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Abstract

Frequency tuning and phase-locking are two fundamental properties generated in the

cochlea, enabling but also limiting the coding of sounds by the auditory nerve (AN). In

humans, these limits are unknown, but high resolution has been postulated for both proper-

ties. Electrophysiological recordings from the AN of normal-hearing volunteers indicate that

human frequency tuning, but not phase-locking, exceeds the resolution observed in animal

models.

Author summary

The coding of sounds by the cochlea depends on two primary properties: frequency selec-

tivity, which refers to the ability to separate sounds into their different frequency compo-

nents, and phase-locking, which refers to the neural coding of the temporal waveform of

these components. These properties have been well characterized in animals using neuro-

physiological recordings from single neurons of the auditory nerve (AN), but this

approach is not feasible in humans. As a result, there is considerable controversy as to

how these two properties may differ between humans and the small animals typically used

in neurophysiological studies. It has been proposed that humans excel both in frequency

selectivity and in the range of frequencies over which they have phase-locking. We devel-

oped a technique to quantify these properties using mass potentials from the AN,

recorded via the middle ear in human volunteers with normal hearing. We find that

humans have unusually sharp frequency tuning but that the upper frequency limit of

phase-locking is at best similar to—and more likely lower than—that of the nonhuman

animals conventionally used in experiments.

Introduction

The cochlea decomposes sound into bands of frequencies and encodes the temporal waveform

in these bands, generating frequency tuning and phase-locking in the auditory nerve (AN).

The relative roles of these two processes in human perception have long been debated [1,2]

and would be clarified by knowing their limits. For example, studies in animals show that the

average firing rate of AN fibers codes the spectral envelope of human vowels, but this code is
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problematic at high sound intensities. In contrast, a code based on phase-locking of the

sound’s waveform (its “fine-structure,” i.e., the fast fluctuations in instantaneous pressure) is

adequate at all intensities but does not extend above a few kilohertz. The difficulties of both

coding schemes in explaining human perceptual ranges may reflect physiological differences

in resolution between animal models and humans, in whom single fibers cannot be studied.

The problem of rate coding at high sound levels may reflect broader spectral filtering in animal

models [3]. This is supported by indirect estimates that report exceptionally sharp frequency

tuning in humans, using behavioral estimates or otoacoustic emissions in subjects with normal

hearing [4,5] and mass potentials in patients [6,7]. However, this conclusion is disputed [8–

10]. The upper frequency limit of phase-locking is species dependent [11] but is unknown in

human. Some perceptual abilities suggest use of temporal cues at 10 kHz or higher [12–16],

but binaural sensitivity implies an upper limit barely above 1 kHz [17,18]. In summary, the

present evidence regarding the limits of frequency tuning and phase-locking is conflicting.

Knowledge of these limits is also important to understand and treat human hearing

impairment [12,13,19].

We modified a clinical electrophysiological method [6,7,20,21] to study the AN in normal-

hearing humans and macaque monkeys. An electrode is inserted through the eardrum to

record potentials from the cochlear bony capsule. Combining a closed acoustic system cali-

brated in situ, stable trans-tympanic electrode placement under visual control, and validated

stimulus and analysis paradigms [22,23], we studied the AN over several hours. Frequency

tuning was obtained using pure tones to probe the imprint of a spectrally manipulated preced-

ing notched-noise masker on the compound action potential (CAP; the summed response of

AN fibers at the onset of the probe tone). Neural phase-locking was assessed with a paradigm

separating the nonmaskable cochlear microphonic (CM) generated by hair cells, from the AN

neurophonic. We achieved our aim of measuring both frequency tuning and the limit of

phase-locking in humans and macaque monkeys and found that humans are unusual in the

sharpness of frequency tuning but do not excel in the upper frequency limit of phase-locking.

Results

Frequency tuning

The sharpness of frequency tuning obtained with the notched-noise forward-masking

(NNFM) paradigm is shown in Fig 1 as a quality factor (Q10). Both human (Fig 1a) and mon-

key (Fig 1b) show a monotonic increase with probe frequency, consistent with other species

[22,24] and with the vast literature on single AN fibers, but Q10 values in humans are signifi-

cantly higher than in other species (Fig 1c) when compared over the same frequency range

(average factors: approximately 1.6 times cat and chinchilla and 1.3 times monkey). CAP-

based Q10 values differ from values in single AN fibers [22], which are the ultimate reference

but cannot be studied in humans. However, availability of the 2 sets of data (CAP and single

unit) in animals allows calculation of conversion functions based on the ratio between single-

fiber Q10 and CAP-Q10 as a function of frequency. Applying the average of the conversion

functions for cat, chinchilla, and macaque (S5a–S5c Fig) to measured human CAP-Q10 values,

we predict human single-fiber Q10 to be slightly above those for macaque monkey [24] (red

versus blue solid line, Fig 2).

Using only the monkey conversion function, which is arguably the most relevant, the pre-

dicted human single-fiber trend is even higher (red dotted-dashed line, Fig 2) and is remark-

ably consistent with assessments using nonelectrophysiological techniques [4,5] (Fig 2, green

lines). Both predicted trendlines are higher than Q10 values reported for smaller, nonprimate

animal models (Fig 2, red lines versus shaded area).

