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Pooling Disparate Observations

Theory: Classical statistical inference takes as given the population governed by a posited

statistical model and associated set of parameters. But social theories seldom include clear

specifications of the populations to which they are supposed to be applicable, so data analysts

frequently face difficult choices about which observations to include in their analyses.

Hypotheses: Conventional approaches to selecting relevant observations are likely either to

underexploit the available data (by discarding problematic observations that could provide

some information about the parameters of interest) or to overexploit the available data (by

estimating alternative models and interpreting the "best" results as though they were produced

in accordance with the standard assumptions of classical statistical inference).

Methods: I propose a technique, dubbed "fractional pooling," which provides a simple and

coherent way either to incorporate prior beliefs about the theoretical relevance of disparate

observations or to explore the implications of prior uncertainty about their relevance. The

technique is easy to implement and has a plausible rationale in Bayesian statistical theory.

Results: I illustrate the potential utility of fractional pooling by applying the technique to

political data originally analyzed by Ashenfelter (1994), Powell (1982), and Alesina et al.

(1993). These examples demonstrate that conventional approaches to analyzing disparate

observations can sometimes be seriously misleading, and that the approach proposed here can

enrich our understanding of the inferential implications of unavoidably subjective judgments

about the theoretical relevance of available data.



Pooling Disparate Observations1

How to choose the set of observations to which a statistical model should be applied is

one of the least understood aspects of model specification. Problems of this sort arise both in

time series analyses (for example, in deciding whether to pool observations across eras,

presidential administrations, or measurement regimes) and in cross-sectional analyses (for

example, in deciding whether to pool observations from different opinion surveys, households,

locales, or political systems).

At the most basic level, our problem is the fundamental problem of induction: what, if

anything, entitles us to make inferences about the behavior of an individual, nation, or other

unit on the basis of the observed behavior of some different unit, or of the same unit at some

different point in time or in some different context, or of some different unit at some different

point in time or in some different context? The answer can only be,a prior belief in the

similarity of the bases of behavior across units or time periods or contexts. In the case of

regression analysis, our prior belief is embodied in the assumption that the relevant

observations represent a single population, in the sense that the underlying regression

parameters of interest apply equally to all the observations.

Our practical problem is that conventional (classical) statistical techniques are quite

inflexible in representing what may be a rather complicated set of relevant prior beliefs. At

some point, classical techniques force us either to actas if the relevant observations were

governed by the same causal process, or to actas if the relevant observations were governed

by wholly unrelated causal processes. We take the former stance when we include the

relevant observations in a single regression analysis, and the latter stance when we estimate

separate regressions in different subsets of the whole set of potentially relevant
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observations.2

My aims in this article are to trace the inferential implications of this inflexibility and

to propose an alternative approach that allows for a richer range of assumptions about the

theoretical relevance of the available data.3 The proposed technique can be thought of either

as a tool for exploring through sensitivity analysis the implications of prior uncertainty about

which observations "belong" in the analysis, or as a tool for Bayesian analysis incorporating

prior beliefs generated from theoretically problematic data in a simple but plausible way. The

basic dilemma of identifying theoretically relevant observations and its implications are

described in Section 1, and my alternative approach is described and justified in Section 2. In

Section 3 I use three empirical examples to further explore the issues raised in Section 1 and

the approach proposed in Section 2. Section 4 concludes with some practical observations

and recommendations for data analysts deciding (as all data analysts must decide)4 whether

and how to pool disparate observations.

1: The Dilemma of Disparate Observations

How do data analysts decide which observations to include in their analyses? What

are the inferential implications of those decisions? I address these questions in the context of

a simple regression model with two sets of available data, one unproblematic (in which the

parameters of theoretical interest are "known" to apply) and the other problematic (governed

by a "similar," but not necessarily identical, set of parameters). I examine the properties of

the parameter estimates produced by three distinct estimation strategies: (1) analyzing the two

sets of data separately, (2) pooling all of the available data in a single analysis, and (3)

adopting one or the other of these approaches depending upon the results of a preliminary

comparison of the results they produce. Each of these three strategies will be shown to entail

significant inferential difficulties.
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1.1: Model, Assumptions, and Basic Results

We begin with the dual regression model

{1a} y0 = X0α + u0

{1b} y1 = X1β + u1

wherey0 andy1 are N0×1 and N1×1 vectors, respectively, of observations on a common

dependent variable,X0 andX1 are N0×K and N1×K matrices, respectively, of observations on

a common set of K explanatory variables,u0 andu1 are N0×1 and N1×1 vectors, respectively,

of unobserved stochastic disturbances, andα andβ are K×1 vectors of constant parameters to

be estimated.

By convention,β will be treated as the parameter vector of theoretical interest in the

subsequent analysis: our aim will be to estimateβ as accurately as possible, and the available

data will be relevant if and only if they contribute to that aim. The N1 observations in the "β

regime" will be treated as having been drawn from a population in which model {1b} is

assumed to hold, while the N0 observations in the "α regime" will be treated as being of

uncertain theoretical relevance, in the sense that the parameter vectorα in model {1a} is

believeda priori to be "similar," but not necessarily identical, to the parameter vectorβ in

model {1b}.

We shall assume throughout the analysis that this model is well specified, in the sense

that

{2a} E(X0′u0) = 0 ; E(u0u0′) = σ0
2I ,

{2b} E(X1′u1) = 0 ; E(u1u1′) = σ1
2I ,

and
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{2c} E(u0u1′) = 0 .

How should we use the available data to estimate the parameters of interest? At one

extreme, we could treatα andβ as completely distinct parameter vectors to be estimated

independently using ordinary least squares regression. The OLS estimators are

{3a} a = (X0′X0)
−1 X0′y0

and

{3b} b = (X1′X1)
−1 X1′y1 .

Under the assumptions given in expression {2}, each of these estimators is unbiased for the

corresponding parameter vector, and their respective covariance matrices are

{4a} var(a) = σ0
2 (X0′X0)

−1

and

{4b} var(b) = σ1
2 (X1′X1)

−1 .

At the other extreme, we could treat the "similar" parameter vectorsα andβ as

identical (andσ0
2 andσ1

2 as identical disturbance variances).5 In that case, we would want

to combine the two data sets and use ordinary least squares regression to estimate a single

parameter vector. The pooled OLS estimator is

{5} bp = (X0′X0 + X1′X1)
−1 (X0′y0 + X1′y1) ,

the expectation ofbp is
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{6} E( bp ) = β + (X0′X0 + X1′X1)
−1 X0′X0 (α − β) ,

and the covariance matrix ofbp is

{7} var(bp ) = σ2 (X0′X0 + X1′X1)
−1 .

Finally, we shall build in what follows upon an important relationship between the

pooled regression estimatorbp and the subset regression estimatorsa andb. Rewriting

expression {5}, and making use of {3a} and {3b},

{8} bp = (X0′X0 + X1′X1)
−1 [X0′X0 (X0′X0)

−1 X0′y0 + X1′X1 (X1′X1)
−1 X1′y1]

= (X0′X0 + X1′X1)
−1 (X0′X0 a + X1′X1 b) .

In words,bp is a matrix-weighted average of the separate OLS parameter vectorsa andb,

where the weight matrix associated with each parameter vector is proportional to the inverse

of the covariance matrix of that parameter vector.

1.2: A Mean Squared Error Analysis

Expression {6} is sufficient to demonstrate that pooling disparate observations runs the

risk of biasing our estimates of the parameters of theoretical interest,β. If our only aim were

to avoid bias, we would always prefer the subset regression estimatorb to the pooled

regression estimatorbp . But of course, we might then question the assumption that all of the

N1 observations used to estimateb really come from the same regime, and prefer an estimator

based upon a subset of this subset of the data, or on a subset of a subset of a subset.

Obviously, this logic leads inexorably to very small data sets, and thus to very imprecise

parameter estimates. A more reasonable intuition suggests that we must weigh potential gains
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in the precision of parameter estimates from including theoretically problematic observations

against the bias engendered when the underlying parameter values governing the problematic

observations differ significantly from those governing the observations of primary theoretical

interest.

A natural way to formalize this intuition is by specifying the conditions under which a

more inclusive data set will be preferable by a coefficient mean squared error criterion to a

less inclusive data set. The mean squared error criterion balances the competing demands of

unbiasedness and precision. In the present context, the pooled regression estimatorbp is

superior to the subset regression estimatorb by a generalized mean squared error criterion if

the mean squared error for every possible linear combination of the elements ofbp is less

than or equal to the mean squared error for the same combination of the elements ofb (Judge

et al. 1985, 47-48). This will be true if the difference between the generalized mean squared

error matrices

{9} E[( b−β)(b−β)′] − E[(bp −β)(bp −β)′] = ∆

is a positive definite matrix (so thatω′∆ω>0 for any K×1 weight vectorω≠0). Conversely,b

is superior tobp if ∆ is negative definite (so thatω′∆ω<0 for anyω≠0).

