANF as long as it is not in a re-
fractory state. Peterson et al. (2014) and Peterson and Heil (In Press)
used a fixed absolute refractory period of 0.6ms and an
exponentially-distributed relative refractory period with a mean
duration of 0.6ms. However, the data of Miller et al. (2001) indicate
that ANFs may each have different values for their absolute and
relative refractory periods. Furthermore, the data of Li and Young
(1993) indicate that the effective relative refractory period may
be shorter for higher synaptic release rates, which would be
consistent with multiple postsynaptic potentials being more likely
to sum temporally to reach the elevated threshold potential
observed during relative refractoriness.

Thus, in the newmodel tabs can take a range of values uniformly
distributed over the range ½208:5 ms;691:5 ms�. This range is based
on the distribution from Miller et al. (2001), which is obtained by
intracochlear electrical stimulation, but was scaled by a factor of
1.5. This scaling takes into account that electrical stimulation can
lead to action potential generation on a range of nodes of Ranvier of
an ANF, which can shorten the effective absolute refractory period,
whereas for acoustic stimulation the action potential is thought to
always occur at the node of Ranvier closest to the synapse from the
IHC. Again based on the distribution from Miller et al. (2001), the
baseline mean relative refractory period ~trel can take a range of
values uniformly distributed over the range ½131:0 ms;894:0 ms�.
Miller et al. (2001) did not report on whether the absolute and
relative refractory period values were correlated in their data, but
the computational models of Negm and Bruce (2014) and Boulet
and Bruce (2017) suggest that voltage-gated ion channels in ANFs
that influence refractoriness tend to have an effect on both the
absolute and the relative refractory period. Therefore, in the new
model we make these values fully correlated, i.e., a single
uniformly-distributed pseudorandom is generated for each ANF
and scaled according to the different distributions for tabs and ~trel.
To make the effective relative refractory period shorter for higher
synaptic release rates, the mean relative refractory period for time
step n is then computed according to:

trel
�
n
� ¼ min

�
K ~trel
Sout½n�;

~trel

	
; (9)

where the factor K ¼ 100 /s (the same units as Sout½n�), such that
trel½n� and ~trel share the same units.

Fractional Gaussian noise is a generalization of the common
white Gaussian noise process to include long-range temporal
dependence (Jackson and Carney, 2005). Zilany et al. (2009)
introduced fGn into their synapse model in order to describe the
nonstationarity observed in the long-range firing rates of ANFs.
Peterson and Heil (In Press) argued that the standard deviation of
the fGn in the Zilany et al. (2009, 2014) model (see panels B and C of
Fig. 2) should be reduced substantially. In this study we found it
sufficient to reduce the fGn standard deviation to a value of 1 /s for
low-spont fibers, 10 /s for medium-spont fibers and SR/2 /s for
high-spont fibers. In the model of Zilany et al. (2009, 2014), the fGn
was sufficient to explain the distribution of spont rates with just a
single value of the parameter SR for each spont-rate class, i.e., high,
medium and low. However, the reduction of the standard deviation
of the fGn in the new model means that, to accurately predict the
spont-rate histogram obtained from ANF recordings in cat, the
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value of SR for each ANF in the new model must be drawn from a
Gaussian distribution with the means, standard deviations and
limits for each of the three spont-rate classes as given in Table 1.

Model code is provided in the Supplementary Material.
3. Analytical approximations of mean and variance in firing
rate

In Zilany et al. (2014), analytical approximations were provided
for the mean and variance in the firing rate, taking into consider-
ation the effects of absolute refractoriness. Analytical approxima-
tions are helpful in uses of the model that require estimates of the
mean and variance in firing rate, such as the application of signal
detection theory to model neural activity to predict perceptual
performance (e.g., Heinz et al., 2002), because obtaining reliable
estimates of the mean and variance from the model's spike train
outputs can require hundreds or thousands of trials. The spiking
statistics are more complicated in the new model, but analytical
approximations can still be derived if we consider the case where
Sout, trd and trel are constant.

Following a release event at the j th of N docking sites, the
redocking times Trd;j will be exponentially distributed with a mean
redocking time of trd, i.e.:

fTrd;jðtÞ ¼

8><
>:

0; for t <0;

1
trd

e�t=trd ; for t � 0:
(10)

Following a redocking event at the j th of N docking sites, release
times Trl for a total mean release rate of Sout divided equally be-
tween the N sites will be exponentially distributed according to:

fTrl;jðtÞ ¼
8<
:

0; for t <0;

Sout
N

e�tSout=N; for t � 0:
(11)

The distribution of intervals between synaptic release events at
the j th of N docking sites Tj can be obtained by convolving the
exponential distributions for the redocking time Trd;j and the
release time Trl;j to obtain:

fTj ðtÞ ¼

8><
>:

0; for t <0;

Sout
Souttrd � N

n
e�t=trd � e�Soutt=N

o
; for t � 0:

(12)

Note that while the above expression may appear to be unde-
fined for trd ¼ N=Sout, the limit of the expression as trd/N=Sout is
t e�t=trd=t2rd, corresponding to a gamma distribution with shape
parameter 2, as noted by Peterson and Heil (In Press).