Human limits of frequency tuning and phase-locking
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Neural phase-locking

Phase-locking in human and monkey showed the band-pass characteristic previously observed

in similar measurements of the cat [23]. Maximal absolute amplitudes are only 4 dB smaller in

human than in macaque; both are smaller than in cat [23]. The center frequency at the maxi-

mal absolute amplitude and the steep upper-frequency slope were lower in human (at approxi-

mately 0.7 and 3 kHz) than in monkey (at approximately 1 and 4 kHz) (Fig 3a). At face value,

the data suggest that the upper phase-locking limit is lowest in human. However, several fac-

tors affect the absolute amplitude of the measured signal so that there is an unknown vertical

offset between data for different species. For example, the recordings in cat were taken with a

Fig 1. Sharpness of frequency tuning (Q10) increases with frequency and is higher in humans than in animal

models tested. Values are CAP-Q10 results obtained with an NNFM paradigm. (a) Humans (n = 9); (b) macaque

monkeys (n = 5). Different colors indicate different subjects; black lines are trendlines (Robust-LOESS, see Materials

and methods); dashed lines indicate 10th and 90th percentiles of the trendlines obtained by resampling (bootstrapping,

see Materials and methods). (c) Comparison of CAP-Q10 trendlines in human and monkey (from panels a and b) with

cat and chinchilla [22]; shaded areas indicate the area between the 10th and 90th percentile of panels a and b.

Underlying data provided in S1 Data. CAP, compound action potential; NNFM, notched-noise forward-masking; Q10,

10 dB quality factor.

https://doi.org/10.1371/journal.pbio.2005164.g001

Human limits of frequency tuning and phase-locking
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ball electrode on the round window, while in humans and monkeys, a needle was placed on

the cochlear bony capsule, which provided a much smaller signal. In Fig 3b, single-fiber data

are used to anchor cat and monkey data (S9 Fig) while keeping the relative position of monkey

and human data. The frequencies (kilohertz) at which the trendlines cross the abscissa are 4.7

(cat), 4.1 (monkey), and 3.3 (human). Alternatively, the data for humans can be normalized to

the maximum observed in cat (Fig 3b, dotted line)—even then, there is no suggestion of a

higher limit of phase-locking in human than in cat.

Fig 2. Estimates of frequency tuning of AN single fibers in humans. Estimates of sharpness of frequency tuning in

single AN fibers of human (red) compared with single-fiber tuning of macaque [24] (blue) and other animal models

(hatched area), and with other measures of human frequency tuning (green: dotted line, SFOAE [5]; dashed line,

psychophysics [4]; both are converted from QERB with conversion factor 0.52). Red solid line: human estimate using

conversion curve averaged across 3 species; red dashed line: estimate solely based on conversion curve of macaque.

The hatched area outlines data for cat (archival data from our laboratory) and 4 other species [8]. Data provided in S1

Data. AN, auditory nerve; CAP, compound action potential; QERB, quality factor of Equivalent Rectangular

Bandwidth; SFOAE, stimulus-frequency otoacoustic emissions.

https://doi.org/10.1371/journal.pbio.2005164.g002

Fig 3. Phase-locking in humans extracted from neurophonic data. (a) Averaged trendlines for human and macaque.

(b) Same data anchored to and overlaid with trendline for cat [23]. Dotted line: human trendline normalized to

maximum amplitude in cat. Data provided in S1 Data.

https://doi.org/10.1371/journal.pbio.2005164.g003

Human limits of frequency tuning and phase-locking
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Discussion

We obtained the first electrophysiological recordings, to our knowledge, of cochlear potentials,

which address both frequency tuning and temporal coding in humans with normal hearing. It

is generally agreed that both processes have critical roles in human auditory perception, but

there is considerable controversy regarding their relative roles, as well as regarding their reso-

lution when compared to animal models. Impaired frequency selectivity and phase-locking

have both been proposed as main causes for human hearing impairment [12,13,19].

The importance and presence of frequency tuning in humans is not under discussion, but 2

early studies that concluded that human frequency tuning is exceptionally sharp [4–6] were

subsequently contradicted by different data or analyses [8–10]. Our data, which are electrophys-

iological and fundamentally different in nature from the previous estimates based on cochlear

emissions and behavior [4,5], are strikingly in line with these earlier estimates (Fig 2).

An earlier study using a recording technique similar to ours [6] shows 2 CAP-Q10 values

obtained with a tonal forward-masking paradigm at 8 kHz from 2 subjects with nominally nor-

mal hearing: these values (6.2 and 8.2) are reasonably in line with (somewhat lower than) the

trend of our measurements extending to 6 kHz (Fig 1). From these measurements, the authors

propose that human frequency tuning is sharper than in guinea pig and chinchilla but is rather

similar to that in cat, which is not what we find when the same CAP-Q10 measurements are

obtained in these different species (Figs 1 and 2 and [22]). Recent behavioral data suggest that

frequency tuning in monkeys is not as sharp as in humans [25,26], consistent with our physio-

logical data (Fig 1).

The situation is somewhat different for coding of fine-structure in humans, for which the

discussion has been entirely based on behavioral research, and no attempt has been made to

obtain direct measurements in humans. It is undisputed that coding of sound fine-structure is

a prerequisite for binaural temporal sensitivity at low frequencies, with an abrupt upper limit

at approximately 1.3 kHz [27,28]. Such coding has been proposed to be important for other

auditory attributes as well, at frequencies as high as 10 kHz or more [12–16], but this is debated

[17,29]. Using a validated technique [23] to extract neural phase-locking from the potentials

measured near the cochlea, we find a reduced upper limit of phase-locking in monkey relative

to cat, and in human relative to monkey. The consistency of these limits with those obtained in

studies of single AN fibers (for cat and monkey) argue that phase-locking in human is limited

to lower—rather than higher—frequencies than in commonly used laboratory species.