The generalized mean squared error matrix ofbp is the sum of the covariance matrix

of bp and the bias squared matrix,

{10} E[( bp −β)(bp −β)′] = var(bp ) + [E(bp )−β][E(bp )−β]′ .

Substituting from expressions {6} and {7} in Section 1.1,

{11} E[( bp −β)(bp −β)′] = σ2 (X0′X0 + X1′X1)
−1

+ (X0′X0 + X1′X1)
−1 X0′X0 (α − β) (α − β)′ X0′X0 (X0′X0 + X1′X1)

−1 .
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Since the subset regression estimatorb is unbiased forβ, its generalized mean squared error

matrix is just its covariance matrix,

{12} E[( b−β)(b−β)′] = var(b) .

Substituting from expression {4},

{13} E[( b−β)(b−β)′] = σ2 (X1′X1)
−1 .

Thus, the difference matrix for the generalized mean squared error comparison is

{14} ∆ = σ2 (X1′X1)
−1 − σ2 (X0′X0 + X1′X1)

−1

− (X0′X0 + X1′X1)
−1 X0′X0 (α − β) (α − β)′ X0′X0 (X0′X0 + X1′X1)

−1 .

By some straightforward matrix algebra,

{15} ∆ = (X0′X0+X1′X1)
−1 X0′X0 [σ2(X1′X1)

−1 + σ2(X0′X0)
−1 − (α−β)(α−β)′] ×

X0′X0 (X0′X0+X1′X1)
−1 .

This difference matrix will be positive definite if the data matricesX0′X0, X1′X1, and

(X0′X0 + X1′X1) have full rank K6 and the matrix in square brackets is positive definite

(Judge and Bock 1978, 316, Theorem A.3.7). Roughly speaking, the latter condition will be

satisfied ifα andβ are sufficiently similar; if each element ofα exactly equals the

corresponding element ofβ, the matrix (α−β)(α−β)′ is a matrix of zeroes, and the condition is

obviously satisfied for anyσ2 > 0.

The mean squared error comparison becomes much simpler in the special case of a

bivariate regression model (with mean-deviated data so that no intercept is required), since in

that case (X0′X0+X1′X1)
−1, X0′X0 , σ2(X1′X1)

−1, σ2(X0′X0)
−1, and (α−β)(α−β)′ are all
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positive scalars. Then the difference matrix∆ is positive definite if

{16} σ2/ x1
2 + σ2/ x0

2 − (α−β)2 > 0 ,

and negative definite if the inequality is reversed. The first two terms on the left side of this

inequality are the variances of the least squares parameter estimates a and b, respectively, and

their sum is the variance of the difference between a and b (since the variance of the

difference between two variables is equal to the sum of their variances minus twice the

covariance, and the covariance here is equal to zero). Thus, we can rewrite condition {16} as

{17} var(a−b) − (α−β)2 > 0 ,

which can be rearranged to produce

{18} −1 < (α−β)/[var(a−b)]1/2 < 1 .

The middle term in expression {18} is the population value corresponding to a t-

statistic for the difference between the separate subset parameter values a and b. The pooled

regression coefficient bp will be superior to the subset regression coefficient b by a mean

squared error criterion if and only if this population value is less than one in absolute value

(Wallace 1964; Feldstein 1973). Unfortunately, this population value is unknown. Thus, an

analyst attempting to minimize the mean squared error of his or her parameter estimate must

either judge the probability that condition {18} is satisfied ona priori grounds, or else rely

on the corresponding sample t-statistic to make an inference about the population value of

interest.7 Even in the simple bivariate case, each of these approaches has its pitfalls. Prior

beliefs may or may not be easily translated into bets about t-statistics, and using sample data

to substitute for prior beliefs courts the inferential problems of pre-test estimation outlined in
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Section 1.3. In any case, neither approach generalizes readily to the more usual situation in

which there is more than one explanatory variable. Thus, although the mean squared error

criterion is a useful guide in principle, it fails to provide a practical solution to the dilemma

of disparate observations.

1.3: Pre-test Estimation

It should be clear by now that, roughly speaking, it makes sense to pool disparate

observations if the underlying parameters governing those observations are sufficiently

similar, but not otherwise. A common practice among data analysts faced with situations like

the one outlined here is to test the hypothesis that the parameter vectorsα andβ are identical

by comparing the total sum of squared residuals from the two subset regressions (with N0 and

N1 observations) with the sum of squared residuals from the pooled regression (with N0+N1

observations). If the improvement in fit from estimating two sets of regression coefficients

rather than one is sufficiently large, the null hypothesis of parameter equality is rejected and

inference proceeds on the basis of the separate subset regression results. If the improvement

in fit is not sufficiently large to reject the null hypothesis of parameter equality, inference

proceeds on the basis of the pooled regression results. The test statistic

{[SSRp−(SSRa+SSRb)]/K}/{(SSRa+SSRb)/(N0+N1−2K)}

has an F distribution with K and N0+N1−2K degrees of freedom, where SSRp is the sum of

squared residuals from the pooled regression and SSRa and SSRb are the sums of squared

residuals from the subset regressions in theα andβ regimes, respectively.

In the simple case of a bivariate regression model, this F-statistic is just the t-statistic

for (α−β) described at the end of Section 1.2. In the time-series setting, the usual F-test for

structural change is commonly referred to as the "Chow test" (Chow 1960).8 Other common
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variable selection criteria, such as Theil’s adjusted R2 statistic and the MallowsCp statistic,

are also based upon the sum of squared residuals, and can be interpreted as F-tests with

appropriately chosen critical values (Edwards 1969; Amemiya 1980; Judge et al. 1985, chap.

21). One important disadvantage of the F-test is that it is only valid under the assumption

that σ0
2 = σ1

2 = σ2. However, there are more flexible alternative tests, including one that is

asymptotically valid under heteroskedasticity of arbitrary form, based upon an auxiliary

regression (Davidson and MacKinnon 1993, section 11.6).

As in other applications, this pre-test estimation strategy has two main deficiencies.

First, the choice of a significance level for the test of the constraints embodied in the pooled

regression is essentially arbitrary, since there is no clear specification of the inferential costs

of Type I and Type II errors. The mean squared error analysis in Section 1.2 suggests using

whatever significance level produces a critical value for the test statistic of 1.0, at least in the

simple bivariate case; but other considerations argue in favor of a critical value closer to 2.0

(Judge et al. 1985, 77).9 Choosing a .05 significance level, or any other conventional level,

has no obvious justification. Indeed, as the empirical examples below will demonstrate, an F-

test with a significance level much looser than .05 may fail to reject the null hypothesis even

when the parameter estimates we care about differ substantially, while an F-test with a

significance level of .001 may reject the null hypothesis even when the parameter estimates

we care about are similar.

Second, and more importantly, standard statistical inferences based upon either the

separate or pooled regression results will be misleading because they fail to reflect the

specification uncertainty reflected in the first (model selection) phase of the pre-test

estimation strategy. Except in very simple cases, the real statistical properties of the pre-test

estimator will be unknown (Judge and Bock 1978). Although this is a substantial theoretical

embarrassment, it is usually ignored in practice. As Leamer (1978, 130) put it,
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few researchers are willing to accept "peculiar" estimates, and the standard

operating procedure is to search for constraints that yield "acceptable"

estimates. The fact that the resulting estimator is neither unbiased, linear, nor

"best" is no large deterrent to a person whose research project would be

dubbed "fruitless" if it were summarized in a nonsensical estimate.

2: Fractional Pooling

We have seen in Section 1 that each of the usual approaches to the dilemma

of disparate observations has significant flaws. If we simply discard problematic

observations and base our analysis on data "known" to represent the regime of

primary theoretical interest, we will avoid bias but our parameter estimates may be

very imprecise. If we simply pool disparate observations, our parameter estimates will

be more precise but possibly biased. If we allow the data to dictate our handling of

disparate observations by adopting a pre-test estimation strategy, we will suffer one or

the other of these same unhappy fates while deceiving ourselves about how much we

have actually learned from our data.

Intuitively, it would be desirable to have an estimation strategy that relied

heavily upon the observations "known" to represent the regime of primary theoretical

interest, while discounting but not discarding completely the problematic data. The

simplest way to do this is just to weight the problematic "α data" X0 and y0 less

heavily than the "β data" X1 and y1 in our regression analysis. I propose here an

estimator with exactly that feature, the fractionally pooled regression estimator

{18} bλ = (λ2 X0′X0 + X1′X1)−1 (λ2 X0′y0 + X1′y1) ,

with λ a suitably chosen constant satisfying 0≤λ≤1.
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The fractionally pooled regression estimator bλ is simply a weighted least

squares estimator of the sort introduced in every textbook discussion of

heteroskedasticity. But the motivation for weighting the available data in the present

case is not that the disturbances associated with the various observations are

heteroskedastic, but that the parameters governing some observations are only

approximately the parameters of theoretical interest. In the former case we choose to

discount data that are especially noisy; in the latter case we choose to discount data

that are of problematic theoretical relevance.

