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Noise-induced hearing loss (NIHL) has been well investigated

across diverse mammalian species and the potential for

prevention of NIHL is of broad interest. To most efficiently

develop novel therapeutic interventions, a good understanding

of the current state of knowledge regarding mechanisms of

injury is essential. The overarching goals of this review are to 1)

concisely summarize the current state of knowledge, and 2)

provide opinions on the most significant future trends and

developments.
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Introduction
Noise-induced hearing loss (NIHL) is a major world-wide

public health issue. A substantial proportion of disabling

hearing has been attributed to occupational noise expo-

sure [1,2]. In addition, there is a significant population of

individuals with notched audiometric configurations con-

sistent with noise-induced cochlear injury even in adults

who do not have disabling hearing loss. For example,

among participants in the 2011–2012 National Health and

Nutrition Examination Survey, unilateral or bilateral

audiometric notches were detected in 23.5% of those

who self-reported good or excellent hearing and 28.3%

of those with who self-reported little, moderate, or a lot of

trouble hearing [3]. The finding that noise-induced syn-

aptic pathology (‘cochlear synaptopathy’) does not affect

the pure-tone audiogram suggests the possibility that

there are many more individuals with noise-induced

pathology and dysfunction than are currently diagnosed
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using threshold-based criteria [4��]. Two of the most

exposed, and most at-risk, populations are workers

exposed to occupational noise [5��], and service members

and veterans [6�,7]. Music industry professionals are also

at-risk [8] and there is increasing attention to the potential

risks for those exposed to loud recreational sound (‘leisure

noise’) [9��,10,11��].

It is generally agreed that as noise exposure increases (via

longer exposure and/or higher sound levels), risk for

cochlear injury and hearing loss increases. The most

systematic description of relationships between noise

exposure and hearing loss is that of the International

Standard Organization [12]. Unfortunately, the patterns

of occupational NIHL described in several historic

reports and other more recently assessed worker popula-

tions deviate from that predicted [13,14]. Such discre-

pancies might be related to differences between the

ethnicity and sex of workers contributing data in the

19500s and 1960s and those working in loud jobs today,

as there is significant variation in NIHL as a function of

ethnicity and sex [14–17].

National regulations, such as that of the Occupational

Safety and Health Administration [18] and national guid-

ance documents, such as that of the National Institute on

Occupational Safety and Health [19], are based not only

on assumptions about the levels at which occupational

exposure becomes hazardous, but also public health

decisions about how much hearing loss is ‘acceptable’

and in what proportion of the population this hearing loss

is ‘acceptable’. Recent reviews discussing prevention of

NIHL in adults and children suggest that an exposure

limit of 80 dB-A LEX (with LEX being the 8-hour equiva-

lent continuous average sound pressure level) would

protect all but the most vulnerable individuals against

NIHL, and that 75 dB-A LEX limits would be necessary if

the goal were to protect even the most vulnerable indi-

viduals [9��,10] . Given the much higher sound levels in

many workplaces and during many recreational activities,

NIHL is, unfortunately, likely to remain a major public

health issue. Animal models and mechanisms of injury are

thus of high scientific interest and pharmaceutical inter-

vention has become a commercial goal. Significant cur-

rent interest also includes the identification of damage-

risk criteria for cochlear synaptopathy, the diagnostic tests

and corresponding functional deficits associated with

synaptopathy, and the relevance of this pathology to

workers exposed to occupational noise. This review
www.sciencedirect.com
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briefly addresses each of these ‘hot’ topics in which future

developments are likely to occur.

Animal models of noise-induced hearing loss
Comprehensive review of noise injury in rodent models

was recently provided for the mouse [20], rat [21,22],

chinchilla [23,24], and Guinea pig [25]. Although data

directly establishing differences in vulnerability across

mammalian species are extremely limited, a recent

review of hearing loss induced by octave band noise

exposures revealed the chinchilla is more vulnerable than

both Guinea pig and rat, with the rat being intermediate

to the Guinea pig and chinchilla [26]. The chinchilla, and

thus presumably other rodents, are much more vulnerable

to noise injury than humans [27], and non-human pri-

mates (NHPs) [28–30].

