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Specification Uncertainty and Model 
Averaging * 
Larry M. Bartels, Princeton University 

Theory: Data analysts sometimes report (and more often produce) results from 
many alternative models with different explanatory variables, functional forms, 
observations, or exogeneity assumptions. Classical statistical theory is ill-suited to 
make sense of this practice. 
Hypotheses: Bayesian statisticians have recently proposed a coherent procedure 
for taking account of specification uncertainty by averaging results from a variety 
of different model specifications. The model-averaging procedure has the general 
effect of discounting evidence derived from elaborate specification searches, espe- 
cially when alternative models produce markedly different results. 
Methods: I describe the model-averaging procedure, and illustrate its application 
using examples drawn from a controversy in comparative political economy be- 
tween Lange and Garrett (1985, 1987) and Jackman (1987), and from the work of 
Erikson, Wright, and McIver (1993) on public opinion and policy in the American 
states. In addition, I propose two classes of reference priors that might usefully 
supplement the uniform model priors typically adopted in model averaging-a 
"dummy-resistant prior" for dealing with outlier observations, and a family of 
"search-resistant priors" for representing sequential specification searches. 
Results: The model-averaging procedure seems to offer a convenient approxima- 
tion to full-blown Bayesian analysis in typical social science settings. It is simple 
to implement, and uses the variety of alternative model specifications already being 
produced by data analysts to shed some useful light on the inferential implications 
of specification uncertainty. 

There is an embarrassing gulf between the elegant superstructure of 
statistical theory and the actual practices of real data analysts. As Achen 
(1982, 16) put it, 

*This article is a long addendum to my short discussion of "Five Approaches to Model 
Specification" in The Political Methodologist (Bartels 1990). I am grateful to Christopher 
Achen and Nathaniel Beck for relevant inspiration, to Simon Jackman and John Londregan 
for relevant conversation, and especially to Bruce Western for sharing and discussing his 
work on "Model Uncertainty in Macrosociology" (Western 1996), which has greatly influ- 
enced my own work on this topic. Earlier versions of this article were presented at the 
Twelfth Annual Political Methodology Summer Meeting at Indiana University, July 1995, 
and at the Annual Meeting of the American Political Science Association, Chicago, Septem- 
ber 1995. Christopher Achen, Henry Brady, Robert Erikson, John Freeman, Gary King, 
Walter Mebane, and John Zaller provided especially helpful comments and criticism. 
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conventional statistical methods require strong and precise assumptions about 
the functional relationship among the variables and the behavior of unmeas- 
ured causes. In social science applications, these postulates are not supplied 
by theory. The ensuing logical gap is the principal obstacle to social data 
analysis and the most challenging intellectual problem facing the social science 
methodologist. 

In the absence of the "strong and precise assumptions" required by statisti- 
cal theory, data analysts typically engage in complex "specification 
searches" (Leamer 1978) employing a variety of alternative-mutually 
contradictory-strong and precise assumptions. They may run a plausible 
regression, modify their model on the basis of the regression results, run 
another regression, and so on, almost (but not quite) ad infinitum. Modifi- 
cations may include dropping variables whose coefficients are "insignifi- 
cant" or have the "wrong" (unexpected) sign, deleting observations that 
seem to deviate markedly from the main patterns in the data, replacing 
apparently poor measures with potentially better measures of the same theo- 
retical constructs, or adding more elaborate sets of explanatory variables 
if the data seem cooperative enough to confess further secrets. 

It is obviously foolish to treat the resulting parameter estimates as 
though they were produced in conformity with traditional statistical theory. 
None of the standard results derived under the assumption that the correct 
statistical model is known with certainty can be justified when that assump- 
tion is relaxed. Indeed, in many instances the standard results do not even 
hold to a rough approximation for models resulting from more or less com- 
plex specification searches (Adams 1991; Freedman 1983; Green 1990; 
Judge and Bock 1978).1 It is hard to avoid the conclusion that the whole 
conventional statistical armamentarium of confidence intervals and hypoth- 
esis tests is-or at least should be-almost irrelevant to real data analysis. 

Wise data analysts recognize the mismatch between theory and prac- 
tice, and do their best to overcome the limitations of statistical theory by 
interpreting the results of their analyses in complicated ways only loosely 
based on formal calculations of confidence intervals and hypothesis tests. 
They strive to learn (and convey) what their data have to say without suc- 
cumbing to the familiar pitfalls of "barefoot empiricism," "data mining," 
and "fishing." They explore (and report) the sensitivity of their conclusions 
to plausible alternative model assumptions. And they recognize that, as 
Learmer (1978, 13) noted, "the apparent statistical evidence implied by the 

'For example, Adams (1991) tested 114 distinct regression model selection strategies 
on random data with from 10 to 70 observations and from 5 to 30 predictors with intercorrela- 
tions ranging from zero to .75. All of the stepwise or goodness-of-fit based strategies pro- 
duced nominal p-values below .01, whereas the true p-values with random data were .50. 
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final equation must be discounted; the greater the range of search, the 
greater must be the discount." 

So far, so good. But how, exactly, should that discount be calculated? 
That is the subject of this article. I describe a new technique developed by 
Bayesian statisticians (most notably Draper 1995 and Raftery 1995, build- 
ing upon the work of Jeffreys 1961, Leamer 1978, and others) in which the 
results of various alternative model specifications are averaged to produce 
inferences that make explicit allowance for the implications of specification 
uncertainty. This technique has the general effect of discounting evidence 
derived from elaborate specification searches, especially when alternative 
models produce markedly different results. Thus, unlike more conventional 
model selection techniques which aim to identify a single "best" model 
but then treat the results of that model as if it was the only one examined, the 
model averaging procedure produces both parameter estimates and standard 
errors that honestly reflect the observed variation of results across a range 
of plausible models. 

The model-averaging approach to specification uncertainty represents a 
formalization of enlightened data-analytic practice along explicit Bayesian 
lines.2 In order to gauge its potential utility, I focus upon two examples of 
real social science data analysis-a controversy in comparative political 
economy between Lange and Garrett (1985, 1987) and Jackman (1987), 
and an analysis by Erikson, Wright, and McIver (1993) of the impact of 
public opinion on policy outcomes in the American states. A detailed con- 
sideration of these two examples illustrates several important strengths and 
limitations of the model-averaging approach. It suggests that model averag- 
ing is a marked improvement over conventional statistical practice, and an 
attractive (though imperfect) approximation to full-blown Bayesian anal- 
ysis. 

The Logic of Model Averaging 
Our aim is to make an inference about some quantity of interest, A, 

on the basis of some observed data, X and y. (The quantity A may be a 
regression parameter, a forecast of some future observation, or some other 
quantity of interest.) In classical statistical theory, the data are only informa- 

2Western and Jackman (1994) provided an elementary introduction to Bayesian regres- 
sion analysis in political science. The Bayesian approach offers a useful starting point for 
tackling the problem of specification uncertainty because it is designed precisely to incorpo- 
rate uncertain non-sample information of the sort provided by social science theory. As will 
be evident here, subsequent developments have done much to justify Leamer's (1978, 2) 
assertion that "the Bayesian approach is sufficiently flexible that, with suitable alterations, 
specification searches can be made legitimate, or at least understandable. This does not seem 
to be the case with the classical model of inference." 
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tive about A when they are interpreted in light of a definite statistical model, 
M, which specifies a relevant population, a set of relevant variables, the 
functional form of the relationships among these variables, and the nature 
of relevant stochastic influences. All of our inferences about A depend not 
only upon the data X and y, but also upon the assumptions embodied in 
the model M: in the language of Bayesian statistical theory, they are derived 
from conditional posterior distributions of the form p(A IX, y, M). 

To obtain a posterior distribution that depended upon the data X and 
y but not upon a specific model M, we would have to treat M as a nuisance 
parameter and integrate it out, producing the unconditional posterior distri- 
bution 

p(AIX, Y) = Jp (AIX, y, M)p(MIX, y)dM. [1] 

This approach is infeasible both in principle and in practice, since the set 
of conceivable models for which we would need to compute conditional 
posterior distributions of the form p(AIX, y, M) is not a set of finite mea- 
sure. However, we can at least reduce our dependence upon model assump- 
tions by integrating over a discrete set of J alternative models M1, . . . Mj, 
. . . MJ representing the most plausible, salient, or otherwise interesting 
alternative sets of statistical assumptions. The resulting expression for the 
unconditional posterior distribution corresponding to Equation [1] is 

p(AIX, Y) = f p(AIX, y, Mj) p(MjIX, y), [2] 
j 

which is a simple weighted average of the conditional posterior distribu- 
tions p(A I X, y, M1), . . . p(A I X, y, Mj), . . . p(A I X, y, MJ) for the alternative 
models M1, . . . Mj, . . . MJ, each weighted by the corresponding posterior 
model probability p(MjIX, y) =j, with Vj nj = 1 

The mean and variance of the unconditional posterior distribution in 
Equation [2] depend upon the means and variances of the corresponding 
conditional posterior distributions and upon the posterior model probabili- 
ties ;j (Leamer 1978, 118). The mean of the unconditional posterior distri- 
bution is 

E(AIX, y) = j E(AIX, y, Mj) [3] 
1i 

3Obviously, the assumption that only J discrete models get positive probability, so that 
Ij = 1, is a crucial simplification. I discuss its implications in the Discussion section 

below. 
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and the variance of the unconditional posterior distribution is 

V(AIX, y) = Z Wrj V(AIX, y, Mj) 
j ~~~~~~~~~~~~~[4] 

+ i j [E(AIX, y, Mj) - E(A IX, y)]2. 