The estimator bλ , like the pooled regression estimator bp , is a matrix-weighted

average of the separate OLS parameter vectors a and b:

{19} bλ = (λ2 X0′X0 + X1′X1)−1 ×

[λ2 X0′X0 (X0′X0)−1 X0′y0 + X1′X1 (X1′X1)−1 X1′y1]

= (λ2 X0′X0 + X1′X1)−1 (λ2 X0′X0 a + X1′X1 b) .

But here the relative weight attached to the vector b estimated from the data of

primary theoretical interest is greater than in the pooled regression estimator bp , while

the relative weight attached to the vector a estimated from the theoretically

problematic data is correspondingly smaller. By appropriate choice of the pooling

fraction λ, we can represent any desired degree of confidence in the α data, from

treating them at face value to ignoring them completely. It is easy to see, by

comparing expression {19} with expression {8}, that when λ=1, the estimator bλ

reduces to the pooled regression estimator bp . At the other extreme, it is clear that

when λ=0, the estimator bλ reduces to the subset regression estimator b.
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2.1: Implementation

Fractional pooling is easy to implement, requiring simply a weighted least

squares regression:

(1) Multiply the N0 observations in the α subset for the dependent

variable and each of the K explanatory variables (including the constant,

if any) by the pooling fraction λ, where 0≤λ≤1.

(2) Run a regression using the N0 weighted observations from (1)

together with the N1 unweighted observations in the β subset.

(3) The coefficients produced by the regression in (2) are the parameter

estimates bλ. However, the nominal standard errors of these parameter

estimates (and the nominal standard error of the regression) are

artificially small; the correct standard errors (and the correct standard

error of the regression) can be recovered by multiplying the printed

standard errors (and the printed standard error of the regression) by

[(N0+N1−K)/(λN0+N1−K)]1/2.10

This approach can be generalized in the obvious way to deal with more

complicated situations in which there are more than two subsets of available data.

Indeed, there is no reason in principle why each observation cannot have its own

associated weight, λn , reflecting the subjective theoretical relevance of that

observation. However, my analysis here will continue to focus on the simple case

considered so far, in which the relevant data can be categorized into two subsets, one

of which we wish to discount by the factor λ.
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2.2: The Locus of Fractionally Pooled Parameter Estimates

It is illuminating to observe how the parameter estimates produced by fractional

pooling vary with the choice of the pooling fraction λ. As I have already indicated,

when λ equals zero the parameter estimates are identical to those produced by the

subset regression using only the observations from the β regime (the coefficient vector

b in Section 1.1 above). At the opposite extreme, when λ equals one the parameter

estimates are identical to those from the pooled regression using the observations

from both the α regime and the β regime (the coefficient vector bp in Section 1.1).

Intermediate values of λ produce a continuum of parameter estimates that can be

represented as a curve connecting the points b and bp in the K-dimensional

parameter space.11

It is worth noting that the continuum of points along this curve will not, in

general, lie "between" the endpoints in any given dimension.12 Thus, it will not, in

general, be sufficient to estimate the subset coefficient vector b and the pooled

coefficient vector bp and presume that "the truth must lie somewhere in between."

Moreover, even when the curve approximates a straight line, distances along this line

will not, in general, be proportional to the differences in values of λ that produce them.

For example, the point corresponding to λ=.5 may lie near b, near bp , or midway

between these two endpoints.13 On the other hand, it is often easy enough to

rerun the regression several times with alternative values of λ in order to explore the

shape of the curve, and to report results corresponding to alternative values of λ in

order to convey to readers the sensitivity of the analysis to the choice of λ.

2.3: Bayesian Rationale
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My analysis so far has emphasized that intelligent decisions about how to treat

disparate observations must be based, in one way or another, upon prior beliefs about

the theoretical relevance of the available data. The main conceptual attraction of the

fractional pooling approach proposed here is that it relies upon prior beliefs in a simple

and natural way: the subjective relevance of the problematic data is summarized in a

single fraction, λ. In this section I show that this way of incorporating prior beliefs is

consistent with the more general precepts of Bayesian statistical theory.14

For the simple case of a linear regression model with normally distributed errors

and a "natural conjugate" normal-gamma prior distribution for (β, σ2), the Bayesian

formula for combining prior and sample data is directly analogous to the classical

formula for combining data from two separate samples (Leamer 1978, 76-79). For

example, if the prior distribution for β given σ2 in equation {1b} above is normal with

mean vector β̂* and covariance matrix σ2(Ω*)−1 and the prior distribution for σ2 is

gamma with parameters σ̂*2 and ν*, then the posterior distribution for β given σ2 is

normal with mean vector β̂** and covariance matrix σ2(Ω**)−1 and the posterior

distribution for σ2 is gamma with parameters σ̂**2 and ν**, where

β̂** = (Ω* + X1′X1)−1 (Ω* β̂* + X1′X1 b)

Ω** = Ω* + X1′X1

σ̂**2 = [ν* σ̂*2 + SSRb + (b−β̂*)′ Ω* (Ω* + X1′X1)−1 X1′X1 (b−β̂*)]/(ν* + N1)

ν** = ν* + N1 .

The marginal posterior distribution of β is multivariate Student with mean vector β̂**,

covariance matrix σ̂**2 (Ω**)−1, and degrees of freedom ν**. The posterior mean, β̂**,

is a matrix-weighted average of the prior mean β̂* and the sample estimate b, where
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the weight matrices are proportional to the inverted covariance matrices of β̂* and b,

respectively. Thus, the Bayesian analyst in this case treats the prior information as

being equivalent to a previous sample of size ν* of the same process that generated

the sample data.15

If we substitute a for β̂* , X0′X0 for Ω*, and N0 for ν* in these expressions, the

marginal posterior mean vector and covariance matrix of β are

β̂** = (X0′X0 + X1′X1)−1 (X0′y0 + X1′y1)

and

var(β̂**) = σ̂**2 (X0′X0 + X1′X1)−1 ,

which exactly parallel the formulas for bp and var(bp ) in expressions {5} and {7} in

Section 1.1. If instead we substitute a for β̂* , λ2X0′X0 for Ω*, and λN0 for ν*, the

marginal posterior mean vector and covariance matrix of β are

β̂** = (λ2X0′X0 + X1′X1)−1 (λ2X0′y0 + X1′y1)

and

var(β̂**) = σ̂**2 (λ2X0′X0 + X1′X1)−1 ,

which exactly parallel the analogous formulas for bλ and var(bλ ). Thus, fractional

pooling amounts to a Bayesian regression analysis of the data from the β regime of

primary interest, with a prior mean vector equal to the ordinary least squares

coefficient vector a from the α regime of uncertain theoretical relevance and a prior

covariance matrix equal to the covariance matrix of a inflated by the scalar value 1/λ2.
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At first glance, it may seem odd that our prior beliefs about β depend upon all

the features of the α data that affect the estimated covariance matrix of a. But this

dependence is natural if we recall that the point of fractional pooling is to learn what

we can about β from the α data. If the α data are few in number or nearly colinear or

simply exhibit little variation, they can tell us little about α and thus even less about β;

in that case we must approach the β data themselves with more uncertainty than we

otherwise would. The important point to bear in mind here is that the mean vector a

and covariance matrix σ̂2 (λ2X0′X0)−1 are the mean vector and covariance matrix of a

"prior" distribution only from the perspective of the β data, since they are actually

estimated from the α data.16

Under what circumstances would this specification for the prior mean vector

and covariance matrix make sense? Whenever we want to discount the data from the

α regime to some extent, but otherwise treat them as if they represented additional

data from the β regime of primary theoretical interest. Of course, this specification will

not be appropriate for every occasion. For example, data analysts with specific prior

beliefs about the relative magnitudes of the parameters in the two regimes would not

want to simply treat the coefficient vector a from the α regime as their prior mean

vector when analyzing the data from the β regime; in that case, a more complicated

approach is necessary to appropriately represent the impact of the α data on our

beliefs about β. Alternatively, data analysts might prefer different weights, and hence

different values of λ, to represent the subjective import of the problematic data for their

beliefs about different parameters; again, a more complicated specification is

necessary to capture the relevant prior beliefs. But despite these potential

complications, the approach proposed here makes it possible to represent one

interesting family of prior beliefs in a way that accords with Bayesian theory, while
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avoiding much of the complexity of a full-blown Bayesian analysis. The fact that

fractional pooling has this natural Bayesian interpretation seems to me to add

significantly to its attractiveness.