Given genetic and structural similarities, it is not surpris-

ing that the overall vulnerability of humans to noise injury

more closely parallels NHPs [28]; therefore, NHPs pro-

vide an important model for investigating supra-threshold

noise-induced deficits [29,30]. While the two most com-

mon metrics used to study NIHL in mammals are distor-

tion product otoacoustic emissions (DPOAEs), which

measure outer hair cell (OHC) function, and the auditory

brainstem response (ABR), which is used to measure

sound-evoked neural activity, powerful behavioral assess-

ments of both threshold and suprathreshold function can

be conducted in primates. Hypotheses of major interest at

this time are that selective synapse loss and later neural

pathology can result in functional difficulties such as

degraded auditory processing in noise, as well as tinnitus

and/or hyperacusis, even when OHCs have not been

damaged. These hypotheses have been difficult to test

in humans since human participants at risk for synapse

loss also commonly show high frequency audiometric

loss. NHPs permit controlled exposures with audiologic,

behavioral and histological assessments that form a bridge

to human susceptibility.

Mechanisms of injury
There is a wealth of information on the effects of noise on

the inner ear. Much of the early investigation of noise-

induced pathology focused on mechanical damage to hair

cells, the reticular lamina, and other physical elements

composing the organ of Corti [see for example, Ref.

[31�]. As the understanding of both apoptotic and necrotic

cell death in the cochlea increased, the important role of

metabolic stress in apoptosis emerged and there are now

multiple comprehensive reviews of mechanical and meta-

bolic injury mechanisms in the cochlea [32–34]. The more

complete understanding of metabolic stress as a key factor

in noise-induced cell death and NIHL has resulted in the

design and conduct of multiple human trials assessing not

only prevention of NIHL [for review see Ref. 35] but also

prevention of medication-induced ototoxicity given the
www.sciencedirect.com 
key role of metabolic stress as a shared mechanism of injury

[for review see Ref. 36].

The mechanisms of noise-induced cochlear synaptopathy

are increasingly well understood in rodent models [37].

Human temporal bone studies show evidence of age-

related synapse loss [38�,39]that parallels age-related

synapse loss in rodents [40]. Thus, there is significant

interest in whether the noise-induced synaptopathy seen

in rodents occurs in humans [41�,42,43]. Given mixed

data, several detailed reviews concluded that differences

in the patterns of participant exposure may drive the

observed differences in results [44,45��]. Humans at the

lower end of the exposure continuum may be less vul-

nerable to noise-induced cochlear synaptopathy than

initially speculated when the first human findings

emerged [46�,47]. New data continue to emerge regarding

human pathology, however. Recent studies add new

evidence that aging tends to lead to a reduction of

ABR Wave I amplitude, but relationships with noise

exposure have continued to remain elusive [48,49].

Because many of the studies assessing the effects of aging

did not specifically include participants with significant

occupational noise exposure histories, the extent to which

synaptopathic injury might occur in such workers remains

an open question.

Occupational noise injury
There is significant evidence of OHC injury in workers

exposed to occupational noise. OHC damage is com-

monly inferred based on evidence of permanent thresh-

old shift (PTS), but data revealing reduced or absent

DPOAEs also have been used to infer OHC loss or

dysfunction in noise-exposed workers [50]. The potential

for occupational noise to cause cochlear synaptopathy was

suggested by data from rodents subjected to exposures

ranging from a longer-duration lower-level noise exposure

(7 days, 84 dB SPL) to a shorter-duration higher-level

noise exposure (2 hours, 100 dB SPL) [51,52]. The dif-

ferences between occupational noise exposure (repeated

daily exposures over many years with nightly recovery

periods) and the single exposure models used to induce

cochlear synaptopathy in animal models (noted above)

have led to questions about the relevance of animal

laboratory tests to understanding occupational worker

hearing loss [53�]. For occupational noise exposure, the

presence of overt hearing loss confounds the interpreta-

tion of decreased wave I amplitude as evidence of

cochlear synaptopathy, but the finding of wave I ampli-

tude deficits at high stimulus levels, above the operating

range for the cochlear amplifier, is consistent with a mixed

pathology including both OHC and synapse loss [44].