Our findings suggest a reappraisal of the fundamental debate that has been ongoing in hear-

ing science for more than a century, regarding the importance of temporal versus “place” cod-

ing. This debate has taken various forms but in the past decades has centered on different

codes available in the AN. As one example, in studies of the coding of human speech sounds

by the firing rate of single AN fibers in small laboratory animals, frequency selectivity and

dynamic range were not sufficient to code spectral features over the behaviorally relevant

range [2,3,30]. On the other hand, phase-locking can account for the extremely wide percep-

tual intensity range but is limited in the upper frequency to which such coding is present, and

it remains unclear how that temporal information can be extracted by the central nervous sys-

tem. Our results suggest that the limits faced by models of “place coding” are less severe, and

those by models of “temporal coding” more severe, than was thought based on data obtained

from the small animal species used in neurophysiological experiments. For place coding they

are less severe because the place map in the human cochlea is expected to be more fine-grained

than in the experimental species studied [1,3]. For temporal coding the phase-locking limit is

more severe because the fine-structure of sounds will not be coded up to the high frequencies

at which it is, e.g., in the cat (about 5 kHz) [31].

Human limits of frequency tuning and phase-locking
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Of course, humans differ from the other species studied along many dimensions, and it is

at this point unclear how unique sharp frequency tuning is among mammals. A common,

simple reasoning is that a small number of octaves “packaged” into a long cochlea will result

in sharper frequency tuning than a large number of octaves subserved by a short cochlea

[3,6,32–34]. Implicitly, this reasoning assumes that frequency tuning is limited by an abso-

lute distance on the basilar membrane, which is similar across species. Measurements of

cochlear dimensions in skulls of fossil and extant mammals [35] suggest that the cochlea of

modern humans is “hypertrophied” relative to expectations on body size, so perhaps there is

something special about the human use of hearing which drove sharper frequency selectivity.

On the other hand, comparative studies suggest that larger animals have sharper tuning

[32,33], so possibly human tuning is only remarkable in sharpness when compared to the

(small) species studied experimentally. Independent of this issue, the sharper tuning

observed in humans relative to species used in physiological studies indicates that inferences

toward human perception have to be made cautiously, particularly when spectral versus tem-

poral schemes are considered.

Data in animals were obtained under general anesthesia, whereas in humans only a local

anesthetic was used: could our higher human Q-values be caused by this methodological dif-

ference? Effects of activation of the middle ear reflex can be excluded because we were careful

not to evoke this reflex. First, the reflex intensity threshold was measured in all subjects

(using tympanometry, see Materials and methods). Second, activation of the middle ear

reflex can be monitored during the recordings because muscle action potentials strongly

contaminate the neural recordings. We are also quite confident that efferents of the medial

olivo-cochlear (MOC) system did not contribute to the sharper tuning observed in humans

because we explicitly looked for efferent effects (on CAP or neurophonic amplitude) in sepa-

rate experiments and found them to be very small (a few decibels), and biased towards low

frequencies [36]. The MOC reflex is functional in both anesthetized and decerebrated cats

[37], and no difference in CAP tuning was found in awake versus anesthetized guinea pigs

[6]. Finally, the expectation from animal work is that efferent effects would cause a reduction

in sharpness of tuning, so that if only present in awake humans, they would have tended to

make the difference between Q-values in humans and anesthetized animals smaller rather

than larger.

There are marked difference in length of the ANs of the species studied (factor of approxi-

mately 4 between cat and human): could the differences that we measured in the upper-fre-

quency limit of phase-locking reflect spatial integration of the propagating action potentials

along the AN? Although this issue can only be directly addressed by recordings from individ-

ual nerve fibers, there are several arguments against such spatial integration. It would cause

significant low-pass filtering of the CAP in human, while we find that the initial negative wave-

form in humans and cats is very similar (e.g., S2 Fig). Also, studies of mass potentials [38–40]

and of unit contributions of single nerve fibers [41,42] suggest that these potentials reflect a

potential difference generated over a restricted segment of the AN rather than spatially distrib-

uted generators.

In summary, we provide electrophysiological evidence that our species excels in sharpness

of frequency tuning but not in temporal coding of fine-structure. This dual result calls for a

reappraisal of coding schemes based on average firing rate, e.g., for the coding of pitch and

speech. The plausibility of such schemes relative to temporal schemes may have been unduly

dismissed based on the more limited resolution of place-rate coding in experimental animals

on the one hand, and unrealistic assumptions regarding the extent of temporal coding in

humans on the other hand.

Human limits of frequency tuning and phase-locking
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Materials and methods

Subjects

Human experiments were carried out in accordance with the recommendations of good clini-

cal practice (ICH/GCP) and were approved by the Medical Ethics Committee of the University

of Leuven. All subjects gave written informed consent in accordance with the Declaration of

Helsinki. Human volunteers were recruited on campus with advertisements. A total of 19 sub-

jects (15 female, 4 male) participated in the experiments. Participants were between 20 and 35

years old and received a financial compensation. Frequency tuning data were based on record-

ings from 9 subjects; for neural phase-locking, data of 7 subjects were used. In 4 subjects, both

types of data were recorded. In the remaining 7 subjects, no useable data were obtained, for

various reasons. In 3 subjects, the signal-to-noise ratio (SNR) was too poor (in 1 restless person

due to excessive muscle artifacts and in the others for unknown reasons). In 2 subjects, the

needle could not be placed at the desired location because of a narrow and heavily curved ear

canal. In 2 subjects, no measurements could be started due to practical issues.