The problem remains of how to choose an appropriate value of λ. The explicit

subjectivity of the Bayesian approach highlights the fact that reasonable people will

often disagree about such matters. Indeed, despite the fact that Bayesian analysis is

often hindered by the difficulty of specifying precise prior beliefs in a meaningful way,

one of the main virtues of Bayesian techniques is that they can help to monitor and

clarify the implications of alternative subjective judgments about appropriate model

specification. Often this is accomplished by calculating ranges of posterior estimates

corresponding to meaningful ranges of prior beliefs. For example, a very general

result of Chamberlain and Leamer (1976) provides an ellipsoid bound for a posterior

mean vector of regression coefficients given only the prior mean vector and the

sample coefficient vector and covariance matrix; every point in this ellipsoid

corresponds to a possible choice of prior covariance matrix, and no choice of prior

covariance matrix produces a posterior mean outside the ellipsoid.

The λ-family of pooled estimates described in Section 2.2 can be thought of as

representing an intermediate approach between a fully specified Bayesian analysis

and the partially specified analysis of Chamberlain and Leamer (1976). Simply

specifying that our prior distribution for β is centered at the least squares point a

estimated from the problematic data is sufficient to reduce the range of possible

posterior mean vectors from the entire parameter space to Chamberlain and Leamer’s

ellipsoid, whose boundary includes the prior and sample mean vectors (here, the

subset regression estimates a and b). Specifying in addition that our prior covariance

matrix for β must be proportional to the covariance matrix of a further reduces the
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family of possible posterior mean vectors to a curve (here, for constants of

proportionality 1/λ2≥1 as implied by 0≤λ≤1, the locus of λ-estimates described in

Section 2.2). Finally, specifying in addition a precise value of λ reduces the family of

possible posterior mean vectors to a single point on the curve, the parameter vector

bλ .

Each of these levels of specificity may be illuminating in some circumstances,

depending upon how much we are willing to assume about the relevance of the α data

for our beliefs about β. The important point is that fractional pooling provides a simple

and flexible way to explore the implications of an interesting class of prior beliefs about

the relevance of problematic data. On one hand the approach can be used to

estimate a single parameter vector bλ based on a specific value of λ; on the other

hand it can be used to produce a family of fractionally pooled estimates reflecting a

whole range of alternative values of λ, as described in Section 2.2. This flexibility

seems to me to add significantly to the attractiveness of fractional pooling as a

technique for analyzing disparate observations.

3: Empirical Examples

My aim in this section is to provide concrete illustrations of the issues

addressed in Section 1 and the approach proposed in Section 2. The illustrations are

drawn from real data analyses in which the problem of pooling disparate observations

seems to arise. For the sake of convenience, all of the relevant data sets are

sufficiently compact to be reproduced in the Appendix. However, the issues arising in

the analysis of these data sets are equally relevant in analyses with much larger data

sets. For example, analysts of large opinion surveys with both panel and fresh cross-
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section components, including the Census Bureau’s Current Population Survey, the

Survey of Income and Program Participation, and some recent American National

Election Studies, might legitimately wonder whether to pool data from new and old

respondents; analysts of primary season campaign dynamics might wonder whether or

not to include out-party identifiers in their analyses (Brady and Johnston 1987, Bartels

1988); analysts of congressional behavior might wonder whether to pool data from

Senate sessions in which the Republicans were the majority party with data from

sessions in which the Democrats were the majority party (Schiller 1995); and analysts

of public opinion or voting behavior might wonder whether to analyze informed and

uninformed opinions using a single model or separate models with different

parameters (Zaller 1992; Bartels 1996). In these cases and many others, the problem

arises of how to make valid inferences on the basis of disparate observations.

3.1: Election Fraud in Philadelphia

My first example is based on Ashenfelter’s (1994) analysis of alleged election

fraud in the casting of absentee ballots in a special election in the 2nd Senate District

of Pennsylvania in 1993. The Democratic candidate trailed his Republican opponent

by 564 votes in the tally of ballots cast by voting machine, but recorded a plurality of

1,025 absentee votes to win the election by 461 votes. The Republican candidate

challenged the election result in court, alleging that many of the absentee ballots were

cast illegally and should be voided. In order to assess the plausibility of the

Democratic margin in absentee votes, Ashenfelter analyzed the relationship between

absentee vote margins and machine vote margins in 21 previous Pennsylvania Senate

elections in the Philadelphia area in the preceding decade.

Ashenfelter’s regression analysis indicated a significant positive relationship
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between machine vote margins and absentee vote margins, as well as a small (126

vote) and statistically insignificant pro-Republican bias in absentee votes. From these

results, Ashenfelter calculated the expected Democratic absentee vote margin in the

2nd District in 1993 as −133, with a standard error of 345. Assuming a well-specified

regression with normally distributed errors, Ashenfelter concluded that the probability

of observing a Democratic absentee vote margin as far from the expected margin as

the one reported was less than one percent, and that the probability of observing a

Democratic absentee vote margin as far from the expected margin as 565 (the

minimum absentee vote margin required to offset the Republican machine vote margin

of 564 votes) was about six percent. Judge Clarence Newcomer cited Ashenfelter’s

analysis in support of his decision to overturn the contested election result, awarding

the 2nd District seat (and, as it happens, partisan control of the Pennsylvania State

Senate as a whole) to the Republicans.

My aim here is to examine the sensitivity of Ashenfelter’s conclusion to his

choice of relevant prior election results. While the spatial and temporal delimitations

embodied in his analysis are not unreasonable, other choices seem equally

reasonable. Why not use the previous twenty years’ results rather than ten? Why not

use results from all of Pennsylvania’s Senate districts, or from all urban districts, rather

than just those from Philadelphia? On the other hand, why not limit the analysis to

previous results in the district where the disputed election actually occurred, rather

than including results from other Philadelphia districts with rather different social and

political characteristics?

My reanalysis of Ashenfelter’s data focuses upon the last of these issues. With

only three previous elections in the 2nd Senate District since it was last redistricted, it

might seem hopeless to limit the analysis to that district alone. Nevertheless, it seems
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prudent to recognize that previous results from other districts are less obviously

relevant than previous results from the 2nd District in evaluating the allegation of vote

fraud in the 2nd District in 1993. Fractional pooling seems to provide an attractive

approach in this situation, since it allows us to make use of data from other

Philadelphia districts (and, in principle, from other relevant times or places) without

having to pretend that the relationship between machine votes and absentee votes is

known to be identical in every district.

The results of Ashenfelter’s (1994) analysis based on 21 previous elections in

seven Philadelphia districts from 1982 to 1992 are replicated in the first column of

Table 1. The second column of Table 1 repeats Ashenfelter’s analysis using only the

data from the three previous elections in the 2nd Senate District. Rather remarkably,

in view of the fact that there is only one degree of freedom in this version of the

model, the parameter estimates are quite precise, the standard error of the regression

is less than one tenth as large as in the pooled analysis in the first column, and the

adjusted R2 statistic is .95. The absentee vote bias is pro-Democratic rather than pro-

Republican, and the slope of the relationship between machine vote margins and

absentee vote margins is considerably smaller than in the pooled analysis in the first

column of Table 1.

* * * Table 1 * * *

The third column of Table 1 shows the corresponding regression results for the

18 elections in districts other than the 2nd. The estimated slope of the relationship

between machine vote margins and absentee vote margins is 80 percent larger in

these districts than in District 2. The t-statistic for this difference is 1.8, while the t-

statistic for the difference in intercepts is −2.6. Nevertheless, there are so few
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observations from District 2 that an F-test comes nowhere near rejecting the null

hypothesis of parameter equality embodied in the pooled regression at conventional

significance levels.17 This is a case where the F-test seems not to be answering

the question that ought to be crucial in most decisions about whether or not to pool

disparate observations: are the parameter values governing the problematic

observations similar to those governing the observations of primary theoretical

interest?

The parameter estimates in the first and second columns of Table 1 are

represented graphically in Figure 1, with the intercept estimates shown on the

horizontal dimension and the slope estimates shown on the vertical dimension. The

point bp at the upper left of the figure represents Ashenfelter’s parameter estimates (in

the first column of Table 1) based upon 21 previous elections in all seven Philadelphia

districts; the point b at the lower right of the figure represents the parameter estimates

(in the second column of Table 1) based upon the 3 previous elections in District 2

only. The ellipse surrounding each of these points is the boundary of a two-

dimensional 50-percent joint confidence region. The distance between these two

ellipses in the parameter space indicates that our inferences about where the true

parameter values probably lie are quite sensitive to our choice of relevant observations.

* * * Figure 1 * * *

The locus of parameter estimates produced by fractional pooling for

Ashenfelter’s analysis is also shown in Figure 1. Intermediate points between the

endpoints b and bp correspond to intermediate values of λ at .1 intervals between

zero and one. All of these values imply smaller slopes and more Democratic

intercepts than in Ashenfelter’s analysis. Moreover, for values of λ less than .6, these
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estimates are outside the two-dimensional 50 percent confidence region for

Ashenfelter’s estimates (the larger of the two ellipses shown in Figure 1).

Nevertheless, for plausible values of λ -- say, in a range from .4 to .8 -- the parameter

estimates implied by fractional pooling are only modestly different from appropriately

weighted simple averages of the subset and pooled regression coefficients b and bp.