Peterson and Heil (In Press) refer to two different approaches to
determining the distribution of intervals between release events T
for the superposition of N renewal processes. While these two
methods give equivalent distributions, the new method of Torab
and Kamen (2001) gives a simpler expression for the general case
of N processes (see Eq. (16) of Peterson and Heil, In Press) than does
the older method of Cox and Smith (1954). However, in our
methodology to incorporate the effects of refractoriness (described
below), we have only been able to find a closed-form solution using
the approach of Cox and Smith (1954) for specific values of N.

From Cox and Smith (1954), the superposition of N renewal
processes described by (12) gives a distribution of intervals be-
tween release events T that can be found via:
fTðtÞ ¼ � d
dt

8<
:FcðtÞ

2
4Z∞

t

FcðxÞ
E
�
Tj
�dx

3
5
N�19=

;; (13)

where FcðtÞ is the complementary cumulative distribution function
corresponding to the single-site distribution of Tj given by (12) and
E½Tj� is the mean time between release events at a single site.

From (12), the complementary cumulative distribution function
of Tj is:

FcðtÞ ¼ 1�
Zt

�∞

fTj ðxÞdx (14)

¼ 1� N � Souttrd � Ne�Soutt=N þ Souttrde�t=trd

N � Souttrd
(15)

¼ Ne�Soutt=N � Souttrde�t=trd

N � Souttrd
; (16)

and the expected value for intervals between releases at the j th of N
docking sites is:

E
�
Tj
� ¼

Z∞

�∞

tfTj ðtÞdt (17)

¼
Z∞

0

t$
Sout

Souttrd � N

n
e�t=trd � e�Soutt=N

o
dt (18)

¼ trd þ N
Sout

: (19)

Solving for (13) for the case of N ¼ 4, given the expressions
obtained in (16) and (19), the distribution of release-event intervals
superimposed for the 4 docking sites is then:

fTðtÞ¼
�
trdþ

4
Sout

��3�Sout
4

� 1
trd

��4

8>>><
>>>:
6e

�t

�
Sout
2 þ 2

trd

��
Sout
4

þ 1
trd

�2

þS4out t
2
rd e

� 4 t
trd

64
þ64e�Sout t

S2out t
4
rd

�
S2out t

2
rd e

�t
�

Sout
4 þ 3

trd

��
Sout
4 þ 3

trd

�2
16

�
16e

�t
�

3 Sout
4 þ 1

trd

��
3Sout
4 þ 1

trd

�2
S2out t

2
rd

9>>>=
>>>;

(20)

Note that the above expression does not capture the de-
pendency of the inter-event distribution on the history of the
process preceding themost recent synaptic release event. However,
a renewal process approximation to the actual release-redocking
process can be formed by drawing independent synaptic release
intervals from this distribution. Because of the independence of the
intervals, this approximation is not appropriate for describing the
variability in spiking within a spike train, but it is accurate in
describing the variability in spike counts across spike trains gener-
ated with the same values of Sout, trd and trel (as will be
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demonstrated in the Results section), such as is used in applications
of analytical signal detection theory utilizing the model.

The effects of refractoriness on the distribution of ISIs can be
approximated well by multiplying the distribution of super-
imposed release-event intervals with the cumulative distribution
function for recovery from refractoriness and rescaling the distri-
bution to have an area of 1. Because of the exponential form of the
refractory period distribution, these operations can be achieved by
convolving the distribution from (20) with the refractory period
Tref distribution:

fTref ðtÞ ¼

8><
>:

0; for t < tabs;

1
trel

e�ðt�tabsÞ=trel ; for t � tabs:
(21)

Solving for the mean and variance of the refractory-modified
ISIs gives:

E½ISI� ¼ trd
4

þ tabs þ trel þ
1

Sout
(22)

and

var½ISI� ¼ 6t2rd
ðSouttrd þ 4Þ3

� 33t2rd
8ðSouttrd þ 4Þ2

� 24t2rd
ðSouttrd þ 4Þ4

þ 729t2rd
256ð3Souttrd þ 4Þ �

243t2rd
256ðSouttrd þ 12Þ þ

1
S2out

þ t2rd
16

þ t2rel:

(23)

Also from Cox and Smith (1954), the mean of the ANF firing rate
can then be obtained via:

E½rate� ¼ 1
E½ISI�; (24)

and the mean of the spike count in a time bin of length Dt will then
be:

E½count� ¼ E½rate�Dt: (25)

Because the process is non-Poissonian, the variance in spike
count will depend on the size of the time bin Dt. For Dt/∞:

var½rate�Dt/∞z
var½ISI�
E½ISI�3

; (26)

while for Dt/0, the variance approaches that of a Poisson process,
i.e.,:

var½rate�Dt/0zE½rate�; (27)

and for finite time bin sizes the variance will fall somewhere be-
tween these values. The variance of the spike count in a time bin of
length Dt will then be:

var½count� ¼ var½rate�Dt; (28)

where var½rate� is obtained from either (26) or (27), depending on
the whether the time bin size is relatively long or relatively short.

In addition to spike trains generated from the computational
model described in the previous section, the provided code outputs
values for (24) and (26) in each time bin n based on the values of
Sout½n�, trd½n�, tabs and trel½n�.
4. Results

Overall, the simulation results from this study exhibited equal or
improved accuracy in predicting published ANF data compared to
the results of Zilany et al. (2009, 2014). We first show that the onset
and offset adaptation behavior of the new model is consistent with
the published data and the previous model, despite the change in
synapse model structure. We then show a series of simulation re-
sults for cases where there were substantial improvements ach-
ieved by the new model. Additional comparisons between
published data and model predictions are provided in the Supple-
mentary Material.

In response to a brief tonal stimulus, ANFs exhibit an onset
response that decays with rapid (2ms time constant) and a short-
term (60ms time constant) adaptation towards a steady-state
response, as illustrated by the peri-stimulus time histograms
(PSTHs) of the two example cat ANFs in Fig. 3A. At the offset of the
stimulus, the response drops below the spontaneous firing rate
(often to a rate of zero spiking) before returning gradually back to
the spont rate. Even with the change in the synapse model struc-
ture from the 2009/2014 model, the adaptation behavior is rela-
tively similar (cf. Fig. 5 of Zilany et al., 2009). It was found in Zilany
et al. (2009) that the double-exponential adaptation of the West-
erman and Smith model could explain the rapid and short-term
onset adaptation but power-law adaptation (PLA) is required to
predict the depth and time-course of the offset adaptation. In the
new model, power-law adaptation is still required to predict offset
adaptationdcompare panels B and C (models with PLA) of Fig. 3
with panels D and E (models without PLA). In regards to the
onset adaptation, both the PLA and the adaptive redocking
contribute to the short-term onset adaptation component. A model
variant with the mean redocking period fixed at 16ms (rather than
adaptive) and lacking PLA (panel E) shows an abrupt drop from the
peak of the onset response to the steady-state, corresponding to an
absence of a short-term (�60ms) adaptation component. Adding in
PLA but keeping the redocking fixed produces a more realistic
short-term onset adaptation components for the low-spont model
fiber (right-hand plot of panel C) but not for the high-spont model
fiber (left-hand plot of panel C). A short-term adaptation compo-
nent is more evident in both high-spont and low-spont model
variants with adaptive redocking but no PLA (panel D), but themost
physiologically-realistic time courses for the PSTHs are obtained
with PLA and adaptive redocking (panel B).