The mean of the unconditional posterior distribution in Equation [3] is a 
simple weighted average of the conditional posterior means, while the vari- 
ance of the unconditional posterior distribution in Equation [4] has two 
components, the first a weighted average of the conditional posterior vari- 
ances and the second a weighted average of the squared deviations between 
the conditional and unconditional posterior means. 

My focus in this article is on the coefficients of a linear regression 
model. With a diffuse normal-gamma prior distribution over the regression 
parameters, the mean of the posterior distribution for a parameter j condi- 
tional upon model Mj is simply the corresponding least squares parameter 
estimate bj (or zero if the parameter ij is omitted from model Mj), and the 
variance of the conditional posterior distribution is simply the variance 
V(bj) of the least squares parameter estimate (or zero if ij is omitted from 
model Mj).4 Thus, the mean of the unconditional posterior distribution cor- 
responding to Equation [3] is 

E( IX,y) nb=Z7jbj [5] 

and the variance of the unconditional posterior distribution corresponding 
to Equation [4] is 

V(WjX,y) =Z jV(bj) + nj(bj-b)2, [6] 
J I 

where, as before, nj p(MjlX, y) is the posterior probability for model 
Mj. 

With diffuse priors over the parameters of the various alternative re- 

4The normal-gamma prior is mathematically convenient (since with normally distrib- 
uted disturbances the posterior distributions of ,j and aj must be in the same families as 
the corresponding prior distributions) and provides a rationale for treating the least squares 
parameter estimate bj as the posterior mean of fj given a diffuse prior (Leamer 1978, 78- 
9). Different priors might be desirable in some instances, but would complicate the analysis 
significantly. 
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gression models, the unconditional posterior mean for each coefficient is 
simply an average of the separate parameter estimates produced by the 
various models, each weighted by the posterior probability associated with 
that model. The unconditional posterior variance for each coefficient is the 
same weighted average of the separate variances of the parameter estimates 
in the various alternative models, plus an additional weighted average rep- 
resenting uncertainty resulting from the variability of the parameter esti- 
mates across the range of alternative models.5 This additional weighted av- 
erage may make the unconditional posterior variance large due to 
specification uncertainty, even if the various alternative models all produce 
very precise parameter estimates, if those estimates differ significantly from 
one model to another. 

The only significant remaining difficulty is to calculate the posterior 
model probabilities j p(MjIX, y). By Bayes' theorem, 

Xj-p(MiIX, y) oc p(X, yIM1) p(M1), [7] 

where p(M1) =j is the prior probability of model Mj and 

p(X, yIMj) = J p(X, yjOj, Mj) p(OjlMj) dOj [8] 

is the marginal likelihood of the data under model Mj. 
When alternative models are being compared, the extent to which the 

data favor model Mi over model Mj is indicated by the Bayes factor, 

Bij--p(X,yl|Mi)lp(X, yj|Mj), [9] 

the ratio of the marginal likelihoods for model Mi and model Mj. Since, 
by Equation [7], 

cc on p(X, yIMy) 'i [10] 

for model Mj and 

'Ki 0c M 
x 

I M 
_ n rs9 

5Notice that if the regression parameter estimate bj was identical for each model, the 
weighted sum of squared deviations from the weighted average b in the second term on the 
right-side of Equation [6] would be exactly zero, leaving the unconditional posterior variance 
equal to the weighted average of the conditional posterior variances in the first term. 
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for model Mi, the Bayes factor transforms the prior model odds ratio 
,t?/itY into a posterior model odds ratio ti/tj: 

ni/nj = Bij nr/rInjt [12] 

When Bij exceeds one, the data favor model Mi over model Mj and the 
posterior odds ratio exceeds the prior odds ratio; when Bij is less than one 
the reverse is true. 

In general, calculating a Bayes factor requires calculating the marginal 
likelihood for each model, which in turn requires specifying a prior distribu- 
tion p(0jIMj) for the parameters in each model Mj, evaluating the condi- 
tional likelihood p(X, y I Oj, Mj) for each Oj, and integrating the product of 
the conditional likelihood and the prior. Unfortunately, the practical diffi- 
culties involved in constructing an appropriate model-specific prior distri- 
bution for the parameters in each model Mj and analytically or numerically 
integrating the resulting multidimensional marginal likelihood are daunting 
(though recent advances in computational statistics offer some promise of 
progress on the latter front). 

An additional difficulty arises in considering Bayes factors for nested 
models, since the conditional likelihood of a more general model in which 
a given parameter is unconstrained must always exceed that of an otherwise 
similar but simpler model in which the parameter is constrained.6 Thus, if 
we want to assign positive probability to relatively simple models, we must 
adjust the marginal likelihoods in some way that rewards parsimony, in 
effect specifying a proper prior distribution p(HjlMj) in Equation [8] that 
penalizes the estimation of additional parameters. 

Raftery (1995) and Kass and Wasserman (1995) have proposed a sim- 
ple method for approximating Bayes factors that minimizes computational 
difficulties while allowing for direct comparisons of nested models. They 
show that, with a proper prior over the model parameters equivalent to a 
single typical observation, the log of the marginal likelihood is approxi- 
mately equal to the log of the maximized likelihood minus a penalty propor- 
tional to the number of parameters being estimated.7 

6Leaving the additional parameter unconstrained will always increase the likelihood of 
the data at least slightly, in much the same way that adding an additional variable to a 
regression equation will always increase the value of the (unadjusted) R2 statistic at least 
slightly. 

7More precisely, the required prior distribution for 0, is multivariate normal with mean 
vector Oj and covariance matrix if-, where Oj is the vector of maximum likelihood (here, 
ordinary least squares) estimates of Oj and ij is the expected Fisher information matrix for 
one observation (ij Aj/N, where - Aj is the Hessian matrix of second partial derivatives 
of the conditional log-likelihood evaluated at 0). Then the log of the marginal likelihood 
is equal to the log of the maximized likelihood minus ln(N) (Kj/2) plus an approximation 
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The penalty for additional parameters implied by Raftery (1995) and 
Kass and Wasserman's (1995) approximation to the marginal likelihood 
turns out to be precisely the same penalty implied by the Bayesian Informa- 
tion Criterion (BIC) proposed by Schwarz (1978) as a model selection crite- 
rion. In particular (Raftery 1995), the BIC for model Mj is an approximate 
function of Bjo, the Bayes factor for a comparison of model Mj and a base- 
line model Mo including only an intercept: 

BIC(Mj) -2 ln(Bj0). [13] 

In the case of a linear regression model with normal errors, the BIC 
is 

BIC(Mj) = N ln( - Rj2) + ln(N) (Kj - 1), [14] 

where Rj2 is the regression R2 statistic for model Mj, Kj is the number of 
parameters estimated in model Mj, including the intercept, and smaller 
(more negative) values of BIC indicate larger Bayes factors and, hence, 
higher posterior model probabilities (Kass and Wasserman 1995).8 Substi- 
tuting expression [14] into expression [13] and rearranging, the Bayes fac- 
tor for model Mj relative to the baseline model Mo is approximately 

Bjo exp{(-N/2) ln( - Rj2) - ln(N) ((Kj - 1)/2) }, [15] 

which can be easily computed from standard regression output. 
Once we have calculated (or approximated) the Bayes factor Bjo for 

each of several alternative models, we can solve for the model posterior 
probability for any particular model Mi as a function of the complete set 
of model prior probabilities and Bayes factors by repeated application of 
Equation [12]: 

,xi = Bio 7i?? / Bjo nj0. [16] 
j 

error of order 11IN, where Kj is the number of parameters estimated in model Mj and N is 
the sample size. 