More recent discussions suggest careful selection of the

stimulus paradigm can reduce confounding of the effects

of OHC loss and synapse loss [54]. Other recent data

clearly document the possibility of cochlear synaptopathy
Current Opinion in Physiology 2020, 18:32–36
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occurring with or without accompanying sensory cell loss,

as a function of the specific exposure parameters [55].

Suprathreshold deficits
While there is significant speculation regarding the spe-

cific functional deficits that are associated with cochlear

synaptopathy, there is little direct evidence of functional

deficits in work with rodents to date. A single study

assessing the perceptual consequences of ABR Wave I

amplitude deficits in a rat model reported decreases in the

detection of masked signals, with deficits limited to the

poorest signal to noise ratios at signal frequencies that

evoked decreased ABR amplitudes [56]. Efforts to detect

deficits in the detection of masked signals have not

revealed deficits in tinnitus patients, a group speculated

to be at risk for cochlear synaptopathy [57]; these results

are consistent with recent preliminary data from the

authors’ laboratory in animals that experienced noise

exposures that have been previously shown to cause

cochlear synaptopathy. Age-related declines in Wave I

amplitude in humans were not associated with deficits in

hearing in noise; in addition there was no consistent

relationship between ABR Wave I amplitude and lifetime

noise exposure [48]. In contrast, several reports suggest

that veterans and civilian firearm users may be at

increased risk of cochlear synaptopathy [58�,59]. Addi-

tional research with those exposed to firearm noise and

occupational noise is warranted, with careful efforts to

control for potential OHC pathology required.

Pharmaceutical intervention
Decades of research using animal models to assess mech-

anisms of noise injury and therapeutic interventions at the

selected targets have advanced into clinical trials for a

variety of agents [for recent review see Ref. 35] despite

the many challenges associated with development of

drugs for auditory indications [see Ref. 60]. Indeed, there

are now more than 40 companies with pharmaceutical

interventions in various stages ranging from pre-clinical to

Phase I or even Phase II clinical trials [61��]. In addition to

long standing interest in pharmaceutical prevention of

NIHL, there is a burgeoning interest in regeneration and

stem cell therapeutics to combat noise-induced hearing

deficits. Many of these are being tested in animal models,

and hope to follow the success of Vortigene, a genetic

therapeutic for visual dysfunction that was first tested in

rodents, then tested in a larger animal model before being

translated to humans [62–64]. Pharmaceutical therapies

that restore cochlear synaptic connections are also a focus

of current investigation [65–67]. The clinical (and com-

mercial) development of neurotrophic factors that stimu-

late repair or regeneration of the neural connections

between the auditory nerve and the inner hair cells is

poised to quickly accelerate if cochlear synaptopathy and

associated functional deficits can be reliably diagnosed

and quantified. Note that translation of such therapies to

humans requires careful consideration of many factors,
Current Opinion in Physiology 2020, 18:32–36 
including species susceptibility to noise exposures,

genetic differences between the animal model and

humans, therapeutic window, delivery windows and

delivery methods [28,60].

Summary and conclusions
NIHL is likely to remain a major public health issue given

the high levels of environmental, recreational, and occu-

pational noise exposure. Animal models evaluating mech-

anisms of injury have provided significant insight into the

vulnerability of both OHCs and cochlear synapses to

noise injury. Related research identifying drugs that

alleviate metabolic stress has allowed pharmaceutical

intervention for NIHL prevention to become a major

commercial goal. With greater understanding of cochlear

synaptopathy and corresponding functional deficits, it

may be possible to envision updates to the occupational

noise regulations used to protect workers against noise

injury as well as the potential for regeneration or repair of

lost synapses. Given the prevalence of NIHL and the

potential that age-related and/or noise-induced cochlear

synaptopathy could be associated with hearing-in-noise

difficulty, tinnitus, or hyperacusis, the pursuit of clinical

interventions is likely to remain a major topic of investi-

gation with the potential for major advances in hearing

care.
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