An important aspect of ANF adaptation is its behavior in
response to change in the amplitude in an ongoing stimulus. Fig. 4
provides a comparison of gerbil ANF data from Westerman and
Smith (1987) and predictions from the new model for the case of
increments in the amplitude of an ongoing tonal stimulus. PSTHs
for the gerbil data are shown in panel A, while PSTHs for the model
are shown in panel B. In each subpanel, the stimulus has a different
initial (or “background”) level (given in dB re. the fiber's threshold),
and 300ms after the stimulus onset the level is stepped up to 43 dB
(re. threshold). It can be observed that the lowest initial level
(10 dB) produces a small initial onset response but a large onset
response to the increment. As the initial level increases, the initial
onset response grows in amplitude, and there is a corresponding
decrease in the amplitude of the onset response to the increment at
300ms. This behavior is also produced by the newmodel (panel B).
This conservation of the total onset response (the sum of initial and
increment responses) is quantified in panels C (data) and D (model)
by fitting each onset response of the PSTH with a functionwith two
exponential components and a steady-state component. The firing
rates of the fitted exponentials are multiplied by their time con-
stants to give what Westerman and Smith refer to as the “inte-
grated transient response components”. The subpanels of C and D
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show the integrated responses for the rapid component of the
onset (�2ms time constant) and for the short-term component
(�60ms time constant). In both the data and the new model, a
trade-off between the initial (background) onset response and the
increment onset response is observed such that the total response
for both the rapid and the short-term components of the onset
remains fairly constant as a function of the initial level. Again, even
with the change in the synapse model structure from the 2009/
2014 model, this conservation in the adaptation for the increment
paradigm is relatively similar to the previous version of the model
(cf. Fig. 8 of Zilany et al., 2009). Model variants with a fixed (rather
than adaptive) redockingmechanism or without PLA exhibit poorer
predictions of the physiological behavior for the short-term adap-
tation component, as shown in panels E and F, respectively, of Fig. 4.
PLA is required to obtain the conservation behavior for the longer
term components of the onset response in this increment para-
digm, but without the adaptive redocking mechanism (panel E),
there is no component of the PSTH with a time constant of around
60ms, and thus the fits for the short-term component are some-
what unreliable and the conservation behavior is not observed.
Conversely, when adaptive redocking is included but PLA is
excluded, the short-term adaptation component of the PSTH is
more reliable, but the conservation behavior is weakened by the
lack of PLA. Note that the goodness of the double-exponential fits to
the PSTHs were also generally poorer for these model variants. No
results are shown for the no-PLA & fixed redocking variant of the
model because it produced such poor fits to the double-exponential
function that the short-term component gave spurious values.

An important consequence of the PLA observed in Zilany et al.
(2009) was that powerlaw adaptation can explain forward mask-
ing effects in ANFs while exponential adaptation cannot. As shown
by the published data of Harris and Dallos (1979) plotted in Figs. 5A
and 6A, ANFs can exhibit very long-lasting forward masking that
grows very strongly with the level of the masker, such that masking
effects can extend out past the longest measured masker-probe
delay of 300ms. As indicated by the gray curves in Figs. 5B and
6B, while the 2014 model with PLA does reasonably well at
describing the forward masking simulation results for lower
masker levels, it underestimates the strength and time-course of
masking and how these depend on the masker level. The maximal
strength of forward masking is somewhat constrained in the 2009/
2014 model because of the Westerman and Smith (1988) double-
exponential adaptation stage being placed before the PLA (see
panel B of Fig. 2). This is due to the Westerman and Smith (1988)
model strongly saturating in response to maskers presented at
high levels, limiting how much further adaptation of the masker
response occurs in the PLA stage. In contrast, with the new model
having only a gently-saturating nonlinearity before the PLA stage
(see panel C of Fig. 2) and the double-exponential adaptation
shifted to the adaptive redockingmechanism after the PLA, the new
model (black curves in Figs. 5B and 6B) is able tomuchmore closely
follow the properties of forward masking observed in the data.

As described in Section 2, the standard deviation of the fGn in
the PLA section of the 2009/2014model was set to fairly high values
for each spont rate class (low-, medium-, and high-spont). This
Fig. 3. Comparison of adaptation in PSTHs for two cat ANFs and model predictions in
response to 500-ms duration constant-amplitude stimuli, presented once a second
over 2min. Left panels: CF¼ 1.82 kHz, high-spont rate (unit 43 in data); right panels:
CF¼ 10.34 kHz, low-spont rate (unit 41 in data). A: Data reprinted from Kiang (1965),
with permission from MIT Press (© 1965). B: New model predictions for stimulus at
25 dB re. threshold for each model fiber (left subpanel: high spont; right subpanel low
spont). C: Predictions for model variant with fixed redocking (trd ¼ 16 ms) rather than
adaptive redocking. D: Predictions for model with adaptive redocking but no PLA. E:
Predictions for model with fixed redocking and no PLA.