8The Bayesian Information Criterion defined in Equation [14] is essentially the Schwarz 
criterion rescaled so that BIC (MO) equals zero; thus, for comparisons of alternative models 
with the same dependent variable and sample size, as here, BIC and the Schwarz criterion 
are equivalent model selection criteria. The BIC tends to prefer somewhat more parsimonious 
models than do most of the more familiar model selection criteria, such as the adjusted R2 
statistic or the Akaike Information Criterion (Judge et al. 1985, 862-75; Beck and Katz 
1992). 

9I1n the special case of uniform model priors (2t? = ... = = ... = = 1/J), the 
posterior probability for each model is simply proportional to the corresponding Bayes factor. 
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The model posterior probabilities can be used in turn to weight the regres- 
sion parameter estimates and variances from the various alternative models 
in order to calculate the model mixture posterior means and variances using 
Equations [5] and [6]. An example of the required calculations is presented 
in note 13 below. 

The approach described here, in which the relevant Bayes factors are 
approximated on the basis of the corresponding BICs, is only one of a 
variety of approaches to calculating the required model posterior probabili- 
ties. A more complicated but putatively more accurate approximation appli- 
cable to generalized linear models is described by Raftery (1994), Kass 
and Raftery (1995) and Raftery (1995) provide useful overviews.10 

Examples 
In this section I apply the model-averaging procedure outlined in the 

previous section to two prominent political science data analyses. My aims 
are to illustrate the calculations involved in the model-averaging procedure, 
to introduce some alternative reference priors that might usefully represent 
different assumptions about the a priori plausibility of alternative models, 
and to provide some raw material for an evaluation of the potential fruitful- 
ness of model averaging as a technique for statistical inference under model 
uncertainty. 

Politics and Economic Growth in OECD 
My first example is based on a controversy between Lange and Garrett 

(1985, 1987) and Jackman (1987) regarding the impact of the organiza- 
tional and political strength of labor on relative economic growth rates in 
advanced industrial democracies in the late 1970s. Lange and Garrett hy- 
pothesized that both corporatist systems (with well-organized labor move- 
ments and predominantly leftist governments) and free market systems 
(with poorly-organized labor movements and predominantly rightist gov- 

More generally, the model posterior probability is proportional to the product of the corre- 
sponding Bayes factor and the model prior. 

10''Putatively" in that the practical limitations of the various approximations are not 
yet clear. Kass and Raftery (1995, 778) suggested on the basis of some simulation evidence 
that sample sizes larger than 20 times the number of parameters to be estimated are "large 
enough for the method to work well," while sample sizes smaller than five times the number 
of parameters to be estimated are "worrisome." I have replicated Western's (1996) analysis 
of welfare state decommodification, which has six parameters to be estimated from 18 obser- 
vations, using the simple BIC approximation described here, and obtained results identical 
within rounding error to those produced by Western using Raftery's (1994) more sophisti- 
cated approximation. 
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Table 1. Regression Analysis of Economic Growth in OECD 
(N = 15) 

Model Model Model Model Model 
1 2 3 4 5 

Intercept .685 .568 .650 .521 .558 
(.255) (.099) (.096) (.074) (.092) 

Labor Organization Index -.214 -.070 -.038 -.021 -.107 
(.199) (.064) (.058) (.049) (.050) 

Left Party Vote -.671 
(.696) 

Labor x Left Vote .631 
(.458) 

Left Party Cabinet Portfolios -.741 -.653 -.370 -.397 
(.309) (.275) (.252) (.261) 

Labor x Left Portfolios .366 .296 .147 .156 
(.125) (.115) (.113) (.117) 

Dependence on Imported Oil -.245 -.088 
(.119) (.124) 

Norway Dummy .475 .401 
(.145) (.182) 

Standard error of regression .172 .139 .122 .101 .104 
R2 .235 .501 .649 .759 .772 
Adjusted R2 .027 .365 .509 .663 .645 
BIC 4.10 -2.31 -4.88 -10.52 -8.62 

emments) would be capable of weathering the economic shocks of the pe- 
riod, but that systems with mismatches between labor organization and po- 
litical power-either well-organized labor movements with predominantly 
rightist governments or poorly-organized labor movements with predomi- 
nantly leftist governments-would be less capable of sustaining economic 
growth. They tested their hypothesis using data on relative growth rates in 
15 OECD countries, and interpreted their empirical results as "strongly 
confirm[ing]" their hypothesis (Lange and Garrett 1985, 821). 

The first three regression models reported in Table 1 are identical to 
three of the 10 models presented by Lange and Garrett (1985, Table 3)." 
(I omit Lange and Garrett's other seven models because they do not include 
the interaction term of central theoretical interest, and seem to be included 

"The parameter estimates in Table 2 differ from those reported by Lange and Garrett 
(1985, Table 3) and Jackman (1987, Table 1) because I have not standardized the data for 
Left Party Vote and Left Party Cabinet Portfolios as Lange and Garrett did (Jackman 1987, 
note 3). They also seem to have standardized the data for Dependence on Imported Oil, 
which I have reproduced from their cited source. 
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simply to demonstrate the inadequacy of additive models."2) Model 1 allows 
for an interaction between the organizational strength of labor and the aver- 
age vote share of left parties; in Model 2 the share of cabinet portfolios 
held by left parties is substituted for the average vote share of left parties 
as a measure of the political strength of labor. Model 3 adds to the specifi- 
cation in Model 2 (which fits the data much better than the specification 
in Model 1) a measure of dependence on imported oil, presumably in order 
to capture the effect of the most significant exogenous economic shock in 
the period under study. Model 3 in turn fits the data significantly better than 
Model 2 does, and provides the basis for Lange and Garrett's subsequent 
interpretation and discussion. 

Jackman (1987) criticized Lange and Garrett's analysis on several 
grounds, arguing most notably that their results were dominated by a single 
influential observation, Norway, which had a very favorable corporatist 
structure from Lange and Garrett's theoretical perspective, a great deal of 
oil, and a very high relative growth rate. His reanalysis adding a dummy 
variable for Norway to Model 2 (Jackman 1987, Table 1) is reproduced as 
Model 4 in Table 1. Model 4 fits the data significantly better than any 
of Lange and Garrett's models do, and provides the basis for Jackman's 
subsequent interpretation and discussion. 

For completeness, Model 5 in Table 1 combines the features of Lange 
and Garrett's preferred model (including dependence on imported oil) and 
Jackman's preferred model (including the dummy variable for Norway). 
Model 5 fits the data slightly less well than Model 4 does, with the Norway 
dummy variable but not the oil variable producing a large and "statistically 
significant" parameter estimate. 

It seems clear that any assessment of the evidence in Table 1 will be 
quite sensitive to the relative weight we attach to the various alternative 
models. At one extreme, Lange and Garrett's model, reproduced in the first 
column of Table 2, seems to provide strong support for the hypothesized 
interaction between labor organization and political strength, with sizable 
coefficients and hefty t-statistics (2.6 and 2.4, respectively) on the interac- 
tion term and the baseline effect of Left Party Cabinet Portfolios. At the 
other extreme, Jackman's model, reproduced in the second column of Table 
2, seems to provide much less support for the hypothesized interaction, 
with the relevant coefficients only about half as large and t-statistics of 1.3 
and 1.5, respectively. 

The third column of Table 2 presents Bayesian mixture posterior coef- 
ficients based on uniform model priors, which assign equal prior probability 

"lIncluding these additive models would leave the results of the overall analysis virtually 
unchanged, since none of them fits the data well. 
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Table 2. Alternative Bayesian Mixture Posteriors for Economic 
Growth in OECD 

Lange and Uniform Dummy-Resistant 
Garrett Jackman Model Model 

(Model 3) (Model 4) Priors Priors 
Intercept .650 .521 .536 .577 

(.096) (.074) (.086) (.108) 
Labor Organization -.038 -.021 -.021 -.032 

Index (.058) (.049) (.051) (.059) 
Left Party Vote -.000 -.003 

(.021) (.061) 
Labor x Left Vote .000 .002 

(.017) (.049) 
Left Party Cabinet -.653 -.370 -.393 -.508 

Portfolios (.275) (.252) (.265) (.307) 
Labor x Left Port- .296 .147 .158 .222 

folios (.115) (.113) (.120) (.142) 
Dependence on Im- -.245 -.033 -.100 

ported Oil (.119) (0.90) (.140) 
Norway Dummy .475 .431 .248 

(.145) (.185) (.255) 
Posterior probabilities 

Model 1 .0000 .0000 .0005 .0040 
Model 2 .0000 .0000 .0113 .0974 
Model 3 1.0000 .0000 .0407 .3521 
Model 4 .0000 1.0000 .6829 .3939 
Model 5 .0000 .0000 .2647 .1527 

to each of the five models presented in Table 1. The corresponding posterior 
model probabilities, reported at the bottom of the column, are markedly 
nonuniform, reflecting the relative goodness of fit of the models including 
the Norway dummy variable. The model estimated by Jackman (Model 4) 
gets almost 70% of the posterior probability, and the model adding the 
Norway dummy variable to Lange and Garrett's preferred specification 
(Model 5) gets about 25%, while all of Lange and Garrett's models together 
get only a little more than 5% of the posterior weight. As a result, the 
Bayesian mixture coefficients are generally similar to the parameter esti- 
mates from Model 4. However, by comparison with the standard errors 
from Model 4,the posterior mixture standard errors are from 4% larger (in 
the case of labor organization) to 28% larger (in the case of the Norway 
dummy variable), reflecting the extent to which uncertainty about the cor- 
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rect model specification should detract from the apparent precision of Jack- 
man's results.13 