Animal procedures were approved by the Animal Ethics Committee of the University of

Leuven. Recordings in Monkey were obtained from 1 ear in 4 rhesus monkeys (Macaca
mulatta), which were also involved in chronic visual experiments (an 8.9-kg adult male, a

4.8-kg juvenile male, and 2 juvenile females of 6.3 kg and 4.7 kg; ages were between 4 and 7

years). Prior to the experiments, dissections on formaline-preserved temporal bones were per-

formed to study the best trajectory and practice the placement of the needle electrode.

Screening of subjects

The day before—or morning of—the session, the hearing of the volunteers was screened,

including an inquiry for hearing problems, a pure tone audiogram (thresholds <20 dB nHL,

125 Hz–8 kHz), tympanometry to assess middle ear function, and an otoscopic examination

by an otolaryngologist. Subjects were requested to avoid exposure to loud sounds in the days

preceding the experimental session. For monkey, the tympanic membrane was otoscopically

checked after induction of the anesthesia.

Anesthetics

Human subjects were unsedated during the experiment. Before insertion of the needle elec-

trode, the tympanic membrane and ear canal were locally anesthetized with Bonain’s solution

(equal volumes of cocaine hydrochloride, phenol, and menthol; aspirated after 30 minutes).

Subjects usually had a short-lasting and vague sensation of touch during insertion of the elec-

trode, which quickly disappeared.

Recording in monkey was similar to that in human, with the main difference being the

presence of general anesthesia. Induction was done with a mixture of ketamine (3 mg/kg) and

medetomidine (intramuscular, 0.050 mg/kg). The same mixture was administered intrave-

nously for maintenance through a venous cannula inserted for administration of lactated

Ringer’s solution. The duration of the total experimental session, including the placement of

the electrode, was between 4 and 6 hours. After the experiments, atipamezole (intramuscular,

0.2 mg/kg) was administered to reverse the sedative effect of medetomidine; after awakening

of the animal, it was observed until it was freely moving about.

Experimental apparatus

To minimize electrical and acoustical interference, all experiments were conducted in a double-

walled soundproofed and faradized booth (Industrial Acoustics Company, Niederkrüchten,

Human limits of frequency tuning and phase-locking
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Germany). Before the experiment, human subjects chose a comfortable supine position on a

bed and were asked to remain still during the trans-tympanic insertion of the needle electrode

(TECA; sterile monopolar disposable, 75 mm × 26 G, 902-DMG75-TP) and the actual record-

ings. While in the sound booth, subjects and experimentalists were grounded to the booth via

an antistatic wrist strap.

Anesthetized monkeys were positioned on a heating pad with their heads restricted in a ste-

reotactic frame and turned for ease of needle insertion. Core body temperature was main-

tained using a feedback-controlled homeothermic system (Harvard Apparatus, Model 50–

7129). Eyes were coated with a thin layer of ophthalmic ointment (Pfizer, Terramycine) to pre-

vent desiccation.

For every human subject, a custom silicone earmold (Dentsply, Aquasil Ultra XLV regular)

was made for acoustical reproducibility throughout the procedure and to preserve low fre-

quency performance of the earphone speaker (Etymotic, ER-2 or ER-1). The earmold con-

tained 2 casted openings for different manipulations, such as needle insertion, visualization,

acoustic stimulation, and calibration. During most actions (e.g., placing of the needle electrode

through one of the earmold’s openings), the ear canal and tympanic membrane were visualized

by a rigid endoscope with camera (R. WOLF, 8654.402 25 degree PANOVIEW; ILO electronic

GmbH, XE50-eco X-TFT-USB) through the other available opening of the earmold. In order

to maintain the position of the needle electrode relative to the unrestricted head in human, a

custom frame—consisting of a ring that was centered above the external ear and fastened

around the subject’s head with Velcro straps—was used. On this ring, a needle holder allowed

stable support of the needle electrode under slight tension in order to maintain good electrical

contact.

In monkey, the recording needle was secured by a mechanical micro-manipulator mounted

on the stereotactic frame. The placement of the needle electrode was performed while visualiz-

ing the ear canal and tympanic membrane with a surgical microscope (ZEISS, OPMI pico).

Earmolds were made in situ, after placement of the needle electrode, with ear impression com-

pound (Microsonic).

In situ calibration

The calibration of the acoustic system (ear canal and earmold) was performed in situ with a

closed-loop system using a tube earphone speaker (Etymotic Research, ER1 or ER2) and a

microphone (Etymotic Research, ER-7C) with a silicon probe close to the tympanic mem-

brane. In humans, the calibration was done before placement of the needle electrode. In mon-

keys, calibration was performed after placement of the needle electrode with the silicon probe

tube embedded in the earmold. Sound was delivered through one of the openings of the ear-

mold via a plastic T-piece, which allowed access for the endoscope. During calibration and

recording, all openings were sealed airtight except for a tiny opening in the plastic T-piece that

prevented static pressure build-up.

Trans-tympanic electrode placement

A trans-tympanic procedure was developed, extensively tested, and practiced on more than 20

fresh human cadavers in the university hospital. The sterile needle electrode was inserted by

an ENT surgeon through one of the openings of the earmold that contained a short sterile plas-

tic tube (length<1 cm; diameter 2 mm). The needle electrode was placed, trans-tympanically

(3rd quadrant), on the cochlear promontory or in the niche of the round window. The experi-

mental session was terminated within 4 hours or when the subject expressed the desire to stop.

