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MINIMAL N-POINT DIAMETERS AND f-BEST-PACKING
CONSTANTS IN Rd

A. V. BONDARENKO∗, D. P. HARDIN, AND E. B. SAFF

Abstract. In terms of the minimal N -point diameter Dd(N) for Rd, we deter-

mine, for a class of continuous real-valued functions f on [0, +∞], the N -point
f -best-packing constant min{f(‖x − y‖) : x, y ∈ Rd}, where the minimum is

taken over point sets of cardinality N. We also show that

N1/d∆
−1/d
d − 2 ≤ Dd(N) ≤ N1/d∆

−1/d
d , N ≥ 2,

where ∆d is the maximal sphere packing density in Rd. Further, we provide

asymptotic estimates for the f -best-packing constants as N →∞.

Let f be a non-negative function on [0,∞) and ωN = {x1, x2, . . . , xN} a collec-
tion of N distinct points in Euclidean space Rd. Set

δωNd (f) := min
x,y∈ωN
x 6=y

f(‖x− y‖),

where ‖ · ‖ denotes the Euclidean norm. In this article we investigate the N -point
f -best-packing constant

(1) δd(N ; f) := sup
ωN⊂Rd
#ωN=N

δωNd (f) = sup
ωN⊂Rd
#ωN=N

min
x,y∈ωN
x 6=y

f(‖x− y‖),

where #A denotes the cardinality of a set A. A collection of N points ω∗N ⊂ Rd is
said to be an N -point f -best-packing configuration if δω

∗
N

d (f) = δd(N ; f).
The classical best-packing problem is the problem of finding a configuration of

N points on a given compact set A with the largest minimal pairwise distance.
Formulated for the Euclidean space Rd this becomes the asymptotic problem of
finding the largest density of an infinite collection of non-overlapping equal balls in
Rd (see e.g. [3], [7]). We denote this maximal sphere packing density in Rd by ∆d;
e.g. ∆1 = 1, ∆2 = π/

√
12 (cf. [9]) and ∆3 = π/

√
18 (cf. [10]).

As a natural extension, the asymptotics of certain weighted best-packing prob-
lems on compact sets are investigated in [5]. Here we consider such problems for a
certain class A of functions f defined on all of Rd for fixed N (see Theorem 1) as
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well as provide asymptotic results (as N →∞) in Corollaries 2 and 3. For example,
for Gaussian weighted best-packing on R2, i.e, f(t) = t exp(−t2), our results yield
in particular for N = 7 that δ2(7; f) = 2−1/3((1/3) log 2)1/2 and, furthermore,

(2) δ2(N ; f) ∼
(

∆2

N

)( N∆2
−1)/2(

N

∆2
− 1
)1/2(1

2
log

N

∆2

)1/2

, N →∞.

An important role in our investigation is played by the quantity

(3) Dd(N) := min
x1,...,xN∈Rd

{
maxi 6=j ‖xi − xj‖
mink 6=` ‖xk − x`‖

}
,

which is called the minimal N -point diameter for Rd. That the minimum of the
ratio in (3) is attained may be seen using a scaling argument. Clearly, D1(N) =
N − 1 for each N ≥ 2. For d = 2, the exact values of D2(N) are known (cf. [1],[2])
for N up to 8, and asymptotically there holds

(4) D2(N) = (N/∆2)1/2 +O(1) as N →∞.
Furthermore, it is shown by A. Schürmann in [12] that for N sufficiently large,
optimal configurations for D2(N) are (somewhat surprisingly) always non-lattice
packings, as conjectured by P. Erdös.

In comparison with (4) whose proof relies on results of [9] that are special for
the plane, we show in Theorem 2 that for all d ≥ 1 we have

N1/d∆−1/d
d − 2 ≤ Dd(N) ≤ N1/d∆−1/d

d (N ≥ 2).