While the posterior mixture coefficients and standard errors in the third 
column of Table 2 seem to provide a more reasonable summary of the data 
than either Lange and Garrett's or Jackman's preferred results taken alone, 
they remain problematic in at least two respects. First, they do almost noth- 
ing to reflect Lange and Garrett's original uncertainty about whether vote 
shares or cabinet portfolios are the more appropriate measure of the political 
strength of labor, because the specification using vote shares (Model 1) is 
swamped by the subsequent specifications using cabinet portfolios. While 
the cabinet portfolio measure seems clearly preferable on theoretical as well 
as empirical grounds, it would seem appropriate to attach some additional 
uncertainty to the results of the analysis to reflect the fact that Lange and 
Garrett's original hypothesis about the interactive effect of labor organiza- 
tion and political strength had two separate chances to fit the data, only 
one of which actually panned out. I return to this issue in the Discussion 
section below. 

Second, and more problematically, the Bayesian mixture posterior with 
uniform model priors is dominated by the results from Model 4 and Model 
5, both of which include Jackman's dummy variable for Norway. But since 
the inclusion of the Norway dummy variable was prompted by preliminary 
data analysis rather than by a priori theoretical considerations, it would 
seem appropriate to discount the results from the models including the Nor- 
way dummy variable, rather than pretending that those models were as 
plausible a priori as the models without dummy variables. One reasonable 
way to do that is to specify "dummy-resistant model priors" that attach 
relatively less prior probability to models including a country-specific 
dummy variable. 

"3The approximate Bayes factor for each regression model in Table 1 can be calculated 
(within rounding error) from the reported R2 statistic (and the number of estimated parameters 
shown in the table) using expression [15], or from the reported BIC statistic using expression 
[13]. The approximate Bayes factors for Models 1 through 5, respectively, are .129, 3.171, 
11.461, 192.327, and 74.543, the sum of the Bayes factors for all five models is 281.631, 
and the model posterior probabilities in the third column of Table 2 (derived from uniform 
model priors) are the corresponding Bayes factors divided by the sum of the Bayes factors 
as in Equation [16]. The mean and standard deviation of the mixture posterior for each 
coefficient in the third column of Table 2 can be calculated from the regression parameter 
estimates and standard errors in Table 1 and the corresponding model posterior probabilities 
using Equations [5] and [6]. For example, the mean of the mixture posterior for the Labor 
X Left Portfolios interaction term is .0005 X 0 (from Model 1) + .0113 x .366 (from 
Model 2) + .0407 X .296 (from Model 3) + .6829 X .147 (from Model 4) + .2647 X 
.156 (from Model 5) = .158. 
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Since in the present case there are 15 countries in the data set, each 
equally likely a priori to be an outlier, it seems reasonable to attach one- 
fifteenth as much prior probability to the models including the Norway 
dummy variable as to the models including only combinations of Lange 
and Garrett's original variables. The resulting "dummy-resistant" model 
priors of .3191 for Models 1, 2, and 3 and .0213 for Models 4 and 5 reflect 
considerable skepticism about the plausibility of models with ad hoc vari- 
ables added to account for single outliers, while nevertheless allowing some 
scope for a priori skepticism to be overcome by clear signals from the 
data.'4 

The Bayesian mixture posteriors produced by averaging the results 
from the five models in Table 1 using these dummy-resistant model priors 
instead of uniform model priors are presented in the last column of Table 
2. Here, Lange and Garrett's preferred model (Model 3) and Jackman's 
preferred model (Model 4) have approximately equal posterior probabili- 
ties, and the Bayesian mixture posterior coefficients fall roughly halfway 
between these two extremes. Neither Lange and Garrett's oil variable nor 
Jackman's Norway dummy variable approach "statistical significance" 
(with t-statistics of 0.7 and 1.0, respectively), while the coefficients for 
Lange and Garrett's Left Cabinet Portfolios and Labor X Left Portfolios 
interaction variables are 30 to 40% larger than with uniform model priors 
(though still 20 to 25% smaller than in Lange and Garrett's preferred 
model), with t-statistics of about 1.6.15 

"4Obviously, there is no reason why the prior weights for models with case-specific 
dummy variables must be proportional to 1/N. If Norway was known in advance to be a 
notorious outlier in regressions of this sort, even after controlling for the effects of North 
Sea oil, we might well attach greater prior plausibility to models with a Norway dummy 
variable. The important point is that we should do so consciously before analyzing the data, 
and should recognize the implications of that assessment for our subsequent inferences even 
if the Norway dummy variable turns out to be unnecessary. It is simply too easy to justify 
ad hoc model specifications after the fact, forgetting in the process the various alternative 
specifications that might also have been justified had they turned out to work well by one 
criterion or another. Choosing a prior weight proportional to 1/N is a crude but potentially 
effective way to impose some discipline upon such post hoc rationalizations. 

15I report t-ratios for the model mixture posterior coefficients for descriptive purposes 
only. The t-distribution will not be a good approximation for the actual posterior distribution 
of any coefficient set to zero with certainty in models which get significant posterior weight, 
since the posterior will be a mixture of a t-distribution and a spike at zero; two mild examples 
are shown in Figure 1. An analyst intent upon calculating the posterior probability that a 
parameter is greater than (less than) zero could do so by using a t-ratio based on the mean 
and standard deviation of the conditional posterior mixture distribution computed from all 
models in which the relevant parameter was not set to zero with certainty, and multiplying 
the resulting conditional posterior probability by the total posterior probability of all such 
models. 
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Figure 1. Alternative Posteriors for Labor x Left Portfolios 
Interaction. 

(a) Lange and Garrett 
and Jackman 

Model Posteriors 

Jackman ~~~~~~~~~~~Lange and Jaclcman / /\ \ Gaffett 

(b) Mixture Posterior from 
Uniform Model Priors 

(c) Mixture Posterior from 
Dummy-Resistant Priors 

-~~~~~. . . . . . . . . . . .... .. 
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The three panels of Figure 1 provide a graphical comparison of the 
alternative posterior distributions summarized in Table 2 for Lange and 
Garrett's Labor X Left Portfolios interaction variable. Panel (a) shows the 
posterior distributions for Model 3 (Lange and Garrett's preferred model, 
on the right) and Model 4 (Jackman's preferred model, on the left) from 
Table 1. Panel (b) shows the mixture posterior corresponding to uniform 
priors over the five models in Table 1. Panel (c) shows the mixture posterior 
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corresponding to the dummy-resistant model priors in which each of the 
models including the Norway dummy variable gets only one-fifteenth as 
much prior weight as each of the other models. 

There is a very small spike at zero in the posterior distribution from the 
uniform model priors and a more perceptible spike at zero in the posterior 
distribution from the dummy-resistant priors, in each case reflecting the 
posterior weight attached to Model 1 from Table 1, where the relevant 
variable was omitted (i.e., set to zero with certainty) in favor of the Labor 
X Left Vote variable.16 In other respects, the posterior distribution from the 
uniform model priors resembles the posterior distribution for the Jackman 
model, whereas the posterior distribution for the dummy-resistant model 
priors is a compromise between the posterior distributions for the Lange 
and Garrett and Jackman models, with a standard deviation about 25% 
larger than either due to the posterior specification uncertainty."7 

Generally speaking, the dummy-resistant posterior coefficients re- 
ported in the fourth column of Table 2 and illustrated in panel (c) of Figure 
1 seem to me to provide the best summary of the import of Lange and 
Garrett's data. They provide some real support for the hypothesized interac- 
tion between labor organization and political power, but that support is 
significantly tempered by specification uncertainty, and especially by the 
sensitivity of the results from this small data set to the influence of a single 
problematic observation. As Lange and Garrett (1987, 268, 272) themselves 
put it, with appropriate caution, "Jackman's rejection of our hypotheses 
on the basis of the exclusion of Norway is not conclusively supported," and 
some "evidence remains that domestic political structures had an impact on 
the relative decline of growth performance." 18 

"6Obviously, the posterior mixture distributions for the Norway and oil dependence 
variables-which are omitted from models whose posterior model weights greatly exceed 
that of Model 1-have much more pronounced spikes at the origin than appear in Figure 
1. 