The needle electrode was then pulled back, and the earmold was removed. The session was

Human limits of frequency tuning and phase-locking
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concluded with an otomicroscopic examination. In no cases was there an eardrum perforation

larger than expected from the needle’s diameter (0.46 mm). Subjects were requested to keep

the ear dry for 10 days following the recording session. An otolaryngologist was available dur-

ing the weeks after the experiment to address any worries or for an additional checkup.

Acoustical stimulation

Stimuli were generated with custom software and a digital sound system (Tucker-Davis Tech-

nologies, system 2, sample rate: 125 kHz/channel) consisting of electromagnetically shielded

earphone speaker (Etymotic Research, ER-1 or ER-2), a headphone driver (HB7), a digitally

controlled analog attenuator (PA5), and a digital-to-analog converter (PD1).

Electrophysiological recordings

Acoustically evoked cochlear mass potentials were recorded using a low-noise differential pre-

amplifier (Stanford Research Systems, SR560), as described in our previous publication [36].

The signal input was connected to the trans-tympanic needle electrode, the reference input

was connected to an earlobe clamp coated with conductive gel, and the ground input was con-

nected to a standard disposable surface electrode placed at the mastoid, also coated with con-

ductive gel. All contacts were made on the side ipsilateral to the recording. The battery-

operated preamplifier was galvanically isolated (A-M systems, Analog stimulus isolator Model

2200) from the mains-powered equipment. Before the signal was recorded (TDT, RX8,

approximately 100 kHz/channel, maximum SNR 96 dB), stored, and analyzed (The Math-

works, Matlab), the signal was further amplified (DAGAN, BVC-700A) to a total gain of × 100

k and band-pass filtered (30 Hz–30 kHz; cut-off slopes 12 dB/octave). During the sessions, the

most relevant signals were visualized on an oscilloscope (LeCroy, WaveSurfer 24Xs) and mon-

itored with a loudspeaker outside the experimental booth.

Data processing

Recordings were averaged off-line over multiple repetitions (between 128 and 1,024, depend-

ing on background noise level) to increase SNR. CAP responses were obtained by summing

responses with alternating stimulus polarity and were additionally de-noised with a band-pass

filter in range of the spectrum of the CAP. CAP amplitudes were measured between the first

negative trough (N1) and first positive peak (P1), or if P1 was not clearly defined, between N1

and the second positive peak (P2); otherwise, they were measured between N1 and the positive

maximum (S2 Fig).

Experimental paradigm, frequency tuning

CAPs reflect activity of many AN fibers [41,43] but are not frequency selective. To assess fre-

quency selectivity, we used a modified NNFM paradigm [4,44] to extract masking tuning

curves (MTCs). Briefly, this involves measuring the CAP to a probe signal that is a short pure

tone, fixed in level and frequency. The probe level is fixed at the SPL that results in a SNR of 18

dB, when the probe is given by itself. The probe tone is then preceded by a noise (forward)

masker, which results in a reduction of the CAP to the tone. First, a broadband noise masker is

used whose SPL is adjusted so that that a CAP suppression of 33% is obtained. This masker is

then increased 10 dB in level (causing more masking); a spectral notch is introduced centered

at the frequency of the probe tone, and the notch width is then varied to search for the width

restoring a CAP suppression of 33%.

Human limits of frequency tuning and phase-locking
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Stimulus. A schematic representation of the stimulus in the time (a) and frequency domain

(b) are shown in S1 Fig. A notched-noise forward masker (tm, approximately 150 ms) is fol-

lowed by a brief pause (tmp, 10 ms) and a short tonal probe (tp, 10 ms) with fixed level. Probe

and masker are gated with 5 ms raised-cosine ramps to reduce spectral splatter at ON- and

OFF-switching of the stimuli. To cancel the CM (non-neural receptor potential), this stimulus

sequence is repeated but with an inversion of the polarity of the probe tone. The silent interval

(ts) between these 2 presentations (shown as blue and red) was 10 ms. The CM follows the

polarity of the stimulus so that it is almost completely removed by averaging the responses to

stimuli with alternating polarity. In contrast, the CAP is mainly from neural origin and is largely

preserved after averaging. S1 Fig1b depicts the idealized frequency spectrum of the stimulus.

Spectrally, 2 noise bands with equal bandwidth (fp/4) straddle the fixed probe frequency (fp) so

as to create a notch symmetrically spaced around fp. The masker notch width and level are the

main experimental variables that determine the extent of suppression of the CAP response.

Experimental procedure. The experimental procedure was as follows:

1. Fixed probe level: First, a suitable probe level (no masker) was sought, yielding a CAP wave-

form with a minimum SNR of 18 dB (S2 Fig). We refer to a probe tone at this level as the

“predefined probe tone.”

2. Masker reference level: The predefined probe tone was delivered and a (no-notch) broad-

band masker was presented at several levels (S3 Fig): for each masker level, the CAP ampli-

tude was measured and a curve (“masking curve”) was fit through these data points (S3

Fig). From this curve, the “masker reference level” was extracted, which is the masker level

that suppresses the CAP response at the predefined masking criterion of 33% (dashed line,

S3 Fig).

3. Q10: The predefined probe tone was presented together with a masker at a level 10 dB above

the masker reference level (the Q10 level). When the masker is broadband, it will obviously

generate stronger masking than 33%. A notch was now introduced in the broadband

masker, and the masker notch width was varied to determine the width that resulted in the

same amount of masking (target: 33%) as the (no-notch) broadband noise masker at the

masker reference level (i.e., 10 dB lower in level). In practice, to save time, a range of prese-

lected notch widths was delivered, and the notch width generating 33% of masking was

obtained by interpolation of the responses to these different notch widths (see S4 Fig). The

different notch width conditions, including that of the previously obtained masker refer-

ence level (no-notch masker condition, 10 dB below that of the notch-noise conditions),

were typically presented as a single stimulus assembly, which was repeated to minimize var-

iability between different conditions. The sharpness of tuning, expressed as a Q10, is the

probe frequency divided by the obtained notch width (S4 Fig). The average measurement

time needed for determination of 1 Q value was minimally 1 hour.