In this sense, at least, the locus of fractionally pooled parameter estimates seems to

provide relatively little information beyond that contained in the subset and pooled

regressions.

Finally, since Ashenfelter’s main interest in the regression analysis was not in

the parameter estimates themselves but in a comparison between the disputed 1993

absentee vote margin and the predicted absentee vote margin implied by the

regression analysis, it is worth observing how this comparison depends upon the

pooling fraction λ. For the 11 values of λ illustrated in Figure 1, Table 2 shows the

predicted absentee vote margin corresponding to a machine vote margin of −564, the

standard error of this predicted absentee vote margin, and the probability of observing

a Democratic absentee vote margin large enough to offset the observed Republican

margin in machine votes.18 The range of p-values in the last column of Table 2 is

only from .025 to .032, with the lowest p-value occurring when λ equals zero (that is,

when elections from districts other than the 2nd are assigned no weight, the

assumption at the opposite extreme from the one adopted by Ashenfelter). Thus,

although the parameter estimates in Ashenfelter’s analysis are fairly sensitive to how

data from other districts are handled, his conclusion that the disputed absentee vote

margin was inconsistent with previous experience is not.

* * * Table 2 * * *
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3.2: Political Violence

My second example is derived from Powell’s (1982) analysis of regime

performance in contemporary democracies. Powell related various measures of

political participation, stability, and violence in 26 democracies to a variety of social

and institutional factors, including economic development, ethnic cleavages, and

constitutional design. My reanalysis of Powell’s data focuses on the effect of

population size, economic development (measured by the natural logarithm of GNP

per capita), ethnic fractionalization (an index measuring "the probability that two

randomly drawn citizens will be of different ethnic or linguistic groups"), and

constitutional design (a measure of "representativeness," with presidential systems at

the low end and parliamentary systems with at least five representatives per district at

the high end) upon political violence, measured by the number of deaths per year from

political violence in the period 1967-1976.19

It seems plausible to suppose that the primary aim of a cross-national analysis

of political violence in contemporary democracies would be to shed light upon the

causes of violence in the minority of "developing" or "Third World" countries that have

managed to create and maintain democratic political institutions. For one thing, the

magnitude of the problem of political violence is clearly greater in "traditional" than in

"modern" democracies. For example, 83 percent of all the deaths from political

violence in Powell’s 26 countries occurred in the ten countries he classified as

"predominantly traditional" or "mixed traditional and modern." (More than half of the

deaths in "modern" countries occurred in the United Kingdom, mostly in Northern

Ireland.)

Even an analyst who attached equal importance to understanding political

violence in traditional and modern democracies would probably concede that
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somewhat different social and institutional factors might be associated with political

violence in the two types of regimes. Thus, while it might well be reasonable to attach

some weight to the experience of traditional democracies in attempting to understand

the causes of political violence in modern democracies, and vice versa, each subset of

the data must presumably be considered problematic from the theoretical viewpoint of

the other. For the purposes of this analysis my focus is on the causes of political

violence in Powell’s traditional democracies, and my aim is to explore how evidence

from modern democracies might shed light on those causes.

The parameter estimates in the first column of Table 3 replicate Powell’s

analysis (1982, 156) using data from his 26 contemporary democracies. My analysis

is of logged deaths from political violence, rather than Powell’s truncated version of

the unlogged variable.20 This difference may account for the one notable disparity

between the results reported by Powell and those reported in the first column of Table

3: whereas Powell reported a small but significant positive impact of ethnic

fractionalization on political violence (a standardized regression coefficient of +.11,

significant at the .10 level), the corresponding estimate in Table 3 is negative and

smaller than its standard error. In other respects, the two sets of results are similar.

* * * Table 3 * * *

The second column of Table 3 shows the parameter estimates produced by

applying the same regression model to the subset of the complete data set consisting

of ten of the eleven countries classified by Powell as "predominantly traditional" or

"mixed traditional and modern." I omit Costa Rica from this subset of "traditional"

countries because it is a glaring outlier, having experienced much less political

violence than other countries with similar institutions and levels of economic
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development.21 Limiting the analysis to these ten traditional democracies produces

some substantial differences in the estimated effects of the explanatory variables. The

coefficient for population, which had a t-statistic of 3.4 in the complete data set, is

almost exactly zero in the subset of traditional democracies, perhaps suggesting that

regimes rather than citizens are the primary focus of political violence in traditional

democracies. The coefficient for ethnic fractionalization is also almost exactly zero

(though it was smaller than its standard error even in the complete data set), while the

intercept level of violence is substantially larger.

The third column of Table 3 shows the parameter estimates produced by

applying Powell’s regression model to the complementary subset of modern

countries.22 In this subset of the data the estimated effect of population is almost

twice as large as in the complete data set, the estimated effect of GNP is of roughly

the same magnitude but with a much larger standard error, and the estimated effect of

having a representational constitution is essentially zero. The goodness-of-fit statistics

are less impressive than for the corresponding analysis of traditional countries only,

but more impressive than for the pooled analysis.

The F-statistic for a test of the constraints embodied in the pooled analysis is

7.57 (with 5 and 16 degrees of freedom), sufficiently large to reject the constraints at

the .001 significance level.23 It seems clear from this result, and from the

differences in some of the parameter estimates that appear in Table 3, that data from

traditional and modern democracies should not simply be pooled for the purposes of

Powell’s analysis. However, it does not follow that the two data sets should be treated

as though they were entirely unrelated, as they presumably would be from this point

on by an analyst adopting the usual pre-test estimation strategy. The intuition that the

experience of modern democracies can tell us something about the corresponding
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political processes in traditional democracies seems sufficiently compelling to warrant

some investigation of its inferential implications.

Figure 2 shows the least squares parameter estimate b and the pooled least

squares estimate bp for two of Powell’s explanatory variables. The horizontal

dimension of the figure represents the estimated impact of GNP per capita, and the

vertical dimension represents the estimated impact of a representational constitution.

Figure 2 also shows the two-dimensional 50-percent confidence region associated with

each estimator and the locus of fractionally pooled parameter estimates connecting

the endpoints b (corresponding to λ=0) and bp (corresponding to λ=1).

* * * Figure 2 * * *

Although the apparent restraining effect of a representational constitution is

smaller in the traditional democracies than in the whole data set, each estimate is well

within the 50-percent confidence region of the other, and indeed virtually the entire

two-dimensional confidence region for b lies within the corresponding confidence

region for bp. Thus, for these two explanatory variables, the inferential implications of

the choice between b and bp turn out to be relatively minor, notwithstanding the

emphatic rejection of the null hypothesis of parameter equality prompted by the F-

statistic of 7.57 cited earlier.

The locus of fractionally pooled parameter estimates connecting the points b

and bp, however, tells a somewhat more complicated story. The shape of the λ-curve

illustrates the fact, noted in Section 2.2, that the parameter estimates produced by

fractional pooling need not lie between the least squares and pooled least squares

estimates in any single dimension. Indeed, in this instance, any value of λ greater
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than zero and less than one produces parameter estimates outside the range from b

to bp for one of the two variables, and values of λ between about .3 and .7 produce

parameter estimates outside the range from b to bp for both variables.

Furthermore, a wide range of plausible values of λ produce parameter

estimates for these explanatory variables outside the 50-percent confidence regions

implied by either of the endpoint estimates b or bp. In that sense, our inferences

about the likely effects of economic development and constitutional design in

traditional democracies are fairly sensitive to subjective judgments about how much

we can learn from the distinct -- but not completely unrelated -- experience of modern

democracies.

3.3: Economic Conditions and Presidential Election Outcomes

My third example is based on Alesina et al.’s (1993) analysis of presidential

election outcomes, part of a larger empirical analysis based upon "a model of the

political economy of the United States" encompassing presidential election outcomes,

midterm and on-year congressional election outcomes, and GNP growth.

Alesina et al.’s analysis was based on election data from 1916 to 1988. Most

other analysts of economic voting in U.S. presidential elections (Tufte 1978; Markus

1988; Erikson 1989) have begun their analyses with either the 1948 or 1952 election.