Our first theorem applies to the class A of functions f ∈ C([0,∞)) such that
f(0) = 0, f(t) > 0 for t > 0, limt→∞ f(t) = 0, and such that there exist positive
numbers ε, M (ε ≤M) with the properties that f is strictly increasing on [0, ε] and
is strictly decreasing on [M,∞). We may assume, without loss of generality, that,
for f ∈ A, the parameters ε and M in the above definition further satisfy

(5) f(ε) = f(M) = min
t∈[ε,M ]

f(t).

Lemma 1. Suppose f ∈ A with parameters ε and M that satisfy (5). If α > M/ε,
then there is a unique positive solution t = τ(α) to the equation

(6) f(t) = f(αt).

Furthermore, τ(α) ∈ (M/α, ε).

Proof. Consider g(t) := f(αt)− f(t) for t ≥ 0. Since M/α < ε, f(αt) is decreasing
for t ∈ [M/α,∞). Furthermore, since f is increasing on [0, ε], it easily follows that
g is (strictly) decreasing on [M/α, ε] and that

g(M/α) = f(M)− f(M/α) = f(ε)− f(M/α) > 0.

We also have
g(ε) = f(αε)− f(ε) < f(M)− f(ε) = 0

since f is decreasing on [M,∞) and αε > M . Hence, g has exactly one zero in
(M/α, ε), or equivalently, (6) has exactly one solution t = τ(α) ∈ (M/α, ε).

If t ≥M , then f(αt) < f(t) since f is increasing on [M,∞). If ε ≤ t ≤M , then
f(t) ≥ f(M) > f(αt) since αt ≥ αε > M . Therefore, there are no values of t ≥ ε
that satisfy (6). A similar analysis shows that (6) has no solutions in (0,M/α] and
so t = τ(α) is the unique solution of (6) for t > 0. �
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Our first main result is the following:

Theorem 1. Let f ∈ A with parameters ε and M that satisfy (5). Let N0 be such
that Dd(N) > M/ε for N > N0 and tN = τ(Dd(N)) denote the unique value of
t > 0 such that

(7) f(t) = f(Dd(N)t).

Then

(8) δd(N ; f) = f(tN ), N > N0.

Moreover, a collection of N(> N0) distinct points ωN = {xk}Nk=1 ⊂ Rd is an N -
point f -best-packing configuration if and only if

(9) min
x,y∈ωN
x 6=y

‖x− y‖ = tN and diam(ωN ) = tNDd(N).

Proof. Let N > N0 and let ωN = {xk}Nk=1 be a collection of N points in Rd such
that mini 6=j ‖xi − xj‖ = tN and diam(ωN ) = tNDd(N). Then

(10) tN ≤ ‖xi − xj‖ ≤ tNDd(N), (i 6= j).

By Lemma 1, we have tN < ε and tNDd(N) > M . From (5), the definition of tN
and the monotonicity properties of f we have

f(tN ) = min
t∈[tN ,tNDd(N)]

f(t)

which, together with (10) implies that f(‖xi − xj‖) ≥ f(tN ) for all i, j (i 6= j).
Since ‖xi − xj‖ = tN for some pair i, j (i 6= j), we have

δωNd (f) = min
i6=j

f(‖xi − xj‖) = f(tN )

and so δd(N ; f) ≥ f(tN ).
Let ω̃N = {yk | k = 1, . . . , N} denote an arbitrary N -point configuration in Rd

and let t̄ := mini6=j ‖yi − yj‖. Since f is increasing on [0, ε] and tN ≤ ε, we have
δω̃Nd (f) < f(tN ) if t̄ < tN , i.e. the configuration ω̃N is not optimal. On the other
hand, if t̄ ≥ tN , then diam (ω̃N ) ≥ Dd(N)t̄ ≥ Dd(N)tN and so there must be
some i, j such that ‖yi − yj‖ ≥ Dd(N)t̄. Hence, δωNd (f) ≤ f(Dd(N)tN ) = f(tN )
with equality if and only if both t̄ = tN and diam ω∗N = Dd(N)tN . Therefore,
δd(N ; f) = f(tN ) and a configuration is optimal if and only if the conditions (9)
hold. �

For the sake of illustration, consider the function fp,q ∈ A defined by fp,q(t) = tp

if 0 ≤ t ≤ 1 and fp,q(t) = t−q if t > 1 where p, q > 0 satisfy 1/p + 1/q = 1. The
unique solution of (6) is τ(α) = α−q/(p+q) for α > 1. Then fp,q(τ(α)) = 1/α and,
by Theorem 1,

(11) δd(N ; fp,q) = 1/Dd(N) = max
x1,...,xN∈Rd

{
mink 6=` ‖xk − x`‖
maxi 6=j ‖xi − xj‖

}
.

On letting p→ 1 and q →∞, fp,q tends to f1,∞ where f1,∞(t) = t for 0 ≤ t ≤ 1 and
f1,∞(t) = 0 for t > 1 for which the equality in (11) is apparent from the definitions
of these quantities.

For the case d = 1, we have D1(N) = N − 1 and any configuration of N points
that attains D1(N) in (3) for N ≥ 2 must be of the form {ck+ b | k = 0, . . . , N −1}
for any fixed constants b and c 6= 0. We thus obtain the following.
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Corollary 1. Let f ∈ A and d = 1. Let τN = τ(N − 1) be the unique solution
of equation (6) with α = N − 1 > M/ε. Then δ1(N ; f) = f(tN ) and any f -best-
packing configuration is of the form {tNk+ b | k = 0, . . . , N − 1} for some constant
b.

For example if f(t) = t exp(−tβ), β > 0, we can take ε = M = β−1/β and we
deduce that for d = 1 and N > 2,

tN =
[

log(N − 1)
(N − 1)β − 1

]1/β
and

δ1(N ; f) =
[

log(N − 1)
(N − 1)β − 1

]1/β
(N − 1)−1/[(N−1)β−1]

with an optimal configuration ωN = {tNk}N−1
k=0 . (For N = 2, we find δ1(2; f) =

β−1/β exp(−1/β) with an optimal configuration being {0, β1/β}.)
We remark that for the Gaussian weighted problem mentioned earlier, the com-

putation of δ2(7; f) follows easily from Theorem 1 and the fact that D2(7) = 2.

Next we present estimates for the minimal N -point diameter.

Theorem 2. For all d ≥ 1 and N ≥ 2,

(12) N1/d∆−1/d
d − 2 ≤ Dd(N) ≤ N1/d∆−1/d

d .

Proof. We say that a set of points in Rd is 2-separated if the distance between any
two points in the set is greater than or equal to 2. For a compact set K ⊂ Rd, let
M(K) denote the maximum number of points that can be placed in K under the
constraint that the distance between any two points is greater than or equal to 2,
i.e., M(K) is the maximum cardinality of any 2-separated subset of K.

For a compact set K in Rd, we let K̃ denote the 2-neighborhood of K defined by

K̃ := {y ∈ K |dist(y,K) ≤ 2},
and, for t ∈ Rd, we let K + t denote the translate of K by t.

For ρ > 1, let Xρ denote a 2-separated collection of M(B(0, ρ)) points in B(0, ρ),
where B(0, ρ) denotes the open ball centered at 0 with radius ρ. Then it is known
(cf. [6]) that M(B(0, ρ)) = ρd∆d + o(ρd) as ρ→∞ and, furthermore, for any fixed
a > 0, that

(13) # (Xρ ∩B(0, ρ− a)) = ρd∆d + o(ρd) as ρ→∞,

where #A denotes the cardinality of a set A.
Let K be a compact convex set in Rd that contains the origin 0 and let Y denote a

2-separated collection of M(K) points in K. If t ∈ Rd is such that |t| ≤ ρ−diamK̃,
then K̃ + t is contained in B(0, ρ) and X ′ρ = (Xρ \ K̃ + t)∪ (Y + t) is a 2-separated

configuration in B(0, ρ) of #Xρ−#
(
Xρ ∩ (K̃ + t)

)
+M(K) points, from which it

follows that

(14) #
(
Xρ ∩ (K̃ + t)

)
≥M(K).