17By comparison, the standard deviation of the posterior distribution for the main effect 
of Left Party Cabinet Portfolios with dummy-resistant model priors is 12% larger than in 
Lange and Garrett's model and 22% larger than in Jackman's mnodel. The standard deviation 
of the posterior distribution for the Oil Dependence coefficient is 18% larger than in Lange 
and Garrett's model, and the standard deviation of the posterior distribution for the Norway 
coefficient is 76% larger than in Jackman's model (and 38% larger than with uniform model 
priors). In each case, the increased standard error of the parameter estimate reflects the impact 
of specification uncertainty unacknowledged in each of the regressions considered separately. 

"8Lange and Garrett's data are presented in Table Al in the Appendix. Beck and Katz 
(1992) used the same data, but without the oil dependence and Norway variables, to illustrate 
model selection by cross-validation. Unlike the Bayesian Information Criterion applied here, 
the cross-validation criterion prefers the baseline model Mo containing only an intercept to 
Model 2 in Table 1. It is hard for me to see why a social scientist-as distinct from a 
goodness-of-fit statistic-would prefer a null model to one with real theoretical content. But 
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Public Opinion and Policy in the American States 
My second example is based on Erikson, Wright, and McIver's (1993) 

analysis of the impact of public opinion on policy outcomes in the Ameri- 
can states. Erikson, Wright, and McIver derived an index of state policy 
liberalism from detailed data on state policies in eight issue areas, and an 
index of state public opinion from an accumulation of CBS News/New 
York Times polls. They reported results from a variety of models in which 
policy liberalism was regressed on public opinion and other explanatory 
variables, including the relative liberalism of each state's political elites 
and the proportion of Democrats in each state's legislature. Several of these 
models included explanatory variables derived from Elazar's (1972) classi- 
fication of state political cultures as "individualistic," "moralistic," or 
"traditionalistic," either alone or in interaction with state opinion or elite 
liberalism."9 

The six models reported in Table 3 are identical to six of the eight 
models of state policy liberalism reported by Erikson, Wright, and McIver 
(1993, 159, 170).20 They range from a very simple specification with State 

for present purposes it is more important to note that the model-averaging approach described 
here dispenses with the necessity of settling on any single "best" model when there are a 
variety of a priori plausible alternatives. Further analyses using similar models with a pooled 
time-series cross-section design, albeit for roughly the same countries and time period, were 
reported by Alvarez, Garrett, and Lange (1991) and Beck et al. (1993). 

"9The relevant data are presented in Table A2 in the Appendix. Erikson, Wright, and 
McIver (1993) presented detailed information regarding conceptualization and measurement 
of the various variables (especially in Chapters 2, 5, and 7) and auxiliary analyses document- 
ing the additional impact of State Opinion on Legislative Liberalism and Democratic Legisla- 
tive Strength (Tables 7.4 and 7.5, respectively). 

20Models 1 through 6 in my Table 3 correspond to Models 2, 3, and 4 in Erikson, 
Wright, and McIver's Table 7.1 (1993, 159) and Models 1, 2, and 3 in their Table 7.6 (1993, 
170), respectively. I omit the one model in Erikson, Wright, and McIver's analysis that does 
not include state opinion as an explanatory variable. I also omit one more complicated model 
with additional interaction terms; under any of the model priors presented in Table 4, that 
model would have a posterior probability of .0005 or less, leaving the overall results virtually 
unchanged. The results presented in Table 3 differ from Erikson, Wright, and McIver's for 
three reasons. First, I use the raw values of the explanatory variables presented in their tables 
rather than standardizing all the continuous variables as they did in their regression analyses. 
Second, I omit Nebraska from the analyses for Models 1, 2, and 3 to preserve comparability 
in the set of observations across models. (Erikson, Wright, and McIver omitted Nebraska 
from their regressions including the Democratic Legislative Strength variable because the 
state has a nonpartisan legislature, but included Nebraska in their earlier regressions.) Third, 
there may be minor discrepancies due to my use of Erikson, Wright, and McIver' s published 
data with whatever rounding errors they produce (and my independent reconstruction of the 
Democratic Legislative Strength measure, for which Erikson, Wright, and McIver did not 
publish their data). None of these differences turns out to be consequential, since the results 
presented here essentially match Erikson, Wright, and McIver's, allowing for the differences 
in scale produced by my use of unstandardized data. 
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Opinion as the only explanatory variable to much more complex specifica- 
tions, including one with distinct culture-specific effects for State Opinion 
and Democratic Legislative Strength and a total of 10 parameters to be 
estimated from the 46 observations.21 All of these models fit the data very 
well, with the adjusted R2 statistics for all but the first ranging from .79 to 
.84. 

Erikson, Wright, and McIver (1993, 169) "focus mainly on the 'best' 
equation" corresponding to Model 6 in Table 3, which is the most complex 
of the alternative specifications. Eight of the 10 coefficients estimated in 
that model have t-statistics of 2.0 or greater, and the average t-statistic for 
the six coefficients capturing the distinctive effects of state political cultures 
as classified by Elazar is 2.4. The results suggest that individualistic states 
have much more liberal baseline policies than traditionalistic or moralistic 
states, and are also much more sensitive to variations in state opinion. On 
the other hand, having more Democrats in the state legislature actually 
seems to produce more conservative policies in individualistic states, but 
more liberal policies in moralistic states (with no effect in traditionalistic 
states). Erikson, Wright, and McIver (1993, 173) interpreted these results as 
reflecting a systematic difference between "pragmatic" and "ideological" 
political systems: 

The startlingly large differences in the coefficients for moralistic and individu- 
alistic states can be attributed to the difference between pragmatic politicians 
in individualistic states and the programmatic politicians in moralistic states. 
In moralistic states, the relative partisan division of legislatures has important 
policy consequences, while legislatures are less responsive to the direct input 
of public opinion. In individualistic states, the party division has less easily 
discernible policy consequences, but the pragmatic legislatures respond 
strongly to state opinion. 

Most of the culture-specific variables also have "statistically signifi- 
cant" coefficients in the other models where they appear in Table 3. But 
the magnitudes of these coefficients vary considerably among the various 
specifications, as do the estimates of the baseline effect of state opinion. 
Thus, it is by no means obvious how well Erikson, Wright, and McIver's 
interpret-ation of the results from their "best" model would hold up in an 
analysis which averaged the results produced by the various alternative 
models. 

21I follow Erikson, Wright, and McIver in omitting Alaska, Hawaii, and Nebraska from 
the analysis due to missing data, and Nevada due to an implausibly liberal State Opinion 
score. 
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Table 4 presents the means and standard deviations of the Bayesian 
mixture posteriors for each coefficient, as well as the model posterior proba- 
bilities, for a variety of alternative model priors. By contrast with the exam- 
ple presented in Table 1, none of the alternative models presented in Table 
3 clearly dominates the others by the Bayesian Information Criterion. This 
fact is reflected in the model posterior probabilities reported at the bottom 
of Table 4. With uniform model priors (in the first column of Table 4), 
Model 4 gets 41% of the posterior weight, while Model 2, Model 3, and 
Model 5 each get between 12 and 25%; Erikson, Wright, and McIver's 
"best" model, Model 6, gets only 2% of the posterior weight-an indica- 
tion of the extent to which the Bayesian Information Criterion discounts 
good fits achieved at the cost of estimating additional parameters.22 

Still focusing on the case of uniform model priors-the first column 
of Table 4-the posterior mixture coefficient for State Opinion produced 
by averaging the six distinct parameter estimates in Table 3 has a mean of 
.0792, suggesting that the difference in public opinion between the five 
most liberal states (Massachusetts, Rhode Island, New York, New Jersey, 
and Connecticut) and the five most conservative states (Utah, Idaho, Okla- 
homa, North Dakota, and Mississippi) probably produced public policies 
that differed by almost two standard deviations on the state policy liberal- 
ism scale. This result clearly confirms Erikson, Wright, and McIver's cen- 
tral hypothesis concerning the impact of public opinion on state policy out- 
comes. Even here, though, the impact of specification uncertainty is 
substantial: the magnitude of the estimated effect is only half as large as 
in Erikson, Wright, and McIver's single "best" specification, Model 6, and 
the corresponding t-statistic of 2.4 is a good deal less impressive than the 
t-statistic of 4.2 for the same variable in Model 6, much less the t-statistics 
of 6, 8, and 10 in some of the other models in Table 3. 