Either of these starting points minimizes potential complications associated with World

War II and the aftershocks of the New Deal realignment, while limiting the analysis to

a historical period in which the federal government was clearly assigned significant

responsibility for macroeconomic management.24 In addition, the 1952 election is

the first for which survey data on voters’ perceptions of the presidential candidates are

available from the American National Election Studies.
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The obvious disadvantage of limiting the analysis to the post-World War II era

is that the number of post-war presidential elections available for analysis is unhappily

small -- eleven at the time of Alesina et al.’s analysis, now twelve. A less obvious

disadvantage is that the range of observed variation in election year GNP growth has

been considerably narrower after World War II than before, making it correspondingly

more difficult to estimate the impact of GNP growth on election outcomes.25

Alesina et al. estimated separate effects for expected election-year GNP growth

(based upon lagged growth, military mobilization, and partisan effects) and current

growth shocks, but found no significant difference between the two estimates. They

interpreted the similarity of the two growth effects as evidence of naive retrospection

on the part of voters. Here I simplify the analysis by estimating a single effect for

election year GNP growth; as a result, the parameter estimates for the 1916-1988

data set reported in the first column of Table 4 do not exactly match those reported by

Alesina et al. (1993, Table 3), although the differences are minor.26

* * * Table 4 * * *

The dependent variable in the regression analysis in Table 4 is the two-party

presidential vote percentage won by the candidate of the incumbent party. The

explanatory variables, in addition to election year GNP growth, are a constant,

partisan balance (measured by the incumbent party’s share of the national

congressional vote in the previous midterm election), and a dummy variable indicating

when the Republicans were the incumbent party. My focus here is on the GNP

growth effect and the Republican bias. Parameter estimates representing those

effects are shown on the vertical and horizontal axes, respectively, of Figure 3.
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* * * Figure 3 * * *

Rather surprisingly, the estimated Republican bias is essentially insensitive to

the choice of time periods. Other things being equal, Republican incumbents did

about ten percentage points better than Democrats whether we focus on the post-

World War II period only or on the entire period from 1916 to 1988. On the other

hand, the estimated effect of election-year GNP growth appears to be much more

sensitive to the choice of sample period. The estimated effect in the post-World War

II period (in the second column of Table 4) is almost twice as large as the estimated

effect for the entire period from 1916 to 1988 (in the first column of Table 4); as a

result, the two-dimensional 50-percent confidence regions for b and bp in Figure 3 do

not overlap at all. Thus, a simple comparison of the pooled and subset regression

estimates and their associated confidence regions seems to cast considerable doubt

upon the wisdom of Alesina et al.’s decision to pool data from the entire period from

1916 to 1988, despite the fact that an F-test fails to reject the hypothesis that the

coefficient vectors b and bp are equal.27

However, a closer examination of the locus of fractionally pooled parameter

estimates in Figure 3 indicates that most of the variation in the apparent impact of

economic growth occurs in the range 0<λ<.3; all of the fractionally pooled estimates in

the range .4<λ<1 are within 20 percent of the fully pooled estimate bp, and within the

two-dimensional 50-percent confidence region for that estimate shown in Figure 3.

Although different analysts would naturally assign somewhat different relevance to

data from elections before 1948, most would, I think, agree that these elections are

sufficiently relevant to the contemporary period to warrant weights somewhere

between .4 and 1. Thus, contrary to the implication of the pooled and subset
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regressions alone, fractional pooling demonstrates that Alesina et al.’s estimates

provide a good representation of the available evidence about the impact of GNP

growth on presidential election outcomes for a wide range of weights we might

plausibly want to attach to the 1916-1944 data.

4: Conclusion

Beck (1985, 79) argued a decade ago that "It ought to be common practice to

test all time series results for sensitivity to choice of sample period." It isn’t. Nor is it

common practice to test cross-sectional results for sensitivity to equally subjective

choices about the range of observations to which a given statistical model is applied.

It should be.

Having said that, I must add that the analysis and examples presented in this

article suggest that even moderately conscientious sensitivity testing of the sort

advocated by Beck (1985), Bartels (1990), and others may not be enough to avoid

quite misleading inferences. In particular, two aspects of moderately conscientious

common practice seem to me to be dubious. First, using F-tests to decide whether or

not to pool disparate observations seems unlikely to result (except by chance) in

intelligent treatment of problematic data, given the mismatch between what F-tests can

do and what analysts need done. F-tests invite formulaic post hoc revisions in model

specifications, whereas analysts want (or should want) guidance about the implications

of their own judgments about issues of model specification. F-tests are about

goodness of fit, whereas analysts focus (or should focus) primarily on parameter

values. And F-tests are tests of exact equality, whereas analysts care (or should

care) about magnitudes of inequality. As a result, F-tests can resoundingly reject the

null hypothesis of parameter equality even when the pooled and subset parameter
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estimates of interest are, in fact, quite similar (as in the example in Section 3.2), and

can resoundingly fail to reject the null hypothesis of parameter equality even when the

pooled and subset regression results are quite different (as in the examples in

Sections 3.1 and 3.3).

The second (and probably less common) conventional approach, actually

reporting pooled and subset regression results, is significantly better than simply using

those results to compute an F-statistic. But even a direct comparison of pooled and

subset regression results may or may not provide a good indication of the inferential

import of problematic data. When the alternative sets of parameter estimates

produced by fractional pooling are relatively evenly spaced along a relatively straight

line connecting the pooled regression estimate bp and the subset regression estimate

b, as in Figure 1, it is easy enough (and safe enough) to interpolate intermediate

results between these endpoints. But when the λ-curve is highly non-linear, as in

Figure 2, or when points along this curve corresponding to equally spaced values of λ

are very unevenly spaced, as in Figure 3, casually splitting the difference between the

two extremes (or feeling relieved when there isn’t much difference between the two

extremes) can lead analysts and readers significantly astray.

The fundamental contradiction undermining both these conventional practices,

in my view, is that they pretend to maintain the rigid classical dichotomy between

observations that belong in the analysis and those that do not, while smuggling more

complex, uncertain prior beliefs about the theoretical relevance of the available data in

by a back door. The alternative approach proposed here, fractional pooling, replaces

the classical dichotomy with a more realistic continuum of assumptions about the

relevance of the available data, purchasing coherence, flexibility, and realism at the

cost of modest additional complexity.

33



Fractional pooling is easy to implement and has a plausible theoretical

justification in Bayesian statistical theory. Those are attractive features in any

statistical technique. Nevertheless, fractional pooling will not be an appropriate

solution to every problem of pooling disparate observations. Analysts with specific

expectations about the relative magnitudes of parameters in different subsets of the

complete data set may want to incorporate those expectations in a more elaborate

Bayesian analysis. Data that are more relevant for estimating some parameters than

others likewise invite a more detailed, and correspondingly complex, Bayesian

specification. The approach proposed here has both the virtue and the limitation of

simplicity, representing the theoretical relevance of each observation by a single fraction.

One other apparent limitation of the approach proposed here can easily be

circumvented. Even if the theoretical relevance of each observation can be

represented by a single fraction, there is no guarantee that the available data will fall

naturally into exactly two subsets, one with weight 1.0 and the other with weight λ.

Fortunately, there is no reason in principle why fractional pooling should not be

extended to associate different values of λ with each of several categories of

observations, or even with each observation separately. Of course, more complicated

weighting schemes will be harder to describe and justify; but that in itself should not

be sufficient reason to eschew them if they more accurately reflect considered

judgments about the theoretical relevance of the available data.

Finally, it will seldom be the case that any single value of λ (or, for that matter,

any single division of the available data into "clearly relevant" and "theoretically

problematic" subsets) is so compelling on a priori grounds that it alone warrants

examination and reporting. But that is not a serious hindrance to fractional pooling,

since it is easy enough to compute and report parameter estimates corresponding to a
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variety of alternative values of λ (or to a variety of alternative divisions of the available

data).

Indeed, it seems likely that the most fruitful application of the approach

proposed here will be as a tool for sensitivity testing. Whenever there is uncertainty

about the appropriate specification of a statistical model, as there almost always is in

non-experimental work, it is potentially illuminating to be able to explore the

implications of alternative assumptions. Fractional pooling provides a rich new range

of alternative assumptions whose implications may seem worth exploring, rather than

a method for choosing one assumption or another. In any case, it is worth bearing in

mind that the inadequacy of an analysis based upon any single value of λ applies not

only to values between the endpoints of zero and one, but also to the endpoints

themselves. The fact that analysts are used to choosing one endpoint or the other

casually or implicitly does not make their choices any less subjective or any less

problematic.

In the end, my plea is simply for more self-conscious realism about the

theoretical relevance of available data. While availability is itself an inherently practical

limitation, the fact that a given observation does or does not appear in a table or on a

data tape should not be the data analyst’s first and last consideration. On one hand,

maximizing sample size by taking every available observation at face value will usually

produce confusion or overconfidence or both. On the other hand, good social science

data are in sufficiently short supply that data analysts should not hesitate to make

whatever honest use they can of observations whose theoretical pedigree is less than

perfect. The technique proposed here offers one way to steer a reasonable course

between the unreasonable extremes of voracious inclusiveness and fastidious

exclusiveness.
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Appendix

This appendix provides raw data for the three extended empirical examples

considered in Section 3. Ashenfelter’s (1994) data on absentee and machine voting in

Philadelphia are reproduced in Table A1, Powell’s (1982) data on regime

characteristics and political violence are reproduced in Table A2, and Alesina et al.’s

(1993) data on economic growth and election outcomes in the United States are

reproduced in Table A3. Readers are referred to these sources for further information.