Let µρ denote the discrete measure µρ =
∑
x∈Xρ δx, where δx denotes the unit

atomic mass at x ∈ Rd and let λd denote Lebesgue measure on Rd. As before,
suppose K is a compact convex set in Rd that contains 0 and let χK denote the
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characteristic function of K. We next consider the following convolution integral
which, by Tonelli’s theorem, can be written as∫∫

B(0,ρ)×Xρ
χK(x+ t)dµρ(x)dλd(t) =

∫
B(0,ρ)

#(Xρ ∩ (K − t))dµρ(x)dλd(t)

=
∫
Xρ

λd(B(0, ρ) ∩ (K − x))dµρ(x).
(15)

If |x|+ diam(K) ≤ ρ, then K − x ⊂ B(0, ρ) and so we have

λd(K)#(Xρ ∩B(0, ρ− diamK)) ≤
∫
B(0,ρ)

#(Xρ ∩ (K − t))dµρ(x)dλd(t)

≤ λd(K)#(Xρ).
(16)

For N ≥ 1, letting RN := N1/d∆−1/d
d and choosing K = B(0, RN ), the first

inequality in (16) shows that

#(Xρ ∩B(0, ρ− 2RN ))λd(B(0, RN )) ≤ λd(B(0, ρ)) max
t

#(B(−t, RN ) ∩Xρ),

and so, using (13), we obtain as ρ→∞

max
t

#(B(−t, RN ) ∩Xρ) ≥
#(Xρ ∩B(0, ρ− 2RN ))λd(B(0, RN ))

λd(B(0, ρ))
= RdN∆d + o(1).

Taking ρ→∞ it then follows that M(B(0, RN )) ≥ N and thus we have

(17) Dd(N) ≤ diamB(0, RN )
2

= RN = N1/d∆−1/d
d .

Next we derive the lower estimate for Dd(N). For N ≥ 2, let KN denote the
convex hull of a 2-separated configuration of N points such that diam(KN ) =
2Dd(N). Using the second inequality in (16) with A = K̃N and the inequality (14),
we obtain

λd(K̃N )
#Xρ

ρd
≥ 1
ρd

∫
B(0,ρ−diam(K̃N ))

#
(
Xρ ∩ (K̃N − t)

)
dλd(t)

≥M(KN )
λd(B(0, ρ− diam(K̃N ))

ρd
.

(18)

Recalling the isodiametric inequality ([13], see also [4]) that λd(A) ≤ βd(diam(A)/2)d

for any bounded measurable set A ⊂ Rd and using (13) and taking ρ→∞, we have(
diam(K̃N )

2

)d
∆d ≥M(KN ) ≥ N.

Since diam(K̃N ) = 4 + diam(KN ) = 4 + 2Dd(N), it follows that

(19) Dd(N) ≥ ∆−1/d
d N1/d − 2.

�

We remark that for the case d = 2, Bezdek and Fodor [2] have shown that
D2(N) ≥ N1/2∆−1/2

s − 1, N ≥ 2. We also note that at the conclusion of their arti-
cle [1], Bateman and Erdös briefly mention that for N →∞ “there are asymptotic
relations of the form 1

2Dd(N) ∼ cdN1/d,” for some unknown constant cd and refer
to a paper of Rankin [11]. However, to the authors’ knowledge, there appears no
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explicit proof of this fact for arbitrary d in [11] or elsewhere.

Theorem 1 together with Equation (4) and Theorem 2 allow us to establish some
asymptotic estimates for the N -point f -best-packing constant δd(N ; f) of a fixed
function f ∈ A. For example, from (12) and (11) we have

δ2(N ; fp,q) = 1/D2(N) =
π1/2

121/4
N−1/2 +O(N−1), N →∞,

and, for d > 2,

δd(N ; fp,q) = 1/Dd(N) = ∆1/d
d N−1/d + o(N−1/d), N →∞.