Moreover, Erikson, Wright, and McIver's other explanatory variables 
fare much worse in the model averaging process. The magnitudes of the 
mixture coefficients for all but one-Legislative Liberalism-are much re- 
duced (by an average of 90%) relative to the estimates in Erikson, Wright, 
and McIver's "best" specification. And none even approaches conven- 
tional significance levels (the largest t-statistic is 1.1, and the average is 

22More generally, the extent to which the Bayesian Information Criterion (and hence 
the model posterior probabilities) reflect a preference for parsimony is evident from a com- 
parison of the regression results in Table 3 and the model posterior probabilities in Table 
4. With uniform model priors, Model 4 gets twice as much posterior weight as Model 5, 
3.5 times as much as Model 3, and more than 20 times as much as Model 5-despite having 
a larger regression standard error and a smaller adjusted R2 statistic than any of these alterna- 
tive models-because it has from two to six fewer parameters to be estimated. 
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0.5), despite the fact that their t-statistics in the separate models where they 
appear in Table 3 average almost 2.0. 

The contrast between these mixture posteriors and the original regres- 
sion results in Table 3 is striking. Might the discrepancies be attributable 
to some peculiarity of the uniform model priors from which these mixture 
posteriors are derived? In order to test the sensitivity of the mixture posteri- 
ors to the assumptions embodied in the model priors, it may be useful to 
investigate the implications of some alternative sets of model priors. For 
example, the uniform model priors attach no significance to the order in 
which the various regression models were estimated. While there is no logi- 
cal connection between the relative prior plausibility of alternative models 
and the order in which they were actually estimated, it seems reasonable 
to suppose that data analysts typically begin by estimating the model they 
consider most plausible a priori, proceeding to relatively less plausible 
models until they reach some acceptable stopping point.23 If that is the case, 
then the prior probabilities attached to the various alternative models should 
reflect their place in the sequence, with later specifications receiving less 
prior weight than earlier specifications. 

One rough way to capture the potential inferential significance of se- 
quential search strategies is to adopt a "search-resistant prior" that attaches 
smoothly declining prior weights to each model in a sequence of alternative 
possibilities. Rather than simply penalizing complex models for their rela- 
tive lack of parsimony, as the BIC and most other model selection criteria 
already do, a search-resistant prior penalizes the process of sequential 
model estimation itself, whether it results in more or less parsimonious 
models. The penalty reflects the fact that latter models in the sequence are 
more likely to capitalize on chance, since they are typically formulated, in 
part, on the basis of the results produced by earlier models in the sequence. 
It is important to note, however, that a search-resistant prior only "penal- 
izes" later models relative to earlier ones; it does not alter the basic logic 
of model averaging, or make the posterior results as a whole any more 
or less uncertain. The contribution of specification uncertainty to overall 
uncertainty will still depend upon how much the results vary across plausi- 
ble specifications-especially plausible specifications that fit the data about 
equally well. 

23The psychology of stopping rules is complicated in its own right. Data analysts seem 
inclined to end their specification searches when they get "pleasing" regression results (big 
t-statistics, "correct" signs, or whatever), but their standards for what is "pleasing" (or at 
least "acceptable") may vary as they approach data exhaustion, physical exhaustion, or 
exhaustion of imagination. The fact remains that the prospect of stopping sooner rather than 
later makes it rational to investigate more plausible specifications (that is, those more likely 
to produce "pleasing" results) before less plausible specifications. 



SPECIFICATION UNCERTAINTY AND MODEL AVERAGING 663 

Figure 2. Alternative Model Priors for Specification Searches. 
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One possible family of search-resistant model priors is shown in Figure 
2. The "slightly search-resistant priors" shown in Figure 2 attach a prior 
probability proportional to .9i to model Mj, so that each model in the se- 
quence gets 10% less prior weight than the one before. The "moderately 
search-resistant priors" shown in Figure 2 attach a prior probability propor- 
tional to .8i to model Mj, discounting each subsequent model by 20% rela- 
tive to the one before, while the "strongly search-resistant priors" attach 
a prior probability proportional to .7i to model Mj, discounting each subse- 
quent model by 30% relative to the one before. 
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Simple reference priors of this sort can never be expected to capture 
all the nuances of a data analyst's real prior beliefs. Nor, at the opposite 
extreme, are they likely to make sense of a sequence of models generated 
by a largely or wholly mechanical model selection procedure such as for- 
ward or backward stepwise regression, where the selection and order of 
estimation of alternative models is simply a complicated function of their 
goodness of fit and an arbitrary starting point, rather than a reflection of 
considered judgment by the data analyst. However, in many cases where 
a sequence of models does reflect at least the rough contours of a sophisti- 
cated data analyst's substantive judgment, a simple reference prior of the 
sort proposed here may be quite useful for exploring the sensitivity of statis- 
tical inferences to general features of the specification search strategy that 
generated a given set of statistical results. 

In Erikson, Wright, and McIver's case, uniform model priors attach a 
prior probability of .1667 to each of the six models presented in Table 3. 
By contrast, the prior probabilities with slightly search-resistant priors 
range from .2134 for Model 1 down to .1260 for Model 6, making Model 
1 about 70% more probable than Model 6 a priori. The prior probabilities 
with strongly search-resistant priors range from .3400 for Model 1 down 
to .0571 for Model 6, making Model 1 about six times as probable as Model 
6 a priori. Thus, these alternative reference priors allow us to explore a 
considerable range of assumptions regarding the extent to which later mod- 
els should be discounted as less plausible a priori than earlier models in 
the sequence. 

Of course, none of these alternative model priors will perfectly reflect 
Erikson, Wright, and McIver's own prior beliefs about the plausibility of 
their various models, or anyone else's. Nevertheless, if all of these various 
priors produce mixture posteriors similar to those produced by the uniform 
model priors, it will be hard to resist the conclusion that Erikson, Wright, 
and McIver's informal synthesis of their various results overstated the 
weight of their evidence in support of Elazar's classification of state politi- 
cal cultures, given the specification uncertainty inherent in their analysis.24 

24Obviously, I have no way of knowing whether the order of Erikson, Wright, and 
McIver's (1993) presentation of the regression results actually reflects the sequence in which 
the various models were estimated. The fact that they reported "significance" levels for 
incremental improvements in R2 from one model to the next suggests that they attached 
some importance to the ordering, at least for expository purposes. The fact that the Elazar 
culture variables do not appear in earlier analyses of the same data, including one entitled 
"State Political Culture and Public Opinion" (Erikson, McIver, and Wright 1987; also Erik- 
son, Wright, and McIver 1989; Wright, Erikson, and McIver 1987), suggests that they were 
relative latecomers to the analysis, in which case Model 4 in Table 3 may belong earlier in 
the sequence, making the posterior support for the importance of the culture variables given 
search-resistant model priors even weaker than I suggest in the text. 
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A comparison of the alternative mixture posteriors summarized in the 
various columns of Table 4 does indeed suggest that the model averaging 
results are quite insensitive to the precise form of the model priors. The 
posterior point estimates for the baseline effect of state opinion are all 
within 10% of the estimate produced by uniform model priors, while all 
of the remaining coefficients (other than the intercept) continue to fall far 
short of "statistical significance," with average t-statistics of 0.5, 0.4, and 
0.4, respectively, from the slightly, moderately, and strongly search-resis- 
tant priors. 

The implications of these results for inferences about the impact of 
public opinion within each of Elazar's three types of state political culture 
are illustrated in Figure 3.25 Panel (a) shows the posterior distributions for 
the effects of public opinion in moralistic, traditionalistic, and individualis- 
tic states, respectively, implied by Erikson, Wright, and McIver's "best" 
model. The distinction between individualistic states, where public opinion 
has a very strong effect, and moralistic and traditionalistic states, where 
the effect is clear but much weaker, is evident. 

Panel (b) in Figure 3 shows the corresponding mixture posterior distri- 
butions produced by uniform priors over the six models presented in Table 
3. Here the apparent effect of public opinion in individualistic states is a 
good deal weaker, and the apparent effect in moralistic and traditionalistic 
states is noticeably stronger, producing a virtual overlap of the three distinct 
distributions. Panel (c) shows the corresponding mixture posterior distribu- 
tions produced by strongly search-resistant priors over the same six models. 
The distributions are virtually identical to those in panel (b), except that 
all of the standard deviations are slightly smaller. 