* * * Tables A1, A2, and A3 * * *
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Endnotes

1. This work was presented at the 1994 Political Methodology Summer Meeting in Madison and

at the 1994 Annual Meeting of the Political Science Association in New York, and to seminars at

Princeton University and the University of Rochester. I am grateful to Christopher Achen, R.

Michael Alvarez, Janet Box-Steffensmeier, Simon Jackman, Gary King, Renée Smith, and

anonymous referees for especially helpful comments, and to G. Bingham Powell for publishing

his data (Powell 1982), to Orley Ashenfelter for including his data in an unpublished report

(Ashenfelter 1994), and to Howard Rosenthal for providing unpublished data analyzed by Alesina

et al. (1993). The research reported here was originally stimulated by some comments of

Nathaniel Beck’s (1985). Douglas Rivers pointed out an important error in an earlier version of

the analysis in Section 1.2 below when I presented it at the 1987 Political Methodology Summer

Meeting in Durham. Christopher Achen introduced me to the work of Edward Leamer (1978) at

an early age, and pointed out an important error in my understanding of contract curves like the

one introduced in Section 2.2 below when I displayed it on a final exam. I am especially pleased

to have an opportunity to acknowledge these three long-standing intellectual debts.

2. This point can be fudged in various ways (for example, by including a more or less

complicated set of interaction terms that allow some parameters to vary across observations while

others remain constant), but it cannot be avoided: in the end, whatever model is specified, each

available observation must be either all the way in or all the way out of the analysis. Switching

regime models (Quandt 1958; Goldfeld and Quandt 1973) and stochastic parameter regression

models (Beck 1983; Newbold and Bos 1985) likewise provide additional flexibility but do not

obviate the classical demand to specify categorically the set of observations for which a single

stochastic mechanism will be assumed to govern the underlying parameters. Bayesian

approaches to these models are presented by Swamy and Mehta (1975) and Leamer (1978,

sections 8.3-8.5), respectively.
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3. My project here shares an affinity with the superficially unrelated project of Collier and Mahon

(1993), who studied how analytic categories get "stretched" to fit new contexts in comparative

research. In each case, the general goal is to make appropriate use of theoretically problematic

data.

4. It should be obvious that I agree with the second half but not the first half of Beck’s claim

(1985, 79) that "Survey researchers usually analyze the entire sample but the time series analyst

always faces a choice." Even when it is clear what "the entire sample" is (all 37,456 cases in the

1952-1992 American National Election Studies cumulative data file?), good survey researchers

seldom analyze it, choosing instead a smaller set of relevant observations (just as time series

analysts often do) on the basis of theoretical considerations and data availability.

5. From this point on, I shall add to the assumptions in {2} the further assumption that σ0
2 = σ1

2

= σ2. This assumption is not especially plausible in most applications, but simplifies the

exposition significantly. More general versions of most of the subsequent results can be derived

without this additional assumption, but with less clarity and no appreciable gain in insight.

Heteroscedasticity provides a technical rationale for differential weighting of the data from the two

regimes logically distinct from the theoretical rationale suggested below.

6. This condition simply ensures that the vectors of parameter estimates a, b, and bp referred

to above can in fact be computed given the available data.

7. In most cases, the easiest way to generate the relevant sample t-statistic will be to regress

[y0′ y1′]′ on [x0′ x1′]′ and [x0′ 0′]′. The parameters in this regression are β and α−β, and the

relevant t-statistic can be calculated simply by dividing the second parameter estimate by its

standard error.

8. The Chow test is based on the assumption that the potential structural change occurs at a

known point in time. More general diagnostic tests for structural change at any unspecified point

in the time series are also available (for example, Brown et al. 1975), although it seems odd in
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many applications to maintain the assumption of a discrete structural shift while professing

ignorance about the timing of that shift.

9. In any case, a thoroughgoing application of the mean squared error criterion argues against

any pre-test estimator of the sort considered here, since the pre-test estimator is a discontinuous

function of the data (at some point, a small change in the test statistic produces a discrete jump

between the subset parameter estimate b and the pooled parameter estimate bp ) and therefore

inadmissible (Leamer 1978, 135). Feldstein (1973) and others have suggested continuous mixing

schemes in which b and bp are averaged, with weights that are a continuous function of the test

statistic for the constraints embodied in the pooled regression.

10. The printed R2 statistic will also be too large, but the required adjustment in this case is

somewhat more complicated.

11. Mathematically, this curve is equivalent to a portion of the "curve décolletage" of Dickey

(1975), which Leamer (1978, sections 3.3 and 5.6) referred to as the "information contract curve."

In their case the curve is a locus of possible compromises between Bayesian prior and sample

information; here it is a locus of possible compromises between data from the two disparate

regimes. The analogy reflects the Bayesian rationale for fractional pooling developed in Section

2.3.

12. This point is nicely illustrated by the curve in Figure 2 in Section 3.2.

13. For example, in Figure 3 in Section 3.3, the apparent effect of election year GNP growth on

presidential election outcomes is almost invariant for values of λ greater than .5, but varies

considerably for values of λ less than .3.

14. The best surveys of Bayesian approaches to regression analysis and related econometric

techniques are by Zellner (1971) and Leamer (1978). Western and Jackman (1994) recently

argued for the utility of a Bayesian approach to cross-national comparative political research. The

technique of "mixed estimation" proposed by Theil and Goldberger (1961) is practically similar,
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but less general and without the compelling theoretical justification of Bayesian methods.

15. The degrees of freedom parameter in the denominator of σ̂**2 is ν*+N1 rather than ν*+N1−K;

this result parallels the maximum-likelihood estimate of σ2 but not the more usual unbiased

estimate. In cases where the equivalence of prior and sample information seems inappropriate,

there are alternatives to the normal-gamma family of prior distributions in which, for example, a

marked discrepancy between prior beliefs and sample evidence may produce a bimodal posterior

distribution with modes corresponding to the prior and sample means (Dickey 1975; Leamer 1978,

79-81).

16. In this respect the approach proposed here is akin to "empirical Bayes" techniques, which

use relevant data to estimate "prior" distributions (Maritz 1970; Lindley and Smith 1972; Rubin

1980). However, I wish to emphasize the subjectivity of the maintained assumptions used to

transform relevant data into a "prior" distribution (in particular, the choice of a pooling fraction λ),

whereas "empirical Bayes" techniques typically emphasize the role of the data and deemphasize

the role of the maintained assumptions used to transform the data into a "prior" distribution.

Rubin’s (1980) application is especially relevant, since his problem was to pool admissions data

from dozens of different law schools to estimate the relative importance of college grades and

standardized test scores in predicting success in each law school. (Analyzing the data from each

law school separately produced rather imprecise and temporally unstable parameter estimates.)

Rubin’s approach was to assume that the relevant parameter for each law school was drawn from

a distribution whose hyperparameters he estimated from the data for all the law schools. It is

interesting to note that Rubin (and Efron and Morris (1977) in a similar application) used

thoroughly conventional (and ad hoc) exploratory techniques to assess the possibility that the

parameters governing different subsets of the data (for example, more versus less selective law

schools) were drawn from different distributions, rather than relying upon theory to specify the

relevance of each subset of the data from the perspective of the others, as I propose here.

40



17. The F-statistic is .818; with 2 and 17 degrees of freedom, p=.458. Note, however, that the

dramatic disparity between the standard errors of the regressions in the second and third columns

of Table 1 casts grave doubt upon the assumption underlying the F-test that σ0
2 equals σ1

2. My

unease about relying on F-tests to determine whether to pool disparate observations stems in part

from my suspicion that this assumption will often be implausible in applied work; the present and

subsequent examples reinforce that suspicion and illustrate some of its implications.

18. The p-values in the last column of Table 2 are based upon one-tailed t-tests; Ashenfelter

(1994) reported the probability value for a two-tailed t-test. Thus, the p-value of .029 reported for

λ=1 in the last column of Table 2 corresponds with Ashenfelter’s claim (1994, 3-4) that "we would

have expected the Democratic candidate to win the election (based on the sum of the machine

and absentee votes) in fewer than 5.8 in 100 cases with the observed configuration of the facts."

19. Powell reported a parallel analysis of violence in the period 1958-1967, but since most of his

explanatory variables are measured circa 1965 I limit my attention to the later time period.

20. Powell (1982, 235) reported that "For riots, deaths, and protests extreme cases are truncated

to ninetieth percentile to prevent bias; log transformation yields similar results." Since Powell’s

sources record no deaths from political violence in some of his countries between 1967 and 1976,

I add .05 (half the lowest positive recorded value of deaths per year) to each observation before

taking natural logarithms.

21. Including Costa Rica with the other ten "traditional" countries reduces the adjusted R2

statistic from .84 in the second column of Table 2 to .25; the standard errors of the parameter

estimates are almost three times as large as those reported in the second column of Table 2, and

none of the parameter estimates remains statistically different from zero at the .20 significance

level. It is important to note that my treatment of Costa Rica here is prompted by a loud message

from the data, and not by a priori theoretical considerations; thus, it cannot be justified by the

approach to disparate observations proposed in this paper, or, I fear, by any compelling statistical

theory.