Fig. 4. ANF PSTHs and integrated transient response components for both rapid (�2ms) and short-term (�60ms) components for the amplitude increment response paradigm.
Physiological responses from gerbil (Westerman and Smith, 1987) are shown in panels A and C, while panels B and D show predictions from the newmodel, and panels E and F show
integrated response plots for two model variants. The stimulus was at CF (5.99 kHz for the example PSTHs), with a duration of 600ms. The initial (“background”) levels of the tone
were 5, 10, 15 and 20 dB above threshold. At 300ms, the intensity was increased to 43 dB above threshold (increment) in all cases. A: Mongolian gerbil ANF PSTHs (binwidth of 2ms)
fromWesterman and Smith (1987), reprinted with permission from the Acoustical Society of America (© 1987). B: Model histograms using the same paradigm as above, except that
the highest level of the background tone was 25 dB above threshold because the model fiber shows a wider dynamic range than the corresponding AN fiber of the physiological
data. C: Mean values of rapid and short-term “integrated transient response components” from six fibers from Westerman and Smith (1987), reprinted with permission from the
Acoustical Society of America (© 1987). These integrated components are obtained by fitting each onset response of the PSTH with a function with a steady-state component and
two exponential components and multiplying the firing rates of the fitted exponentials by their time constants. The curves indicate the integrated components for the background
(initial) onset response, increment onset response, and their total, as labeled. D: Average model transient responses for 6 model ANFs using the same method as employed in the
data. E: Predictions from a version of the model with fixed (trd ¼ 16 ms) rather than adaptive redocking. F: Predictions from a version of the model without power-law adaptation
(PLA).
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Fig. 5. Physiological forward-masking data (A panels) for an example ANF from Harris and Dallos (1979) and simulation results (B panels) for the 2014 and new models. Masker
tone at 30 dB above threshold and probe tone at 20 dB re. threshold. Data reprinted from Harris and Dallos (1979) with permission from the American Physiological Society (© 1979).
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permitted a single value of the parameter SR to be set for each
spont rate class in the model while still allowing the spread of
measured spont rates for each model class to be caused by the
fluctuations in the fGn, as first proposed by Jackson and Carney
(2005). However, a side-effect of producing the spread in spont
rate via the fGn is that rate-level functions generated with the
2009/2014 model tend to be clustered together for each spont rate
class, as shown in Fig. 7A, rather than having a continuum of
thresholds that are negatively correlated to the logarithm of the
spont rate as observed in the physiological data (see Fig. 7C). As
shown in Fig. 7, the newmodel has a more physiological continuum
of rate-level functions (panel B) with the appropriate dependence
of the threshold on the spont rate (panel D). This is achieved via the
combined effect of: i) reducing the standard deviation of the fGn, ii)
making the input nonlinearity of the PLA vary systematically with
SR as given in (1)e(6), and iii) having a distribution of values of the
parameter SR as given in Table 1. Comparisons of the new model's
spont-rate histogram and saturated firing rate as a function of CF to
published data are also provided in the Supplementary Material.

The Fano factor quantifies the irregularity of spiking according
to:

FðTÞ ¼ var½NðTÞ�=E½NðTÞ� (29)

whereNðTÞ is the number of spikes in the time period T, var½,� is the
variance, and E½,� is themean. A Poisson process has a Fano factor of
1, while values less than 1 indicate more regular firing (lower
variance) than a Poisson process and values greater than 1 indicate
more irregular firing (higher variance). Fig. 8 compares the model
Fano factor behavior to data from an example ANF from Peterson
et al. (2014). The data exhibit a dip in the Fano factor for a count-
ing interval T around 100ms, and the dip is somewhat deeper than
is obtained if the interspike intervals are randomly shuffled, indi-
cating that the drop in the irregularity of firing is more than can be
explained by refractoriness alone. For counting intervals above
100ms, the Fano factor then grows steeply as a function of T such
that it exceeds a value of 1. A Fano factor above 1 corresponds to
more irregular firing than a Poisson process, which can be produced
by slow fluctuations in the firing rate or bursting in the spike train.
The Fano factor for the 2014 model (gray curves in Fig. 8) has a dip
at 10ms (rather than 100ms), and the depth of the dip can be fully
explained by refractoriness, as illustrated by the Fano factor for the
shuffled spike train (gray dashed curve) at a counting interval of
10ms. The Fano factor then grows rapidly with increasing T such
that it is substantially larger than that observed in the data. This
increase is caused by the fGn in the PLA of the synapse model, and
as mentioned previously, the standard deviation for the fGnwas set
to too large a value in the 2009/2014 model. The new model (black
curves) correctly shows a dip at the correct value of T ¼ 100ms that
is greater than can be explained by refractoriness, and grows to
more correct magnitudes for longer counting intervals.