Relation between Q10 and stimulus level. CAPs measured at the bony capsule of the

cochlea in humans and monkeys were smaller and noisier than those measured at the round

window in cat and chinchilla. To comply with the predetermined SNR (18 dB), stimulus levels

in human, relative to cat and chinchilla, needed to be approximately 30 dB higher for both the

masker (human: 50–70 dB SPL; monkey 40–65 dB SPL) and the probe (human: 55–75 dB SPL;

monkey 75–80 dB SPL). It is well known that cochlear frequency selectivity decreases with

level. This has been extensively documented for iso-input measurements [45]. Modeling stud-

ies suggest that, for iso-response measurements, as used here, Q-values can actually increase

with level [46] so that we need to consider the possibility that higher Q values in human are
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due to the higher stimulus levels used. However, in the NNFM CAP study in animals [22],

such an increase in sharpness with probe level was not observed. On the contrary, for probe

levels below approximately 50 dB SPL, there was almost no dependence of Q10 on probe level,

and above this level, the Q10 was negatively correlated with probe level [22]. Consequently, if

higher stimulus levels would have affected our Q estimates, they would give underestimates

rather than overestimates.

Conversion functions. To make a prediction of human single AN fiber Q10 values based

on the measured CAP Q10 values, we made use of conversion functions. These functions,

based on data collected on 3 animal models, provide the ratio between single-fiber Q10 and

CAP Q10 trendlines as a function of frequency (S5 Fig). The purple dashed-dotted lines are the

conversion functions (ratios) between the AN fiber Q-values (green dashed lines) and CAP Q-

values (red lines) for the 3 species, over the frequency range for which we measured CAP data

in human (2 to 6 kHz). (a) The conversion function for cat is obtained with AN fiber data

(dashed green) and Q10 data (red solid) from [22]. (b) The conversion function for chinchilla

is obtained with AN fiber data from [47] and Q10 data from [22]. (c) The conversion function

for macaque monkey is obtained with AN fiber data from [24] and Q10 data from Fig 1b.

Experimental paradigm neural phase-locking

We assess neural phase-locking using a phase-locked neural component in the electrical mass

potential recorded in the middle ear. Previously, we developed a method based on forward

masking to disentangle the neural phase-locked component from that of the receptors (CM).

We demonstrated the validity of this method in cat in two respects: that it isolated neural com-

ponents and that it yielded an upper-frequency limit of neural phase-locking close to that

reported in single AN fibers [23]. In human and monkey, the same stimulus paradigm was

used as previously developed in cat [48]. Some parameters were adjusted to optimize measure-

ment time. Briefly, the neural signal is disambiguated from the CM by comparing the response

to a tonal probe with the response to the same probe but preceded by a masker. To then extract

only the neural phase-locked component and discard the CAP, the responses to 2 opposite

stimulus polarities are subtracted from each other.

Stimulus. A schematic representation of the stimulus with average response (green wave-

forms) used for neural phase-locking is illustrated in S6 Fig. The upper (red, S6 Fig, panel a)

and lower (blue, S6 Fig, panel c) half stimulus representations are identical except for being

inverted in polarity, and each consists of 3 segments. The first segment x contains only a

probe, the second segment y contains a masker followed by a probe, and the last segment z

contains only the masker. The probes (50 ms) and maskers (83.71 ms) were pure tones at the

same frequency (fP). The masker-probe interval was 1 ms, and the interval between different

stimuli was at least 10 ms. Segment z had a stimulus-free period of approximately 80 ms,

which was required for the recovery of masking and was also used for the determination of the

noise floor in the individual results. To reduce spectral splatter, the probe and masker were

gated with a 1 ms raised-cosine. The parameters that were modified in order to optimize mea-

surement time were the probe length (50 ms), probe-masker interval (10 ms), number of aver-

ages (n� 200) and stimulus levels (probe level: 65, 70, or 75 dB SPL versus 50 or 55 dB SPL in

cat; the masker level was always 10 dB above the probe level).

Analysis of responses, neural phase-locking. The analysis performed on the responses of

human and monkey to obtain a measure for neural phase-locking was the same as in our previ-

ous study in cat [48], in which the responses to different segments (S6 Fig) were combined to

obtain the required signals (S7 Fig). The first pair of responses (S7 Fig, panel A, trance a) is the

basic alternated probe response (magenta: positive polarity [P]; cyan: negative polarity [N])
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from the stimuli in segment x (S6 Fig). This response contains both neural (CAP, neuropho-

nic) and receptor (CM) potentials. To extract the neurophonic, the other components (CM

and CAP) have to be removed. Unfortunately, due to the tight relationship between the neuro-

phonic and CM, it is impossible to remove or reduce the CM without also removing the neuro-

phonic. However, the opposite is possible: the neural component (neurophonic and CAP) can

be suppressed by using neural adaptation, a neural property that is not present for the CM. By

preceding the probe with a sufficiently stronger signal (the masker), the neural response of the

probe can be temporarily suppressed. The result of this is shown by the second pair of

responses (S7 Fig, panel A, trace b) and is called the “masked response.” This pair is corrected

for the masker’s trailing off-set response (S6 Fig, filled arrows) by subtracting this off-set

response in segment z (S6 Fig, open arrows) from segment y. From this pair of corrected

responses, a new pair is derived by subtracting the masked response (S7 Fig, panel A, trace b)

from the probe response (S7 Fig, panel A, trace a): this we call the “adapted component” (S7

Fig, panel A, trace c). In a previous study [48], it was shown that the adapted component is

neural in origin.