A figure illustrating alternative posterior distributions for the baseline 
effects of Elazar's three state cultures would show a similar pattern, with 
distinctly more liberal policy outcomes in individualistic states in the poste- 
riors derived from Erikson, Wright, and McIver's preferred model, but vir- 
tual overlap among the distinct posterior distributions produced by any of 

25The conditional effects of public opinion displayed in Figure 3 are derived from the 
means, variances, and covariances of the mixture posterior distributions summarized in Table 
4 using the standard formula 

V(bi + bj) = V(bi) + V(bj) + 2 Cov(bi, bj). 

By an obvious generalization of Equation [6], the covariances of the mixture posterior distri- 
butions are the off-diagonal elements of the matrix 

V(PIIX, y) = Z j V(bj) + Z j [bj - f - b]'. 
I I 
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Figure 3. Alternative Posteriors for Culture-Specific Effects of State 
Opinion. 
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the various model-averaging priors. A figure illustrating alternative poste- 
rior distributions for the conditional effects of Democratic Legislative 
Strength would show a noticeably stronger impact in moralistic states in 
the posteriors derived from Erikson, Wright, and McIver's preferred model, 
but, once again, virtual overlap among the distinct posterior distributions 
produced by any of the various model-averaging priors. Thus, the "strong 
support-sometimes startlingly strong support-for Elazar's formulation" 
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(Erikson, Wright, and McIver 1993, 175) evident in the Traditionalism and 
Moralism coefficients and associated interaction terms in Models 2, 3, 5, 
and 6 completely evaporates when due account is taken of the specification 
uncertainty inherent in an analysis as complex as Erikson, Wright, and 
Mclver's. 

On the other hand, Erikson, Wright, and McIver's main result-that 
state policies in general are quite sensitive to variations in public opinion- 
handsomely survives the rather stringent test imposed by the variety of 
model-averaging analyses presented in Table 4. The posterior point esti- 
mates for the baseline effect of state opinion implied by the search-resistant 
model priors are all of about the same magnitude as with uniform model 
priors, but slightly more precise. In effect, then, the results of the model- 
averaging analyses suggest that the various alternative specifications ex- 
plored by Erikson, Wright, and McIver fail to provide convincing support 
for Elazar's classification of state political cultures, but do provide impres- 
sive evidence of the robustness of the basic relationship between public 
opinion and state policy estimated in Model 1 in Table 3. 

In that case, why not simply retreat to the original Model 1 in Table 
3, with state policy liberalism regressed on state opinion and an intercept? 
The apparent result would be a bigger estimated effect of state opinion 
(.1 137 versus .0792 for the mixture posterior based on uniform model pri- 
ors) with a substantially smaller standard error (.0114 versus .0336). If our 
only aim is to report "significant effects," there is little to argue against 
such a strategy. But if we aspire to produce credible statistical inferences, 
we need standard errors that reflect our real uncertainty about the magni- 
tudes of the relevant effects, including uncertainty deriving from ambigu- 
ities of model specification as well as from stochastic variation in the ob- 
served data. In that case, any of the various results presented in Table 4 
will very likely be preferable to the original Model 1 or the a posteriori 
most likely Models 2 or 4, or Erikson, Wright, and McIver's "best" Model 
6, or perhaps any single model-taken alone. 

Discussion 
In each of the examples considered here, model averaging seems to 

shed some useful light on the inferential implications of specification uncer- 
tainty in a research setting with very limited data and weak but suggestive 
theory. Given the prevalence of such research settings in many areas of 
social science, the potential scope for fruitful application of model-averag- 
ing procedures seems wide indeed. Having said that, it is important to rec- 
ognize that the examples considered here also illustrate some important 
limitations of systematic model-averaging procedures. The assignment of 
positive prior probability to five or six models that someone considered 
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interesting enough to estimate and report falls far short of capturing all the 
complexities of real specification searches. 

For example, the "search-resistant model priors" illustrated in Figure 
2 take no account of the susceptibility of broad avenues of specification 
search to be shut off by discouraging results at an early stage of a sequential 
analysis. Table 1 provides one example of this phenomenon. Lange and 
Garrett estimated one model with Left Party Vote as a measure of the politi- 
cal strength of labor and another, otherwise identical, model with Left Party 
Cabinet Portfolios as an alternative measure of the same theoretical vari- 
able. Since the second model fit the data much better than the first, the 
Left Party Vote variable was dropped, and all of Lange and Garrett's (and 
Jackman's) subsequent models employed Left Party Cabinet Portfolios as 
the relevant measure of the political strength of labor. 

If Model 1 was as plausible as Model 2 a priori, presumably a specifi- 
cation similar to Model 3 but with Left Party Vote substituted for Left Party 
Cabinet Portfolios should also have been as plausible as Model 3 a priori. 
But since that specification was (apparently) never estimated, its prior prob- 
ability is implicitly set to zero in the model-averaging calculations. A more 
realistic representation of the range of a priori plausible models might in- 
clude a large number of these "phantom" models reflecting abandoned 
avenues of alternative model specification, and the (presumably disappoint- 
ing) results from these additional models would further dilute the inferential 
weight of the "best" model or models. (Of course, if none of these models 
fits the data well, there would have to be a very large number of them to 
have much impact on the results, since models with small posterior proba- 
bilities get little weight in the model-averaging calculations.) 

This is one instance of a more general problem in the implementation 
of model-averaging procedures: the assignment of positive prior probabili- 
ties to a discrete, usually small, set of distinct alternative models can pro- 
vide only a rough reflection of real specification uncertainty. Of course, a 
rough reflection is very likely better than none at all, and we would be 
foolish to make the best the enemy of the good. It seems clear that Erikson, 
Wright, and McIver' s presentation of six different sets of regression results 
provides a good deal more information than a presentation of any one set 
of results could have done. Given the prevalence of specification uncer- 
tainty in social scientific work, data analysts should strive to explore and 
convey through sensitivity analysis the implications of a range of plausible 
models. 

The fact that informal sensitivity analysis can go astray, even in the 
hands of very sophisticated data analysts, provides one strong argument 
for more systematic procedures of the sort described here. It should not be 
taken as an argument for avoiding sensitivity analyses, or for pretending 
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to avoid them by presenting the results of a single model specification as 
if it was the only plausible specification or the only one examined. Never- 
theless, the incompleteness of the set of alternative models actually likely 
to be encompassed in a typical application of model-averaging techniques 
is an important limitation in principle, and may also be an important limita- 
tion in practice. 

On the other hand, a substantial winnowing of the set of potentially 
relevant models on substantive grounds seems likely to reflect a good data 
analyst's real specification uncertainty much better than any mechanical 
averaging over all the models that could logically be constructed from a 
given list of potential explanatory variables. Whereas an agnostic statisti- 
cian analyzing the state opinion and policy data presented above might 
assign equal prior probabilities to all 1,023 possible models defined by dis- 
tinct combinations of the 10 explanatory variables in Table 3,26 it seems to 
me that Erikson, Wright, and McIver's selection of six of those 1,023 possi- 
ble models embodies a great deal of valuable substantive insight-precisely 
the sort of complex, hard-to-quantify, but quite legitimate auxiliary infor- 
mation that Bayesian analysis should strive to incorporate. 

Of course, it is possible to question whether the assignment of prior 
probabilities to discrete models is the most fruitful way to incorporate data 
analysts' auxiliary information (and residual uncertainty) about the sub- 
stance of their problems. A more direct Bayesian approach would be to 
begin with a model sufficiently elaborate to capture everything of potential 
interest in the data, and employ proper prior distributions to express a priori 
beliefs about the relative plausibility of various effects.27 Rather than in- 
cluding a prospective explanatory variable in some models but omitting it 
from others to express skepticism about its relevance or importance, an 
analyst would include all potentially relevant variables, functional forms, 
and so on in a single model but choose a prior distribution that concentrated 
probability in parts of the parameter space where the values of many param- 
eters are near zero. 

26For example, Raftery's publicly available software for regression model averaging 
automatically averages over all of the 2K models that can logically be derived from a given set 
of K potential explanatory variables, assigning each of these models equal prior probability. 

27A thoroughgoing Bayesian would never knowingly choose to attach zero prior proba- 
bility to a potentially interesting parameter value or hypothesis, since any parameter value 
or hypothesis with zero prior probability must get zero posterior probability, in which case 
there is no hope of learning from data. As Draper (1995, 55) put it, "The main way to avoid 
noticing after the fact that a set of modelling assumptions, different from those originally 
assumed, turned out to be correct is for one's model prospectively to have been sufficiently 
large to encompass the retrospective truth." Unfortunately, a model sufficiently large to 
encompass the "truth" with certainty will be too large to be manageable (or estimable). 
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This full-blown Bayesian approach has the theoretical and practical 
advantage of avoiding unrealistic spikes of posterior probability attached 
to specific parameter values (as in Figure 1), since it does not assign positive 
prior probability to models that are dominated by more general models in 
which they are nested. Unfortunately, it is virtually impossible to imple- 
ment the full-blown Bayesian approach in practice, since the difficulty of 
specifying a realistic proper prior distribution is formidable even for rela- 
tively simple problems, and no problem remains simple once we commit 
ourselves to considering "all potentially relevant variables, functional 
forms, and so on." 