Another method for quantifying how spike trains deviate from a
renewal process with a constant rate is to compute the serial
interspike interval correlation coefficient (SIICC), which measures
the interdependence of N consecutive ISIs according to:

r ¼ ðN � 2Þ�1PN�1
i¼1 ðISIi � E½ISI�ÞðISIiþ1 � E½ISI�Þ

ðN � 1Þ�1PN
i¼1ðISIi � E½ISI�Þ2

: (30)

The left-hand panel of Fig. 9 shows the SIICCs computed from
the spontaneous activity of a population of ANFs reported in
Peterson et al. (2014). Renewal processes have an SIICC of zero,
while positive SIICC values correspond to cases where ISIs shorter
than the mean tend to be clustered in time and ISIs longer than the
mean tend to be similarly clustered (which can occur due to fluc-
tuations in the firing rate over the duration of a spike train), and
negative values indicate situations where short and long ISIs tend
to alternate. In the example data, it can be observed that the ma-
jority of SIICC values are negative for short mean ISIs, with a mi-
nority of positive values, and the SIICC tends towards zero for
longer mean ISIs. Peterson and Heil (In Press) argue that the posi-
tive SIICC values for short mean ISI observed in a subset of fibers is
due to incomplete recovery from preceding acoustic stimulation,
which was applied in their data collection in addition to their
recording of spontaneous activity. The 2014 model (gray symbols



Fig. 6. Median ANF forward-masking curves at a range of masker levels for (A) a
population of ANFs from Harris and Dallos (1979) and (B) simulation results for the
2014 and new models. Probe tone at 20 dB re. threshold and masker level as labeled.
Data reprinted from Harris and Dallos (1979) with permission from the American
Physiological Society (© 1979).
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and curve in right-hand panel) tends to have only positive SIICC
values, due to the overly strong fGn and the renewal-process spike
generation approach in the old model. In contrast, the new model
(black symbols and curve in the right-hand panel of Fig. 9) correctly
predicts the trend exhibited by the data. As explained by Peterson
et al. (2014), the negative correlation in consecutive ISIs occurs
when there is a limited number of docking sites because after a
short ISI it is more likely that at least two docking sites need to be
replenished (i.e., vesicle redocking) before they are available for
release again, such that the next ISI is likely to be longer, while after
a long ISI it is more likely that only one docking site needs to be
replenished, so the next ISI can be shorter. At longer mean ISIs,
there is more time for redocking to occur at all release sites, such
that the consecutive ISIs become uncorrelated and the SIICC ap-
proaches zero.

The results for the Fano factor and SIICC demonstrate that the
release-redocking mechanism and the fGn can have a substantial
effect on the spiking statistics within a spike train. However, the
analytical approximation derived in Section 3 provides a prediction
of the mean and variance in spike count across spike trains (for a
particular ANF in response to repeated identical stimuli or for a
population of identical fibers in response to the one stimulus) and
should be accurate if SoutðtÞ is known (as it includes the non-
stationarity due to the fGn) and is not changing too rapidly. Fig. 10
shows the mean and variance in the spike count of an example
high-CFmodel ANF as a function of time in response to a tone at the
fiber's CF (8 kHz). Simulation results are shown for a set of spike
trains analyzed with three different time bin sizes: A) 0.5ms, B)
5ms, and C) 50ms. The PSTHs show the mean and variance in the
spike count (top and bottom sub-panels, respectively), while the
filled circles show the analytical approximations. The predictions of
the mean count shown by the red filled circles are seen to be very
accurate for all PSTH bin sizes, except for at the onset response
where SoutðtÞ changes too rapidly for the approximation to be valid.
As described by (26) and (27), the variance depends on the bin size
(which is also captured by the Fano factor). The 0.5ms bin size
(panel A) is short enough that the variance in spike count is best
predicted by Eq. (27) (blue filled circles), while the 50ms bin size
(panel C) is long enough that Eq. (26) (green filled circles) well
describes the variances, and the variance in spike count for a 5ms
bin size (panel B) is between the two analytical approximations.
Note that these approximations will be poorer for stimulus fre-
quencies below 3 kHz, as synchronization in SoutðtÞ to the stimulus
periodicity will lead to rapid fluctuations that invalidate the
assumption made in the derivation of the analytical approxima-
tions. Therefore, when using the model for signal detection theory
applications that include stimulus components below 3 kHz, in
addition to applications that require high accuracy in describing the
spiking statistics within a spike train, it would be preferable to use
the spike outputs rather than the analytical approximations.