In this study, we are mainly interested in the fundamental phase-locked component, but

the adapted component contains also the CAP and other harmonics. We canceled these

unwanted neural components by subtraction of the halved pairs of responses ([P − N]/2) (S7

Fig, panel A); the result is shown in S7 Fig (panel B). The resulting response is stimulus polar-

ity dependent and is dominated by the fundamental component. To quantify the decaying

neural phase-locked signal (S7 Fig, panel B, trace c), we used the same method and settings as

in our previous study [48]. The method obtains the maximum of the time course of the”instan-

taneous” magnitudes of only the fundamental component using a Gabor transform. The

Gabor transform is a special case of a short-time Fourier transform (STFT; MATLAB, spectro-

gram) with a Gaussian time window. In this study, the Gaussian window was truncated at α =

2.5 and had a fixed defined window length of 6 cycles of the probe frequency. The STFT win-

dow was moved in steps of 100 μs with an overlap between 75% and 98%. The size of the FFT

was chosen such that the frequency spacing between the spectral components was fixed to

2.5% of the desired frequency. For every time step, the center frequency (maximum power)

was searched within a spectral range of ±10% around the desired frequency (here, 800 Hz).

The magnitude as a function of time was obtained as the magnitude corresponding to the

power calculated as the sum of the power of the spectral components within a range of ±20%

on the center frequency (= 98.9% spectral coverage of the desired magnitude).

Noise floor compensation, neural phase-locking. For the assessment of the upper fre-

quency limit of phase-locking, the signal noise floor was quantified. It was calculated from the

background noise in the response- and artifact-free part of segment Z (e.g., S6 Fig, 320 to 366

ms). Over this time window, the background noise was stable over time (standard error of

only a few tenths of a decibel) and was dominated by non-neural sources. This calculation was

described in our previous publication [48] and involved, when possible, the response combina-

tions and operations (e.g., subtraction, STFT, etc.) that were also used to quantify the

responses. In case not all operations could be performed, the noise was compensated with a

factor corresponding to these operations assuming uncorrelated noise. For example, the

removal of the masker’s trailing off-set response (cf. arrows Fig 6) involves a subtraction which

for the noise estimate was replaced by a multiplication with sqrt(2). Noise floors for the peak

and STFT amplitude were calculated as the 99.75th percentiles (obtained with spline interpola-

tion) of the noise distribution around the mean value of the processed noise plus the mean

value itself. The reason for this seemingly insignificant operation was to reduce fluctuations in

the baseline due to outliers in the noise.
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Due to the low SNR in human (maximum 8 dB) and to a lesser extent in monkey (maxi-

mum 15 dB), at the highest frequencies, the neurophonic is overtaken by the noise floor (dot-

ted lines and shading, S8 Fig). Because the spectrum of the noise floor is independent of the

neurophonic and is known, the transfer functions of the measured neurophonic (dashed lines,

S8 Fig) can be compensated for by the noise floor. The compensated transfer function of the

neurophonic (solid lines, S8 Fig) is obtained by subtraction of the power of the noise floor

from that of the neurophonic

ðNeurophonicCompensated ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NeurophonicMeasured
2
� Noise Floor2

q

Þ . As in our previous study

[23], we defined the upper frequency limit of phase-locking (indicated by the horizontal dashes

on the compensated trendlines) as the frequency 10 dB below the intersection with the noise

floor (indicated by the empty circle and short dotted lines in S8 Fig).

Statistical analysis

All data were processed and analyzed with custom MATLAB (The Mathworks) scripts. To

improve the response’s SNR, the uncorrelated background noise was reduced by averaging the

response of many repetitions (n > 127), and multiple Q-values were obtained at every mea-

sured frequency. Nevertheless, due to time constraints (2–4 hours) in awake humans and anes-

thetized monkey (4–6 hours), only a limited number of Q-values could be extracted in each

subject. Therefore, the population data in human and monkey are not evenly distributed

across frequencies. To cope with this unevenly distributed data and to minimize the influence

of outliers, we obtained Robust-LOESS trend-values instead of mean-values. The LOESS is a

nonparametric local regression function using weighted linear squares and a second-degree

polynomial model. The Robust version, the RLOESS assigns lower weight to outliers in the

regression. The weights are given by the bisquare function with 0 weight for deviations greater

than 6 mean absolute deviations. In Fig1, the RLOESS trend-values were obtained using the

MATLAB (The Matworks) SMOOTH function from the averaged Q-values within a subject.

Moreover, the trendlines were obtained using a RLOESS function with a span of 0.85 and by

interpolating the results with smoothing splines (FIT, MATLAB, option: “SmoothingSpline,”

parameter: 0.999 approximate cubic spline). The 10th and 90th percentiles of the RLOESS

trendline were estimated using bootstrapping [49] (n = 200), which is a random resampling

method with replacement. The RLOESS function and bootstrapping were performed on the

average of repetitions (same condition and experiment).