We will now investigate how well δd(N ; f) can be approximated by f(τ(N1/d∆−1/d
d )),

as N →∞, where τ(α) is the unique solution of (6). For this purpose the following
simple lemma is useful.

Lemma 2. Let f , M , and ε be as in Lemma 1 and let A and A+λ both be greater
than M/ε. If λ ≤ 0, we further assume that A ≤ (A + λ)2. Then the following
inequalities hold:

(20) f(Aτ(A)/(A+ λ)) ≤ f(τ(A+ λ)) ≤ f(τ(A)), if λ ≥ 0,

(21) f((A+ λ)τ(A)) ≤ f(τ(A+ λ)) ≤ f(Aτ(A)), if λ ≥ 0,

(22) f(τ(A)) ≤ f(τ(A+ λ)) ≤ f
(
Aτ(A)
A+ λ

)
, if λ ≤ 0,

Aτ(A)
(A+ λ)

≤M,

(23) f(Aτ(A)) ≤ f(τ(A+ λ)) ≤ f((A+ λ)τ(A)), if λ ≤ 0, ε ≤ (A+ λ)τ(A).

Proof. The inequalities follow easily from the facts that τ(t) is decreasing and tτ(t)
is increasing for t > M/ε. �

This lemma allows us to obtain asymptotic estimates on δd(N ; f), d ≥ 2, for
some subclasses of functions f ∈ A. Set A := N1/d∆−1/d

d , λ := Dd(N)− A. Then
by applying Theorem ?? and Lemma 2 we immediately obtain the following.

Corollary 2. Let f ∈ A, d ≥ 2. If at least one of the following two conditions
holds,

(i) lim
t→0+

f(t+ g(t))
f(t)

= 1, for any g such that t+g(t) ≥ 0 for t > 0 and g = o(t),

t→ 0+, or

(ii) lim
t→∞

f(t+ g(t))
f(t)

= 1, for any g = o(t), t→∞,

then

(24) lim
N→∞

δd(N ; f)

f(τ(N1/d∆−1/d
d ))

= 1.

For the Gaussian weighted best-packing problem in R2 mentioned earlier, where
f(t) = t exp(−t2), the above corollary readily yields the asymptotic result (2).

Similarly, if d = 2, then (4) implies the following:
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Corollary 3. Let f ∈ A. If, for some β ∈ (0, 1), both of the following conditions
hold,

(25) lim
t→0+

f(t+ g(t))
f(t)

= 1, for each g(t) = O(t1+1/β), t→ 0+,

and

(26) lim
t→∞

f(t+ g(t))
f(t)

= 1, for each g(t) = O(t−β/(1−β)), t→∞,

then

(27) lim
N→∞

δ2(N ; f)

f(τ( 121/4

π1/2 N1/2))
= 1.

Proof. If τ(D2(N)) > N−β/2 for some sequence of integers N , then (27) holds
by (4), (20), (22), (25), while if τ(D2(N)) ≤ N−β/2 for infinitely many N , then (27)
holds by (4), (21), (23), (26). �

The following example illustrates the sharpness of Corollary 3. Let f(x) =
exp{−1/x2} for x ∈ (0, 1), and f(x) = exp{−x2} for x ≥ 1. We have

δ2(N ; f) = exp{−D2(N)} = O(exp{−121/4

π1/2
N1/2}), N →∞,

f(t+ g(t)) = O(f(t)), for each g(t) = O(t3), t→ 0,
and

f(t+ g(t)) = O(f(t)), for each g(t) = O(1/t), t→∞.
This example shows that Corollary 3 is optimal in the sense that it is not possible to
simultaneously increase the constant 1 + 1/β and reduce the constant −β/(1− β).
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