As described in Section 2, the new model has only a shorter
relative refractory component, because the longer recovery effect is
nowattributed to the replenishment time for the limited number of
docking sites. In addition, the relative refractory period is made a
function of the rate at which the synapse is driven, as described by
(9), based on the observations of Li and Young (1993). In Fig. 11,
simulation results for estimates of the relative refractory period of
individual ANFs are compared to the published data of Li and Young
(1993). Li and Young used a two-step fitting procedure where the
absolute refractory period was first estimated from the ISI histo-
gram and then a functionwas fit to the ISI histogram to estimate the
relative refractory period (their Eq. (3)). We used the same
approach to obtain estimates of the apparent relative refractory
period based on this function fit. While the renewal process
assumed by Li and Young (1993) in fitting their ISI data does not
take into consideration the possibility of presynaptic depression
due to a relatively long time for redocking of synaptic vesicles, their
analysis does still provide a helpful experimental estimate of re-
covery properties. The data exhibit a drop in the apparent relative
refractory period with shorter mean ISIs (left panel), which the
2014 model cannot explain (gray symbols in right panel). In
contrast, the newmodel (black symbols in right panel) exhibits the
appropriate dependence of the apparent relative refractory period
on the mean ISI. Note that the model, in contrast to some of the
ANFs in the data, does not produce mean ISIs below 4ms for the
stimulus paradigms described in Li and Young (1993). The model's
minimum mean ISI is more consistent with the saturated firing
rates observed in Liberman (1978), as shown in the Supplementary
Material, and it is not immediately clear how to resolve the
different saturated rates observed in the two data sets.



Fig. 7. Analysis of rate-level and threshold behavior as a function of spont rate. The top row shows rate-level functions for a population of high-CF model ANFs for: A) the 2014
model and B) the new model. CF¼ 8 kHz, 50-ms CF tone with 2.5-ms ramps and 50% duty cycle. The bottom row shows an analysis of how single ANF thresholds vary as a function
of spont rate for: C) cat MCL92 from Liberman (1978) and D) the new model. The analysis follows that of Liberman (1978), except the spont rate values are plotted on a logarithmic
scale and spont rate values below 0.1 (many having values of 0) are adjusted to have a value 0.1 to facilitate their inclusion in the fitting procedure. Thresholds are given relative to
the mean absolute threshold for the high-spont fibers at each CF. Linear functions (on the log-spont scale) are fit to both the data and the simulation for the low- and med-spont
ANFs, and extrapolations of these lines are seen to go through the clusters of high-spont values. The model fit is observed to be a good match to the data fit.
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5. Discussion and conclusions

The primary goal of this study was to generalize the model of
limited synaptic release sites from Peterson et al. (2014) and
Peterson and Heil (In Press) to sound-driven activity and incorpo-
rate it into the auditory periphery model of Zilany et al. (2009,
2014) and to investigate how this affects the predictions of pub-
lished data on ANF spiking statistics. In changing the synapse and
spike-generation model structure to accomplish this (compare
panels B and C of Fig. 2) and adjustingmodel parameters, it was also
possible to correct the rate-level functions of the model (and their
dependence on the SR) and further improve the model's pre-
dictions of physiological forward masking.

This latter improvement was achieved by moving the double-
exponential adaptation previously obtained with the determin-
istic, continuousWesterman and Smith (1988) model placed before
the power-law adaptation model to instead be described by the
stochastic, quantal adaptive redocking mechanism after the PLA
section. When the Zilany et al. (2009) model was created, it was not
clear whether to place the PLA section before or after the
Westerman and Smith (1988) adaptation, i.e., whether the power-
law behavior is generated pre- or post-synaptically. There are
voltage-gated ion channels in ANFs that do lead to intrinsic adap-
tation and fluctuations in excitability when electrically stimulated
(Boulet et al., 2016; Negm and Bruce, 2008, 2014; Boulet and Bruce,
2017), making postsynaptic PLA a distinct possibility. However, we
have conducted preliminary simulations inwhich a Poisson process
was used to drive conductance-based synaptic inputs to the bio-
physical ANF model of Negm and Bruce (2014), and the simulation
results did not reproduce the Fano factor behavior observed in the
spontaneous activity of ANFs (left panel of Fig. 8). Recently, Wu
et al. (2016) have shown that ANF excitatory postsynaptic cur-
rents exhibit similar Fano factor versus time window behavior to
ANF spikes, further supporting a synaptic origin of the non-
stationarity. Thus, it now appears that the fluctuations in excit-
ability are caused predominantly by presynaptic ion channel noise,



Fig. 8. The Fano factor as a function of counting time for an example high-spont ANF (left panel) from Peterson et al. (2014) and for the 2014 and new synapse models (right panel;
CF¼ 1.5 kHz, SR¼ 50 /s, tabs ¼ 0:6 ms, ~trel ¼ 0:6 ms). Fano factor curves computed after random shuffling of the interspike intervals (dashed curves) illustrate the behavior that can
be explained by refractoriness alone. Data reprinted from Peterson et al. (2014) with permission from the Society for Neuroscience (© 2014).