For the neurophonic (e.g., Fig 3a and S8 Fig) a similar approach was used to obtain the

trendline. In this case, the LOESS function was used with span 0.55, and the resulting trend

values were connected by straight lines. The bootstrap standard error for the frequency limit

of phase-locking was approximately 270 Hz for monkey and approximately 450 Hz for

human. Because the absolute amplitude of the neurophonic is not only dependent on neural

factors (e.g., cochlea-dependent spatiotemporal summation, electrode contact impedance,

etc.), it can differ between subjects. Therefore, the individual data were first normalized to

their maximum value before the application of bootstrapping.

Supporting information

S1 Fig. Schematic representation of the stimulus for measurement of frequency tuning. (a)

time domain, (b) frequency domain.

(AI)

S2 Fig. Two examples of human CAP response as a function of probe level (LP) for 2 differ-

ent probe frequencies. Left panel for a probe frequency (fP) of 2 kHz; right panel for 6 kHz
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(different subject). The magnitude of the CAP is the maximum voltage as indicated in the fig-

ure (P1–N1). The response in blue (thicker line) in the left panel is an example of a response

that meets our SNR criterion of 18 dB. Data are averaged but not de-noised. Data provided in

S2 Data.

(AI)

S3 Fig. CAP masking as a function of masker level with indication of the masker reference

level. (a) Example of masked CAP responses (not de-noised). The CAP is increasingly reduced

or masked by increasing masker level. (b) Masking curves for different probe frequencies. The

horizontal dashed line indicates the masking criterion. The vertical dashed lines and arrow-

heads indicate the corresponding masker reference levels for different subjects and different

probe frequencies. The masker was a broadband noise. Data provided in S3 Data.

(AI)

S4 Fig. Masking as a function of normalized notch width. Masker levels were fixed at 10 dB

above the masker reference level; their notch width was varied to bracket the level generating

33% masking (i.e., a reduction in CAP amplitude of 33%). The percent masking values are

graphed as a function of normalized notch width (with respect to the probe frequency), and a

trendline is fit through the masking values—this is the masking curve. The horizontal dashed

line indicates the masking criterion (target: 33%). Vertical lines and arrows indicate the notch

width giving the Q10, obtained by interpolation (crossing of masking criterion, 33%, by mask-

ing curve). Data are shown for 2 subjects. Probe frequency was 4 kHz. Data provided in S4

Data.

(AI)

S5 Fig. Conversion functions between sharpness of tuning (Q10) data obtained from single

AN fibers or CAP. The purple dashed-dotted lines are the conversion functions (ratios)

between the AN fiber data (green dashed lines) and CAP data (red lines) for the frequency

range measured in human (2 to 6 kHz). (a) The conversion function for cat is obtained with

AN fiber data (dashed green) and Q10 data (red solid) from [22]. (b) The conversion function

for chinchilla is obtained with AN fiber data from [43] and Q10 data from [22]. (c) The conver-

sion function for macaque monkey is obtained with AN fiber data from [24] and Q10 data

from Fig 1b. Data provided in S5 Data.

(AI)

S6 Fig. Schematic representation of the stimulus for measurement of neural phase-locking,

with averaged responses. Segment x contains the probe only, segment y contains the probe

preceded by a masker, and segment z contains the masker only. The probe and masker shown

are pure tones of 800 Hz; the stimuli in (c) (blue) are inverted in phase relative to those in (a)

(red). The arrows indicate the offset response of the masker in segments y and z.

(AI)

S7 Fig. Example of averaged stimulus evoked responses recorded in human. (Aa) A pair of

raw probe responses for opposite stimulus polarity. (Ab) Same as Aa, but with a preceding

tonal masker (not shown). (Ac) Difference between signal Aa and Ab: the adapted component.

(Ba–c) Difference of the response pairs shown in each of the traces of Aa, Ab, and Ac. Parame-

ters: probe level = 75 dB SPL, masker level = 85 dB SPL, frequency = 800 Hz. The Aa traces

contain all response components (receptor potential + neural). The initial part of the Ab traces

contain only receptor potentials: the neural components are masked. The Ac traces contain

only neural components: the components that were masked and therefore absent in Ab. These

neural components contain both the CAP and the neurophonic: to eliminate the CAP, the
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response pairs to opposite polarities are subtracted from each other (Bc). Data provided in S6

Data.

(AI)

S8 Fig. Compensated neurophonic. The transfer functions of the neurophonic (dashed lines)

for human (red) and monkey (green) are corrected (solid lines) for the influence of the noise

floor (dotted lines with shadow). The 3 dB point is indicated by the empty circle, where the

compensated signal is equal to the noise floor. Data provided in S7 Data.

(AI)

S9 Fig. Trend of maximum vector strength as a function of characteristic frequency for

AN fibers of cat and macaque monkey. Near the upper limit of phase-locking (approximately

4 kHz), the trend in monkey is about 0.2 octave lower than in cat (indicated in the figure by

the arrows). Data for cat [31] and macaque monkey are provided (S8 Data). A discussion of

the low-pass shape of these functions versus the more band-pass shape of the neurophonic

measurements (Fig 3) is provided by Verschooten et al. (2014). Data provided in S8 Data.

(AI)

S1 Data. Data of Figs 1, 2 and 3.

(XLSX)

S2 Data. Data of S2 Fig.

(XLSX)

S3 Data. Data of S3 Fig.

(XLSX)

S4 Data. Data of S4 Fig.

(XLSX)

S5 Data. Data of S5 Fig.

(XLSX)

S6 Data. Data of S7 Fig.

(XLSX)

S7 Data. Data of S8 Fig.

(XLSX)

S8 Data. Data of S9 Fig.

(XLSX)
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