41



22. For the sake of simplicity I include Costa Rica among the modern countries in the third

column of Table 2. Using only the 15 countries classified by Powell as "modern with traditional

sector" or "predominantly modern" produces similar results; none of the parameter estimates

changes by more than .15 standard errors from those reported in the third column of Table 2.

The parameter estimate for a dummy variable for Costa Rica added to the model in the third

column of Table 2 gets a t-statistic of .07; the parameter estimate for the same dummy variable

added to a model like the one in the second column of Table 2 but including Costa Rica gets a

t-statistic of −7.5.

23. The standard error of the regression for modern democracies in the third column of Table

3 is exactly twice as large as the standard error of the regression for traditional democracies in

the second column. Although not as dramatic as the corresponding disparity in Table 1, this

difference is sufficiently large to warrant considerable skepticism about the appropriateness of the

F-test in this setting.

24. The latter historical observation might be taken to imply an a priori expectation that the

impact of economic conditions on presidential election outcomes would be greater in the post-

World War II period than earlier. I ignore that complication here, except to note that the

parameter estimates in Table 4 are consistent with such an expectation.

25. Election year GNP growth in the eleven elections between 1948 and 1988 ranged from −.2

percent to 6.6 percent; the corresponding range in the eight elections between 1916 and 1944

was from −14.4 percent to 13.2 percent.

26. Alesina et al.’s "equation restricted" parameter estimates (and the corresponding ordinary

least squares estimates from my Table 4) are 5.981 for the intercept (7.584), .739 for lagged

House vote (.739), 10.362 for the Republican bias (10.11), and 1.590 and 1.140 for expected

GNP growth and the current growth shock, respectively (1.239).
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27. The F-statistic is .916; with 4 and 11 degrees of freedom, p=.488. Once again, however, the

disparity between the standard errors of the regressions in the second and third columns of Table

4 casts doubt upon the assumption underlying the F-test that σ0
2 equals σ1

2.
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Table 1: Regression Analysis of Absentee Vote Margins in Philadelphia

All Philadelphia
Districts

District 2
Only

Other Districts
Only

Intercept −125.9
(114.3)

153.5
(22.5)

−200.9
(133.4)

Machine Vote Margin .01270
(.00298)

.00770
(.00127)

.01394
(.00327)

Std error of regression 324.8 23.2 338.0

Adjusted R2 .46 .95 .50

N 21 3 18

(Ordinary least squares parameter estimates with standard errors in parentheses.)



Table 2: Statistical Tests of Absentee Vote Margin as a Function of λ

λ ŷ(−564) Standard
error of ŷ

p-value
(ŷ > 564)

1.0 −133 345 .029

0.9 −120 332 .027

0.8 −103 319 .027

0.7 −83 305 .026

0.6 −57 290 .027

0.5 −25 273 .028

0.4 14 253 .030

0.3 57 227 .032

0.2 100 190 .031

0.1 134 132 .026

0.0 149 33 .025



Table 3: Regression Analysis of Deaths from Political Violence

All
Contemporary

Democracies

"Traditional"
Only

(minus Costa
Rica)

"Modern" Only
(plus Costa

Rica)

Intercept −.96
(5.54)

16.54
(5.61)

−19.24
(6.70)

Population (logged) 1.015
(.297)

−.027
(.215)

1.855
(.318)

GNP per capita
(logged)

−1.757
(.432)

−1.846
(.835)

−1.594
(1.008)

Ethnic
Fractionalization

−1.598
(1.908)

.041
(2.735)

.836
(2.118)

Representational
Constitution

−.811
(.342)

−.592
(.301)

−.019
(.351)

Std error of regression 1.93 .69 1.38

Adjusted R2 .63 .84 .72

N 26 10 16

(Ordinary least squares parameter estimates with standard errors in parentheses.)



Table 4: Regression Analysis of Presidential Election Outcomes

1916-1988 1948-1988 1916-1944

Intercept 7.58
(11.47)

−12.22
(35.15)

31.75
(19.09)

Partisan Balance .739
(.221)

1.083
(.663)

.200
(.398)

Republican Incumbent 10.11
(2.18)

9.84
(4.89)

17.08
(4.43)

GNP Growth 1.239
(.202)

2.350
(.963)

1.445
(.213)

Std error of regression 4.24 4.92 2.88

Adjusted R2 .70 .37 .92

Durbin-Watson 2.86 2.91 2.56

N 19 11 8

(Ordinary least squares parameter estimates with standard errors in parentheses.)



Table A1: Ashenfelter Data
on Machine and Absentee Vote Margins in Philadelphia

District Year
Machine

Margin (D)
Absentee
Margin (D)

2 1982 26,427 346

4 1982 15,904 282

8 1982 42,448 223

1 1984 19,444 593

3 1984 71,797 572

5 1984 −1,017 −229

7 1984 63,406 671

2 1986 15,671 293

4 1986 36,276 360

8 1986 36,710 306

1 1988 21,848 401

3 1988 65,862 378

5 1988 −13,194 −829

7 1988 56,100 394

2 1990 700 151

4 1990 11,529 −349

8 1990 26,047 160

1 1992 44,425 1,329

3 1992 45,512 368

5 1992 −5,700 −434

7 1992 51,206 391

2 1993 −564 1,025

Data on election returns from Pennsylvania Senate districts in Philadelphia area, 1982-
1993, from Ashenfelter (1994). Machine margin : Democratic margin in votes cast by
machine ballot. Absentee margin : Democratic margin in votes cast by absentee
ballot.



Table A2: Powell Data
on Social, Economic, and Constitutional Determinants of Political Violence

Country Pop GNP Ethnic Rep Deaths

Australia 11.3 2,694 .32 2 0

Austria 7.3 1,732 .13 4 0

Belgium 9.5 2,427 .55 4 .1

Canada 19.6 3,327 .75 2 .3

Ceylon 11.2 193 .47 2 121.1

Chile 8.6 760 .14 1 87.3

Costa Rica 1.4 556 .07 1 0

Denmark 4.8 2,853 .05 4 0

Finland 4.6 2,354 .16 4 0

France 48.9 2,589 .26 1 .7

West Germany 59.0 2,558 .03 3 2.7

India 486.7 136 .89 2 328.4

Ireland 2.9 1,319 .04 3 4.0

Italy 51.6 1,485 .04 4 8.9

Jamaica 1.8 669 .04 2 17.9

Japan 98.0 1,159 .02 3 2.7

Netherlands 12.3 2,091 .10 4 .2

New Zealand 2.6 2,664 .37 2 0

Norway 3.7 2,543 .04 4 0

Philippines 32.3 215 .74 1 332.7

Sweden 7.7 3,441 .08 4 0

Turkey 31.1 379 .25 4 18.1

United Kingdom 54.6 2,446 .37 2 160.0

United States 194.6 4,810 .50 1 20.7

Uruguay 2.7 771 .20 1 18.2

Venezuela 8.7 1,187 .11 1 5.9



Data on contemporary democracies from Powell (1982). Italicized countries
categorized as "predominantly traditional" or "mixed traditional and modern" (Table
3.3). Pop : population in millions, 1965 (Table 3.1). GNP: GNP per capita in $US,
1965 (Table 3.2). Ethnic : ethnic fractionalization index (Table 3.4). Rep:
representational constitution (presidential = 1; majoritarian parliamentary = 2; mixed
parliamentary = 3; representational parliamentary = 4) (Table 4.1 and page 234).
Deaths : deaths per year from political violence, 1967-1976 (Table A.1). Switzerland
omitted (missing data on Rep).



Table A3: Alesina, Londregan, and Rosenthal Data
on GNP Growth and Presidential Election Outcomes

Year
Republican
Incumbent

Incumbent
Party’s

Midterm
House

Vote (%)

Election Year
GNP Growth

(%)

Incumbent
Party’s

Presidential
Vote (%)

1916 0 50.338 7.279 51.626

1920 0 45.096 −1.146 36.190

1924 1 53.600 2.919 65.259

1928 1 58.428 1.191 58.788

1932 1 54.129 −14.406 40.825

1936 0 56.184 13.219 62.487

1940 0 50.815 7.563 54.975

1944 0 47.662 7.863 53.776

1948 0 45.272 3.862 52.326

1952 0 50.041 3.826 44.623

1956 1 47.272 2.033 57.746

1960 1 43.603 2.198 49.899

1964 0 52.327 5.201 61.345

1968 0 51.327 4.064 49.593

1972 1 45.775 4.858 61.813

1976 1 41.323 4.771 48.930

1980 0 54.322 −.166 44.711

1984 1 43.782 6.559 59.155

1988 1 45.005 3.803 53.939

Unpublished data analyzed by Alesina et al. (1993) provided by Howard Rosenthal.