Fig. 9. The serial interspike interval correlation coefficient (SIICC) as a function of mean ISI for a sample of 180 ANF spontaneous spike trains (left panel) from Peterson et al. (2014)
and for the 2014 and new synapse models (right panel). Data reprinted from Peterson et al. (2014) with permission from the Society for Neuroscience (© 2014).
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as proposed by Moezzi et al. (2014, 2016), and presumably pre-
synaptic ion channels also generate the PLA. This new model
structure is thus much closer to the biophysical IHC-synapse
models of Sumner et al. (2002), Meddis (2006) and Moezzi et al.
(2014, 2016), however the proposed phenomenological model is
simpler, is more computationally efficient, and has demonstrated
power-law adaptation behavior.
Following Peterson et al. (2014) and Peterson and Heil (In Press),
we have set the number of synaptic vesicle docking sites to 4 in all
ANFs in the simulations presented in this study. However, the
number of sites is a free parameter in the model code (as described
in Section 2), although the derivation of the analytical approxi-
mation for the ISI distribution including refractoriness (see Section
3) becomes substantially more complicated for greater numbers of



Fig. 10. Simulation results (histograms) and analytical approximations (filled circles) of the mean (top sub-panels) and variance (bottom sub-panels) in the spike count of an
example high-spont, high-CF model ANF (CF¼ 8 kHz, SR¼ 100 /s, tabs ¼ 0:6 ms, ~trel ¼ 0:6 ms) in response to a 250-ms long CF tone (t ¼ 25 to 275ms) with 2.5-ms ramps presented
at 20 dB SPL. The mean and variance peri-stimulus time histograms (PSTHs) shown by the gray bars were obtained from spike trains generated from 10,000 trials. The PSTHs in
panels AeC were constructed using the exact same spike trains but with different bin sizes (Dt): A) 0.5ms, B) 5ms, and C) 50ms. The filled red circles in each panel shows the
analytical predictions of the mean count PSTHs based on Eqs. (24) and (25). The filled blue circles show the analytical predictions of the variance in spike count for the case of Dt/0
based on Eqs. (27) and (28), while the filled green circles show the predictions of the variance for the case of Dt/∞ based on Eqs. (26) and (28).
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release sites. Future investigations could consider whether there is
a distribution of number of release sites across the population of
ANFs, rather than all fibers having just 4. The analyses of Peterson
et al. (2014) and Peterson and Heil (In Press) did show that very
good prediction of their data could still be achieved across a range
of values between � 3 and � 5 for the number of sites (and fairly
good predictions over a slightly wider range). We have also run
some preliminary simulations taking the synaptic events from the
new auditory periphery model and using them to drive an updated
biophysical ANF model (Boulet and Bruce, 2017) and have found
that the Fano factor and SIICC predictions are not very sensitive to
the number of release sites over the range 3e9 or to the size of the
postsynaptic conductance changes triggered by synaptic releases,
as long as some conductance changes are large enough to generate
spikes in the ANF.

Peterson and Heil (In Press) argued that the standard deviation
of the fGn in the Zilany et al. (2009, 2014) models was too large to
accurately predict their Fano factor data when coupled with their
synapse model. We did indeed find in this study that we needed to
reduce the standard deviation of the fGn in our newmodel, but not
to the same degree as Peterson and Heil (In Press), because they
passed the fGn directly into their synaptic release model, whereas
in our model the fGn passes first through the slow PLA (see Fig. 2),
which effectively low-pass filters the fGn and reduces its magni-
tude at the input to our synaptic release model.

In conclusion, we have found that incorporating a limited
number of synaptic release sites with adaptive redocking dynamics
produces improved predictions of both spontaneous and sound-
driven ANF spiking statistics. Having correct ISI statistics in the
model may be important for evaluating temporal coding theories
(such as temporal pitch models) and for the response properties of
cochlear nucleus neurons, particularly those receiving relatively
few synaptic inputs from ANFs where the input ISI statistics may
have greater impact. Other subsequent changes to the model
structure and parameters also produce improved predictions of
ANF rate-level functions and forward-masking behavior. While the



Fig. 11. Apparent relative refractory period versus mean ISI for a population of ANFs (left panel) from Li and Young (1993) and simulation results (right panel) with the 2014 and
new models for the cases of short tone burst (STB) or continuous tone (CT) stimulation or spontaneous activity. The term “apparent relative refractory period” indicates that the
statistical estimation method of Li and Young (1993) will incorporate the effects of the presynaptic vesicle release-redocking dynamics into the estimate of refractoriness. Data
reprinted from Li and Young (1993) with permission from Elsevier (© 1993).
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new model is somewhat more computationally complex than the
previous version, the improved physiological accuracy will be
important for considering many questions related to neural coding
of sound in hearing research and related industrial application.
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