If the model-averaging approach makes sense, it must be as a conve- 
nient approximation to this more elegant but unrealistic strategy of full- 
blown Bayesian analysis of suitably elaborate models. In effect, the model- 
averaging approach represents a further evolution of Leamer's (1978, 15) 
efforts to patch together a reconciliation of statistical theory and data ana- 
lytic practice: 

There is no doubt in my mind that uncertain prior information is used to ana- 
lyze nonexperimental data. But there is also no doubt in my mind that uncertain 
prior infornation is impossible to quantify precisely. Ad hoc procedures may, 
in fact, be efficient methods of using imprecisely defined priors. 

Much additional experience will be required to determine whether the 
procedures described here are, indeed, "efficient methods of using impre- 
cisely defined priors." In the meantime, however, they clearly have three 
important points in their favor. First, they seem a good deal less ad hoc 
than the murky specification searches and intuitive syntheses described by 
Leamer, and still practiced even (especially?) by sophisticated data ana- 
lysts. Second, they are surprisingly simple to implement: all of the calcula- 
tions in this paper could have been (and most were) produced from standard 
regression output and a pocket calculator. Finally, they take as their primary 
raw material what real data analysts are already producing in prodigious 
quantities-alternative model specifications. Given the evident failure of 
more conventional attempts to make sense of that raw material, even an 
imperfect method of calculating the implications of specification uncer- 
tainty may be capable of shedding a good deal of light on the fundamental 
question of what we can learn from our data. 

Manuscript submitted 15 August 1995. 
Final manuscript received I June 1996. 
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APPENDIX 

This Appendix provides the data on which the regression analyses presented 
in Tables 1 and 3 are based. Table Al provides the data for Lange and Garrett's 
(1985, 1987) and Jackman's (1987) analyses of politics and economic growth in 
15 OECD countries in the late 1970s. Table A2 provides the data for Erikson, 
Wright, and McIver's (1993) analysis of public opinion and policy outcomes in 
the American states. Readers are referred to these sources for more detailed descrip- 
tions of the data. 

Table Al. Data on Economic Growth in OECD 

Change in Labor Left Party Left Party Dependence 
Economic Organization Vote Cabinet on 
Growth Index Share Portfolios Imported Oil 

Australia .51 1.87 .447 .305 .142 
Austria .64 3.06 .467 1.000 .395 
Belgium .44 2.80 .329 .210 .594 
Canada .50 .98 .152 0 .032 
Denmark .36 2.77 .316 .755 .834 
Finland .56 2.76 .432 .402 .563 
France .57 .68 .406 .017 .628 
West Germany .53 1.80 .405 .748 .510 
Italy .53 1.47 .395 .065 .704 
Japan .38 .43 .314 0 .751 
Netherlands .44 1.90 .313 .412 .579 
Norway 1.05 3.33 .474 1.000 -.241 
Sweden .44 3.52 .505 .459 .577 
United Kingdom .26 1.81 .429 .860 .271 
United States .51 .82 0 0 .208 

Change in Economic Growth: average percentage change in GDP, 1974-80, divided by 
average percentage change in GDP, 1960-73 (Lange and Garrett 1985, Table 1). Labor 
Organization Index: additive index derived from labor force unionization and centralization 
(Lange and Garret 1985, Table 2). Left Party Vote Share: average proportion of total vote 
gained by left parties, 1960-80 (Lange and Garrett 1985, Table 2). Left Party Cabinet 
Portfolios: average proportion of cabinet portfolios held by left parties, 1974-80 (Lange 
and Garrett 1985, Table 2). Dependence on Imported Oil: net oil imports divided by total 
energy requirements, 1974-80 (computed from Energy Balances of the OECD Countries, 
1971-1981, Paris: OECD, 1983). 



Table A2. Data on State Policy Liberalism 

Policy State Legislative Dem Leg Elazar 
Liberalism Opinion Liberalism Strength Culture 

AL -1.45 -23.1 -.623 .968 Traditionalistic 
AZ -1.05 -18.2 -.177 .396 Traditionalistic 
AR -1.54 18.3 .645 .951 Traditionalistic 
CA 1.49 -6.3 3.440 .631 Moralistic 
CO .48 -8.6 .036 .408 Moralistic 
CT 1.19 -4.4 2.940 .626 Individualistic 
DE 1.11 -12.2 .070 .566 Individualistic 
FL -.37 -17.1 -.088 .733 Traditionalistic 
GA -1.04 -17.7 -.458 .890 Traditionalistic 
ID -.87 -27.9 -2.930 .338 Moralistic 
IL .41 -10.1 .943 .537 Individualistic 
IN -1.20 -16.7 -.478 .421 Individualistic 
IA .44 -13.5 2.001 .499 Moralistic 
KS .24 -15.9 .649 .466 Moralistic 
KY -.32 -13.2 .217 .759 Traditionalistic 
LA -1.04 -23.0 -.821 .953 Traditionalistic 
ME -.02 -14.7 1.583 .528 Moralistic 
MD .85 -5.7 2.956 .763 Individualistic 
MA 1.64 -.8 4.174 .792 Individualistic 
MI 1.18 -8.8 2.372 .525 Moralistic 
MN .79 -12.8 3.159 .632 Moralistic 
MS -1.51 -25.4 -.943 .952 Traditionalistic 
MO -.55 -15.5 -.382 .675 Individualistic 
MT .60 -11.1 -.354 .502 Moralistic 
NH -.14 -12.8 .482 .431 Moralistic 
NJ 1.34 -3.4 2.690 .598 Individualistic 
NM -.99 -16.0 -.825 .642 Traditionalistic 
NY 2.12 -3.1 2.126 .504 Individualistic 
NC -.96 -20.7 .138 .873 Traditionalistic 
ND -.52 -26.6 -.607 .358 Moralistic 
OH .64 -10.1 .486 .494 Individualistic 
OK -.98 -27.3 -1.441 .760 Traditionalistic 
OR 1.39 -7.9 3.207 .667 Moralistic 
PA 1.01 -10.6 1.469 .520 Individualistic 
RI .68 -2.1 2.212 .825 Individualistic 
SC -1.53 -21.4 .788 .888 Traditionalistic 
SD -.95 -24.1 -1.990 .295 Moralistic 
TN -.85 -16.6 -.745 .564 Traditionalistic 
TX -.65 -23.2 .469 .820 Traditionalistic 
UT -.44 -28.0 -2.556 .323 Moralistic 
V-T .79 -11.4 1.537 .421 Moralistic 
VA -.84 -17.9 -.482 .663 Traditionalistic 
WA .35 -5.9 1.381 .542 Moralistic 
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Table A2. (continued) 

Policy State Legislative Dem Leg Elazar 
Liberalism Opinion Liberalism Strength Culture 

WV .12 -9.2 .931 .824 Traditionalistic 
WI 1.23 -10.5 3.102 .617 Moralistic 
WY -.70 -17.8 -1.737 .383 Individualistic 

Policy Liberalism: additive index derived from standardized scores on eight policy measures 
(education spending, Medicaid eligibility, AFDC eligibility, consumer protection legislation, 
criminal justice legislation, legalized gambling, ERA ratification, and tax progressivity), circa 
1980 (Erikson, Wright and McIver 1993, 77, Table 4.2). State Opinion: percent liberal 
ideological identification minus percent conservative identification, accumulated from 122 
CBS News/New York Times polls, 1976-88 (Erikson, Wright, and McIver 1993, 16, Table 
2.2). Legislative Liberalism: "weighted average of Democratic and Republican elite ideol- 
ogy scores [Erikson, Wright, and McIver 1993, 103, Table 5.3], where the weights are deter- 
mined by the parties' relative legislative strength [as measured by Democratic Legislative 
Strength]" (Erikson, Wright, and McIver 1993, 128). Democratic Legislative Strength: 
average proportion Democratic of state legislature (weighting upper and lower houses 
equally), 1977-84 (Statistical Abstract of the United States, 1985, Washington: U.S. Bureau 
of the Census, 1984). Elazar Culture: Elazar's (1972) classification of state political cultures 
as "individualistic," "moralistic," or "traditionalistic" (Erikson, Wright, and McIver 1993, 
172, Figure 7.4). 
Following Erikson, Wright, and McIver (1993), Alaska, Hawaii, and Nebraska are omitted 
due to missing data and Nevada is omitted due to an implausibly liberal State Opinion score. 
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